EFFECT OF DIFFERENT TILLAGE METHODS ON YIELD AND YIELD COMPONENTS OF TOMATO (*Lycopersicon esculentum*)

Majid Rashidi, Mohammad Gholami and Saeed Abbassi

Department of Agricultural Machinery, Faculty of Agriculture, Islamic Azad University, Takestan Branch, Iran

E-Mails: majidrashidi81@yahoo.com, m.rashidi@aeri.ir

ABSTRACT

A field experiment was conducted at the Research Site of Tehran Province Agricultural and Natural Resources Research Center in Varamin, Iran on the sandy loam soils to study the effect of different tillage methods on yield and yield components of tomato (*Lycopersicon esculentum*) during 2007 and 2008 growing seasons. Tillage treatments in the study included were conventional tillage (CT; moldboard plowing + two passes of disk harrowing), minimum tillage (MT; one pass of disk harrowing) and no-tillage (NT). Yield, yield components (plant population density, PPD; number of fruits per plant, NFPP, fruit weight, FW; fruit length, FL; fruit diameter, FD) and fruit quality parameter (total soluble solids, TSS) were determined for all treatments. Results indicated that tillage methods significantly (P ≤ 0.05) influenced the yield, yield components and TSS. Results also showed that PPD and NFPP were the most important yield components explaining yield difference under the different tillage methods. The maximum PPD (10025 plants ha⁻¹), NFPP (19.1) and as a result yield (12.2 t ha⁻¹) were observed with the CT, while maximum values of FW (71.2 g), FL (70.0 mm), FD (59.2 mm) and TSS (7.27%) were noted NT plots. On the other hand, minimum PPD (5117 plants ha⁻¹), NFPP (10.2) and hence yield (3.70 t ha⁻¹) were obtained with NT, while the minimum values of FW (63.6 g), FL (61.0 mm), FD (53.6 mm) and TSS (5.81%) were noted in case of the CT treatment. Therefore, one pass of moldboard plow followed by two passes of disk harrow was found to be more appropriate and profitable tillage method in improving yield of tomato in the arid lands of Iran.

Keywords: tillage, conventional tillage, conservation tillage, minimum tillage, no-tillage, tomato, yield, arid lands, Varamin, Iran.

INTRODUCTION

Tomato (*Lycopersicon esculentum*) is one of the most important vegetable crops of Iran and is well adapted to its soil and climatic conditions. Tomato ranks first in cultivated area and production among all other vegetables in Iran (Iranian Ministry of Agriculture, Statistical Yearbook, 2006). According to Agricultural Ministry of Iran the average national production of tomato for the last two years was 4.4 million tones. Although the use of improved varieties and fertilizers has increased tomato production to much extent, the full potential of crop production has not yet been achieved when compared to progressive countries (Iranian Ministry of Agriculture, Statistical Yearbook, 2006).

Soil tillage is one of the very important factors that affect soil physical properties and yield (Keshavarzpour and Rashidi, 2008; Rashidi and Keshavarzpour, 2008). Khurshid et al. (2006) reported that among the crop production factors, tillage contributes up to 20%. Tillage method affects the sustainable use of soil resources through its influence on soil properties (Hammel, 1989), i.e. proper tillage practices can improve soil related constrains, while improper tillage may cause a range of undesirable processes such as destruction of soil structure, accelerated erosion, depletion of organic matter and fertility, and disruption in cycles of water, organic carbon and plant nutrients (Lal, 1993). Use of excessive and unnecessary tillage operations is harmful to soil. Therefore, currently there is a significant interest and emphasis on the shift to the conservation tillage and no-tillage methods for the purpose of controlling soil erosion (Iqbal et al., 2005).

Most of the tomato area in Iran is under conventional tillage (Iranian Ministry of Agriculture, Statistical Yearbook, 2006). Conventional tillage practices modify soil structure by changing its physical properties such as soil bulk density, soil penetration resistance and soil moisture content (Keshavarzpour and Rashidi, 2008; Rashidi and Keshavarzpour, 2008). Annual disturbance and pulverizing caused by conventional tillage produce a finer and loose soil structure as compared to conservation and no-tillage methods which leave soil intact (Rashidi and Keshavarzpour, 2007; Rashidi et al., 2008). This difference results in change number, shape, continuity and size distribution of the pores network, which controls the ability of soil to store and transmit air, water and agricultural chemicals. This also improves porosity and water holding capacity of the soil. This all leads to a favorable environment for crop growth and nutrient use (Khan et al., 2001; Khurshid et al., 2006).

On the other hand, conservation tillage methods often result in decreased pore space (Hill, 1990), increased soil strength (Bauder et al., 1981) and stable aggregates (Horne et al., 1992). The pore network in conventionally tilled soil is usually more continuous because of earthworms, root channels and vertical cracks (Cannel, 1985). Therefore, conservation tillage may reduce disruption of continuous pores. Reddy et al. (2007) quantified the amount of carbon dioxide (CO₂) released from soil as a result of different tillage methods. They observed 37% higher CO₂ efflux from conventionally tilled soils compared to no-till soils which represents higher carbon sequestration in no-till soils. However, the results of conservation tillage and no-tillage methods are
contradictory (Iqbal et al., 2005). Conservation tillage and no-tillage methods in arid lands of Iran had an adverse effect on yields of some crops (Hemmat and Taki, 2001). Conversely, while comparing conventional tillage method to conservation tillage and no-tillage methods Chaudhary et al. (1992) concluded that higher moisture preservation and 13% more income were obtained in case of no-tillage. Although considerable amount of research has been done on many crops, information on response of tomato to conservation tillage and no-tillage methods is meager. At this time, a wide range of tillage methods is being used in Iran without evaluating their effects on yield and yield components of many crops including tomato. Therefore, the present investigation was planned to determine the effect of different tillage methods on yield and yield components of tomato in the arid lands of Iran.

MATERIALS AND METHODS

Experimental site

The experiment was carried out for two consecutive growing seasons (2007 and 2008) at the Research Site of Tehran Province Agricultural and Natural Resources Research Center in Varamin, Iran. The site is located at latitude of 35° 19' N and longitude of 51° 39' E and is 1000 m above mean sea level, in arid climate in the center of Iran, where the summers are dry and hot while the winters are cool. The soil of the experimental site was a fine, mixed, thermic, Typic Haplocambids sand loam soil. Details of soil physical and chemical properties of the experimental site are given in Table-1.

<table>
<thead>
<tr>
<th>Soil characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>Sand loam</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>54.0</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>28.0</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>18.0</td>
</tr>
<tr>
<td>Bulk density (Mg m⁻³)</td>
<td>1.51</td>
</tr>
<tr>
<td>EC (dS m⁻¹)</td>
<td>2.90</td>
</tr>
<tr>
<td>pH</td>
<td>8.00</td>
</tr>
<tr>
<td>Organic carbon (%)</td>
<td>0.50</td>
</tr>
<tr>
<td>Total N (%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Available P (ppm)</td>
<td>9.20</td>
</tr>
<tr>
<td>Available K (ppm)</td>
<td>272</td>
</tr>
<tr>
<td>Available Fe (ppm)</td>
<td>2.82</td>
</tr>
<tr>
<td>Available Zn (ppm)</td>
<td>2.06</td>
</tr>
<tr>
<td>Available Cu (ppm)</td>
<td>0.90</td>
</tr>
<tr>
<td>Available Mn (ppm)</td>
<td>8.20</td>
</tr>
<tr>
<td>Available B (ppm)</td>
<td>2.06</td>
</tr>
</tbody>
</table>

Soil sampling and analysis

In order to determine soil physical and chemical properties of the experimental site, a composite soil sample was collected from 18 points in the entire plot before treatment imposition in 2007. Soil sample was analyzed in the laboratory for N, P, K, Fe, Zn, Cu, Mn, B, EC, pH, organic carbon, particle size distribution and dry bulk density. Total N (%) was determined by the macro-Kjeldahl method (Bremner, 1982). Available P (ppm) was found using Bray II method according to Olsen (1982). The exchangeable cations were calculated by the method described by Thomas (1982). Soil EC and soil pH values were obtained by using a HI9813-5 portable pH/EC/TDS/°C meter (HANNA instruments, Romania, 2002). Soil organic carbon was determined by Walkley-Black procedure (Nelson and Sommers, 1982). Particle size distribution was determined by hydrometer method (Gee and Bauder, 1986). Dry bulk density was found by the core method (Blake and Hartge, 1986).

Field methods

The experiments were laid out in a randomized complete block design (RCBD). Tillage treatments included conventional tillage (CT), minimum tillage (MT) and no-tillage (NT) and they were replicated three times. Conventional tillage included one pass of moldboard plow to a depth of 15 cm and was followed by two passes of disk harrowing. Minimum tillage included only one pass of disk harrowing. No-tillage included zero tillage activity. The treatments were carried out on the same plots in the 2007 and 2008 growing seasons. The size of each plot was 10.0 m long and 6.0 m wide. A buffer zone of 5.0 m spacing was provided between plots. There were two furrows in each plot (even in no-till plots). The furrows had 10.0 m long, 75 cm wide and 50 cm depth. In both growing seasons, one of the most commercial varieties of tomato cv. early urbana was transplanted manually on both sides of each furrow with 50 cm plant to plant spacing (totally there were four rows per plot). Before transplanting, recommended levels of N (350 kg ha⁻¹), P (100 kg ha⁻¹) and K (50 kg ha⁻¹) were used as Urea, TSP (triple super phosphate) and SOP (sulphate of potassium), respectively. They were incorporated in the CT and MT, and surface applied in the NT. Trifuralin (0.75 L ha⁻¹) was also applied for weed control before tomato transplanting. Tomato was transplanted on 5th May when the soil was well irrigated in all treatments. During the growing season, the insecticides and fungicides were applied according to general local practices and recommendations. All other necessary operations except those under study were kept normal and uniform for all the treatments.

Weather parameters

The mean monthly rainfall and temperature data of the experimental site for 2007 and 2008 are given in Figure-1.
Figure-1. Mean monthly rainfall and temperature during crop growth, 2007 and 2008.

Observation and data collection
Tomatoes were harvested three times (23 July, 12 August and 31 August, respectively) and standard procedures were adopted for recording the data on yield and yield components. Yield, plant population density (PPD) and number of fruits per plant (NFPP) were determined by counting plants and harvesting fruits of the two middle rows of each plot (Srivastava et al., 1994). Other parameters, i.e. fruit weight (FW), fruit length (FL), fruit diameter (FD) and total soluble solids (TSS) were determined from the 20 samples taken randomly from harvested fruits of the two middle rows of each plot (Doss et al., 1980; Jain et al., 2000). The TSS of tomatoes was measured using an ATC-1E hand-held refractometer (ATAGO, Japan, 2005) at temperature of 20°C.

Table-2. Effect of different tillage treatments on yield and yield components of tomato (mean 2007 and 2008).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (t ha⁻¹)</th>
<th>PPD (plant ha⁻¹)</th>
<th>NFPP</th>
<th>FW (g)</th>
<th>FL (mm)</th>
<th>FD (mm)</th>
<th>TSS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional tillage (CT)</td>
<td>12.2 a</td>
<td>10025 a</td>
<td>19.1 a</td>
<td>63.6 c</td>
<td>61.0 c</td>
<td>53.6 c</td>
<td>5.81 c</td>
</tr>
<tr>
<td>Minimum tillage (MT)</td>
<td>6.19 b</td>
<td>6908 b</td>
<td>13.2 b</td>
<td>67.6 b</td>
<td>64.8 b</td>
<td>57.6 b</td>
<td>6.31 b</td>
</tr>
<tr>
<td>No-tillage (NT)</td>
<td>3.70 c</td>
<td>5117 c</td>
<td>10.2 c</td>
<td>71.2 a</td>
<td>70.0 a</td>
<td>59.2 a</td>
<td>7.27 a</td>
</tr>
<tr>
<td>LSD₅%</td>
<td>0.160</td>
<td>244.9</td>
<td>0.373</td>
<td>0.742</td>
<td>1.260</td>
<td>0.991</td>
<td>0.453</td>
</tr>
</tbody>
</table>

Means in the same column with different letters differ significantly at 0.05 probability level according to DMRT (PPD: plant population density; NFPP: number of fruits per plant; FW: fruit weight; FL: fruit length; FD: fruit diameter; TSS: total soluble solids).

DISCUSSIONS
In this study, the salient components of yield such as PPD, NFPP, FW, FL, FD and a fruit quality parameter, i.e. TSS were studied to analyze the effect of different tillage methods on growth and yield of tomato. The statistical results of the study indicated that tillage method significantly affected yield, PPD, NFPP, FW, FL, FD and TSS during the study years. Results also showed that tillage practices were beneficial in improving the growth and yield of tomato (Table-2).

The Data were subjected to ANOVA using statistical software, SPSS 12.0 for Windows (SPSS Inc., 233 S Wacker Drive, Chicago, IL, USA). Means were separated by Duncan’s Multiple Range Test (DMRT) at P ≤ 0.05 (Steel and Torrie, 1984).

RESULTS
Yield and yield components of tomato were significantly influenced by tillage methods. Among the three different tillage methods, the CT method recorded significantly higher yield (12.2 t ha⁻¹) compared to NT (3.7 t ha⁻¹) and MT (6.2 t ha⁻¹) methods, respectively. Between the two conservation tillage methods, the MT method recorded significantly higher yield (67%) than NT method. A similar trend was also observed in case of PPD and NFPP. Significantly higher PPD and NFPP were observed in the CT plots (10025 plants ha⁻¹ and 19.1, respectively) compared to MT (6908 plants ha⁻¹ and 13.2, respectively) and NT (5117 plants ha⁻¹ and 10.2, respectively) plots (Table-2).

In contrast to the above trend, NT and MT methods recorded significantly higher FW, FL, FD and TSS compared to the CT method. Between conservation tillage methods, the NT method recorded higher values for the above parameters. Values of FW, FL and FD were 12, 15 and 10%, respectively higher in NT plots compared to that of the CT plots. The quality parameter of tomato fruits, TSS was significantly higher in NT plots (7.27%) compared to that of the CT (5.81%) and MT (6.31%) plots (Table-2).

The maximum value of PPD (10025 plants ha⁻¹) and NFPP (19.1) was observed in case of the CT treatment, while maximum value of FW (71.2 g), FL (70.0 mm), FD (59.2 mm) and TSS (7.27%) was noted in case of NT treatment. As PPD and NFPP were the most important yield components explaining yield of tomato under different tillage methods, the maximum value of yield (12.2 t ha⁻¹) was observed in case of the CT treatment (Table-2). These results are in agreement with those of Khan et al. (1999), Khan et al. (2001), Iqbal et al. ©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.
resulting in increased crop yield.

development, plant growth and plant population density,
growth suppressing which favorably affect root
density, increased soil moisture preservation, improved
soil structure, enhanced root-soil contact and better weed
growth suppressing which favorably affect root
development, plant growth and plant population density,
resulting in increased crop yield.

On the other hand, the minimum value of PPD
(5117 plants ha$^{-1}$) and NFPP (10.2) was obtained in case of
NT treatment, while the minimum value of FW (63.6 g),
FL (61.0 mm), FD (53.6 mm) and TSS (5.81%) were
noted in case of the CT treatment. In view of the fact that
PPD and NFPP were the most important yield components
explaining yield of tomato under different tillage methods,
the minimum value of yield (3.70 t ha$^{-1}$) was obtained in
case of NT treatment (Table-2). These results are in
agreement with those of Bauder et al. (1981), Hill (1990)
and Horne et al. (1992), who concluded that no-tillage and
conservation tillage methods can be associated with
decreased pore space, increased soil penetration resistance,
increased soil bulk density, decreased soil moisture
conservation which adversely affect root development,
plant growth, plant population density and consequently
yield. These results are also in line with the results
reported by Iqbal et al. (2005) that no-tillage method can
not compensate the adverse effect of fine texture, very low
organic matter and an overall initial weak structure of the
soil. These results are also in agreement with those of
Hemmat and Taki (2001), Keshavarzpour and Rashidi
(2008), and Rashidi and Keshavarzpour (2008), who
concluded that the no-tillage method in arid regions had an
adverse effect on yield. Furthermore, Reddy and Reddy
(2008) concluded that no-tillage needs extra nutrients in
the form of crop residue to give similar yields to
conventional tillage. They observed 18% higher yields in
conventional tillage compared to no-tillage with similar
quantity of nutrients. Conversely, they observed 21% higher yields in no-tillage plots compared to conventional
tillage when extra crop residue was included in the form of
winter cover crop. Hence, future studies are needed to find
the response of tomato to no-tillage along with higher
nutrient dosage and residue cover.

CONCLUSIONS

The above information suggests that among three
methods of tillage imposed, the conventional tillage (CT)
method was found to be better over the minimum tillage
(MT) and no-tillage (NT) methods in achieving higher
yield of tomato through improving plant population
density (PPD) and number of fruits per plant (NFPP).
Reduced soil penetration resistance, reduced soil bulk
density, increased soil moisture preservation, enhanced
root-soil contact and better weed growth suppressing
might have helped in retaining good PPD and NFPP, and
resulted in higher yield in conventionally tilled plots.
It can be concluded that one pass of moldboard plow
followed by two passes of disk harrow can be
recommended as a more appropriate tillage method in
improving yield of tomato in the arid lands of Iran. Further
long-term studies are needed to find the beneficial effects
of no-tillage on soil quality and yield when it is
supplemented with extra nutrients or crop residue.

ACKNOWLEDGMENTS

Thanks to Eng. Mohammad-Reza Imani and Eng.
Mohsen Seilsepour for statistical expertise on several
occasions, and Eng. Fereydoun Keshavarzpour for
technical help and instrumentation. The financial support
provided by the Agricultural Research, Education and
Extension Organization of Iran under research award
number 2-109-220000-14-0000-86008 is gratefully
acknowledged.

REFERENCES

Bauder J.W., Randall G.W. and Swan J.B. 1981. Effects of
four continue tillage systems on mechanical impedance of

A. (Ed.), Methods of Soil Analysis. Part 1, 2nd ed.,
Agronomy Monograph No. 9. ASA and SSSA, Madison,
WI. pp. 365-375.

R.H. and Keeny D.R. (Eds.), Methods of Soil Analysis.
Part 2, 2nd ed. Agronomy Monograph No. 9. ASA and
SSSA, Madison, WI. pp. 915-928.

Cannel R.Q. 1985. Reduced tillage in north-west Europe -
a review. Soil and Tillage Res. 5: 129-177.

Chaudhary A.D., Javed M., Rana M.A., Sarwar A.
drilling and conventional tillage practices under rice-wheat

methods and in row chiseling for tomato production. J.

Gee G.W. and Bauder J.W. 1986. Particle size analysis. In:
Agronomy Monograph No. 9. ASA and SSSA, Madison,
WI. pp. 383-411.

wheat as affected by stubble tillage management and
seeding rates in central Iran. Soil and Tillage Res. 63: 57-
64.

Hill R.L. 1990. Long-term conventional and no-tillage
effects on selected soil physical properties. Soil Sci. Soc.
Amer. J. 54: 161-166.

