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ABSTRACT

Using transformation method some exact solutions of equations of motion of a finitely conducting incompressible
fluid of variable viscosity in the presence of a transverse magnetic field are determined. These solutions consist of flows for
which the vorticity distribution is proportional to the stream function perturbed by a uniform stream. Streamline patterns for

some of the solutions are also presented.
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1. INTRODUCTION

Various methods have been used by the
researchers to determine exact solutions of the Navier-
Stocks equations. These methods and the exact solutions
determined through these methods can be found in
references [1-20] and the references their in.

Recently Naecem RK and Muhammad Jamil[21]
applied transformation method to determine a class of exact
solutions to flow equations of an incompressible fluid of
variable viscosity in which the vorticity distribution is
proportional to the stream function perturbed by a uniform
stream parallel to the x-axis.

In the present work, we extend Naeem RK and
Muhammad Jamil approach to determine some exact

2. BASIC FLOW EQUATIONS

solutions of equations of motion of a finitely conducting
incompressible fluid of variable viscosity in the presence of
a transverse magnetic field for which the vorticity
distribution is proportional to the stream function perturbed
by a uniform stream inclined to the x-axis.

The plan of this paper is as follows: In section 2
basic flow equations are considered and are transformed
into a new system of equations using the transformation
method. In section 3, some exact solutions of the new
system of equations are determined. The transformation
method used in determining the exact solutions to these
equations is straightforward.

The non-dimensional equations governing the steady motion of a finitely conducting incompressible fluid of variable
viscosity, in the presence of a magnetic field from Naeem RK and Najma Tayyab[22] are:

u, + vy +w, =0

y

1
Uly + Vuy+Wu, = —py+ E[(Zuux)x+ (p(uy + vx))y + (p(wx+ uz))z}

+ Ry [Hs (Hy, —Hsy) - H2<H2x - Hly)]

UVy+ VVy+wv, = .

—py+ RL[(2uVy)y +(p (vZ +wy))Z +(p (uy + VX))J

+ Ry [Hl (Hzx _Hly) - H3(H3y - sz)]
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1
UWy+ VW +WwW, =—p,+ E[(ZHWZ)Z + (w(wy +uy)), + (u (vZ + wy))y}

+ Ry [Hz (Hsy —sz) - Hy(H,, - H3x)]

(VHI - uH2)y - (UHS _WHI)Z = RL(HIXX + Hlyy + lez)

9

1
(WHy — vH;3), — (vH; —uH,), R_(H2xx + Hpyy + szz)

9

1
(WH; — wH;), - (WH, —VH3)y = R_<H3xx + Hzyy + H3zz)

uTy + vTy +wT,=

2 2 2
Re Pr (TXX + Tyy + TZZ)+ —[2;1 (ux +Vy W, ) +p{(vx + uy)2

+ (Wy+ VZ)Z+ (uZ+WX)2}] + RHfC [(H3y_ HZZ)2 +(le - H3x)2 + (HZX - Hly)z]

Hix + H2y +Hs, =0 (1)

The meanings of various symbols used here are given in the Nomenclature.
Considering the flow to be plane transverse flow, we have

(u, v, w)=(u, v, 0)
(Hy, Hy, Hy) = (0,0, H) ©)

(o), =0

The system of Egs.(1), utilizing Eqgs.(2), becomes

uy+ vy=0 3)
1
uuxF vy =Pt E[(Zqu)x+(”(uy+Vx))y] (4)
1
Uvgtvvy =Pyt g[(zuvy)ﬁ(u(uw Vx))x} ®)
1
uHy +VHy :R—(HXX +Hyy) 6)
9
1 E Ry E
uT+vly = E(TXXJF Tyy) + %[2(uxz+vy2)+(uy+ Vx)z] + —; C(sz + Hyz) (7
o
Where
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2
P=p+RHH7 ®)

Equation (3) implies the existence of the stream function y such that
Uu=yy , V==V ©)

The system of Egs.(3 — 7), on utilizing Eq. (9), transform into the following system of equations

1
Yx 0 = _JX+E[H(\Vyy_\|/xx)]y (10)
4 1
Yy ® = _Jy_R_6(u‘ny)y+R_6[u(\|/yy_ Wxx)]x (11
Yy Hy — wy Hy = L (Hxx + Hyy) (12)
R
o
1 Ec pn [ ] Ry Ec ( 2 2 )
‘VyTx_\VxTy _E(Txx"' Tyy)"" K 4(\|fxy)z+ (Wyy_‘l/xx)z +T¢; Hx + Hy (13)
Where the vorticity function ® and the generalized energy function J are defined by
® = _(‘l’xx + "’yy) (14)
1 ( 2 2 ) 2 My
J =P+ — + - — 15
S vy Re (15)
The generalized energy function J, on using Eq.(8), becomes
2
H 1( > 2 ) 2 gy
J=p+ Rgy— + — ( + -— 16
p H™ 5 \Vx Yy Re (16)

Once a solution of system of Egs. (10-13) is determined, the pressure p is obtained from Eq. (16).
Since we are interested in the solution of the system of Egs. (10-13) when the vorticity distribution is proportional to the
stream function, perturbed by a uniform stream, we set

Vi + Wy =Ky - Ux - Uy) (17)

Where K # 0 and U are real constants.

On substituting

Y =y -Ux-Uy (18)
and employing Eq.(17), the Eq. (14) becomes

o =-KY¥ (19)

Equations (10) and (11), utilizing Egs. (18) and (19), become

L = KUY + é[p(‘}’yy - ¥y)], (20)
L, =KUY —Rie(u‘}'xy)y+ Rle[u(‘}'yy—‘{'xx)]x @1)

Where
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2
Lo k¥

L., =L
Equations (20) and (21), on using the integrability condition ~ =¥~ ¥* | provide

4
My = My, E(p'{!xy)xy+ KU (¥, —¥,)=0 22)
Where
M = “(Tyy - \lex)
Re

Equation (22) is the equation that must be satisfied by the function ¥ and the viscosity p for the motion of a finitely
conducting incompressible fluid of variable viscosity in the presence of a transverse magnetic field in which the vorticity
distribution is proportional to the stream function y perturbed by a uniform stream inclined to the x-axis.

Equation (12) and (13), employing Eq. (18), become

(w,+ U)H, - (W, + U)Hy=RL(HXX+Hyy) 23)

(o)

1

y Re Pr
(24)
Ry E
+ ; c(HX2 + Hyz)
(e}
Let us now determine the solutions of the system of Egs. (22 — 24) in the next section.
3. SOLUTIONS
In this section we determine some exact solutions of the system of Egs. (22 — 24) as follows:
Equation (17), employing Eq.(18), becomes
VY= KY (25)
Plane wave solution of the Helmholtz Eq. (25) exists in the form
W(x,y) = N(¢) (26)
Where
& =(xcos® + ysin®) —n<fh<m (27)
Equation (25), on using Eq. (26), yields
N'(g) - KN(E) = 0 (28)
Equation (28) possesses solutions for the following cases:
Case-1: K = -n’ , n>0
Case-1l: K = m’ , m>0

We now consider these cases separately and also determine the solutions of Egs. (22-24) for these cases as follows:
Our strategy is that first we find the function W(x, y) from Egs. (26) and (28), and use this ¥ to determine p, H and T from
system of Eqs.(22-24).

CASE-I:
For this case the solution of Eq. (28) is given by

N(&) = Ay(6)cos(n &+ A, (6)) (29)
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Where

&= (xcosd + ysin® ) , -n<l<m

and A (9) and A, (6) are real constants dependent on the parameter 6, and —nt<0<m.
The function ‘P(x, y), therefore is given by

¥ = A, (0) cos(n(xcosd + ysind) + A,(6))

Equation (22), utilizing Eq. (30), becomes
Zyy = A3(6) sinm

Where

Z = pcosn

n=néf+ B(G)

A3(6) _ ReKU(co:G — sind )

n

The solution of Eq. (31) is
Z =—A3(6) sinn +A4(6) n+ A5(6)

Where A4(0) and As(0) are real constants dependent on the parameter 8, and —w<0 <.
Equations (32) and (34) give

W= —As(0)tann + A4(8) n secn + A5(0) secn

Equation (23), utilizing Eq. (30), becomes

Hyy = Ag(0) Hy =0
Where
Ag0) = R, U (cosd — sind )

n
n=n& + A 0)
The solution of Eq. (36) is
H=A,(0) 260014 Ag(0)

Where A5 (9) and A8<9) are real constants dependent on the parameter 6 ,and —-nt<6<mx.
Equation (25), using Egs. (30), ( 33), (35) and ( 37), becomes

Ty + Ag(0) T, = —2A14(6) sin2n + Ajy(0)ncosn + Aj5(0) cosn +A, 3(9)62A6(9)n

Where
Ag(p)=—IRe P (Czse ~ sinf)
Ap(6) =~ URePrEe A;2(0) (cos0 — sind)

4n

(30)

1)

(32)

(33)

(34)

(33)

(36)

37

(38)
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Ap1(0) = —n? PrEcA;(0)A4(0)
Ap(0) = — n?PrEc A (0) A5(0)

RePrEcRy Ag2(0) A,%(0)
R

A3(60) =

o

The solution of Eq. (38) is
T = A4(0)(2sin2n + Ag(0) cos2n) + A5(0) (sinn + Ag(6) cosn) + A (Ag(0)sinn— cosn)

+ A17(0) n(Aq(0)sinn — cosn)+A5(0) A6 A1y (6) e 490 +A2(0) (39)
Where
n=ng + A0)
_ Ayl)
Ap4(0) = PRI
_ A N Ap(0)
Aj5(0) 1+ Ao2(6) (1 + A20) )z
_Apd) Ag0)A;(60)
Ar6(0) I+ Ao2(6) (1 + A20) )z
_Au0)
Ap7(0) = ng(e)
A0) = )

2A4(0) (2 A6(0) + A9(0))

Where A19(9) and Ay, (9) are real constants dependent on the parameter 6, and —-n<0<m.
The exact solutions of system of Egs. (22- 24), in this case is given by

w = —As(0)tanm + A4(0)n secn + A5(0) secn
H = A(0)e™0@n 1 A (o)

T = A4(0)(2sin2n + Ag(6) cos2n) + A;5(0) (sinn + Ag(6) cosn) + A (Ag(6)sinn— cosn)

+ Ap7(0) n(Ag(0)sinn— cosn)+ A5 (6) 2260 1 A 5(0) ¢ 29O 1AL (0)

The stream function y for this case is given by

vy = U(x+y)+ A;(0) cos(n(xcosd + ysind) + A,(6)) (40)

It represent a uniform stream U in the positive x direction plus a perturbation that is periodic in x and y. Some typical
streamline patterns are given in Figures (1 - 4).

10
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CASE-I1:
For this case
N(g) =By(6) e™ + B,(0)(0) ™™

Where By (9) and B, (9) are real constants dependent on the parameter 6 ,and —n <0 <m.
The function ¥(x, y), therefore is given by

¥() =By(8) e™ + B,(0)(0) €™ (1)

Equations (22), utilizing Eqgs. (41), becomes

Gz =m?B3(0) €™ + m”By(0) e™ (42)
Where

G=pv (43)
B, (0) = K U Re Bl(zl)3(cose — sind)

B4(9) _ K U Re B2(23(cos9 - sine)

The solution of Eq. (42) is

G =B;(0) e™ + B4(0) e™ + B5(0) & + B4(6) (44)

Where Bj (9) and Bg (9) are real constants dependent on the parameter 0 ,and —n <0 <m.
Equation (44), on using Eqgs. (41) and (43) give
B3(0) ™ + B4(0) ™™ + Bs(0) & + By(0)
BI(O) Gmé + Bz(e) e_mé

(45)

Equation (23), utilizing Egs. (41) ,becomes
Hgr — B7(0) He = 0 (46)
Where

&z(xcose+ysin6) , -n<0<m

B7(9) =R, U (cosh — sinf )

The solution of Eq. (46) is

H=By(0) 70 ¢ 1 B, (o) @7)
Where Bg(0) and By(0) are real constants dependent on the parameter 0, and —n<0 <.

Equation (25), using Eqs.(27), (41),(45) and ( 47), becomes

Tee +By0) T. = —PrEc m* G¥ + Byy(0) P70 (48)

Where

11
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Bjo(6) = —RePr U (cosh — sind )

2 2
B, (6) = Re Pr Ec RHRB7 (0) Bg*(0)

9

The solution of Egs. (48) is

T = —PrEcm® |Bp5(0) @™ + By3(0) e 2™ + Byy(0) £e™ +B;5(0) & e ™S + By(0) o™

& By (0)e ™+ Bigl0) (2 — 1)]+Bio(0) 7 £ By(0) e B1IO% 1 B, (o)

Where
&z(xcos9+ysin9) , —n<0<m
1(0) B5(0
%@:méﬂﬁ£»
2(6) B4(6)
0) = S = By
B0~ )
Bys(60) = m(r]?(?) ]?351(06()9))
bf0) - BOBO)  BOBO 5080

m(m+ Bi®))  m*(m+ Byy) m(m+ B())

B (6) = By(0) Bs®) ., _ By(0)Bs(®)  _ B,(6) Bs(0)
T i (m = Bip®) | m2(m - By®))  m(m + Byl))

B, (6) B4(6) + B,(6) B5(0)
Bo(6)

~ By;(6)
Byo(0) = 2B,(0)(2B5(8) + Byo(60))

Where B (9) and By, (9) are real constants dependent on the parameter 6 ,and —nt<0<m.

The exact solutions of system of Eqs.(5-10), in this case is given by

B;(0) e™ + B,(6) ™™ + B5(6) &+ By(0)
BI(O) emé + Bz(e) e_mé

ﬂ:

H=Bg(60) 270 ¢ 1 By(o)

(49)

12



VOL.1, NO.2, AUGUST 2006 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences n f«a

©2006 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

T = —PrEem* |Bjy(0) €™ + By3(0) ¢ 2™ + By(0) €™ +B;5(0) £ e ™ + Byg(6) €™

+ Bpy(0)e ™ + Big(0) (& — 1)] +Byo() &

For this case the stream function
v = U(X 4 y) + B, (9) em(x cos0 + y sin) i Bz(e) efm(x cos0 + ysind) (50)

represents a uniform stream U in the positive X direction plus a perturbation that is not periodic in X and y. Some typical
streamline patterns are given in Figures (5-10).

If in particular we assume K = 0, then the solution of Eq. (21) is

N(E) = C(0) & + C,(0), —n<l<m

Where C;(0) and C,(0) are real constants dependent on the parameter 0 , and —1<0 <.
The function ‘{’(x, y) , therefore is given by

¥ = 0) &+ Cy(0) (51

When K =0, Eq. (22) is identically satisfied and therefore the viscosity p is arbitrary and Eq. (23) provides the same solution
as in case-II, that is

H=C,(0) 3@ 4 o) (52)

Where C4 (6) and C; (9) are real constants dependent on the parameter 0 ,and —n <0 <m.
Employing Egs. (51) and (52) in Eq. (24), we get

2 2
Tee — URePr (cos® — sind) T = Re PrRy ECRC3 (6) Ca (6) (53)

9

The solution of Eq. (53) is

2 2
- RuBe GIOCO) o ) 60l | cofp) (54)
UR, (cosd — sind)
Where
& =(xcosd + ysin® ) , -n<b<m

and Cg(0) and Cy(8) are real constants dependent on the parameter 6, and —n<0 <.
The exact solutions of system of Eqs. (22-24), in this case is given by

p is arbitrary
H=C,(6) e3¢ 4 (o)

Ry Ee C*(0) C,*(6)

T =
UR, (cosd — sinO)

&+ Cy(0) <6 4 cy(o)

13
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K =0, corresponds to an irrotational flow and it is the following uniform flow

v = (U + ¢ (0)cost)x +(U + Cy(6)ind)y + C,(0)

4. CONCLUSIONS

Some exact solutions of equations of motion of a
finitely conducting incompressible fluid of wvariable
viscosity in the presence of a transverse magnetic field are
determined, using transformation method. These solutions
consist of flows for which the vorticity distribution is
proportional to the stream function perturbed by a uniform
stream. Streamline patterns for some of the solutions are
also presented. By assigning different values to the
constants there in the solutions, we can generate more
streamline patterns.
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NOMENCLATURE

uv,w
H;, H,, Hj

Subscripts
X, Y, Z, XX, Yy L
&, &8 M _

Superscripts

non-dimensional velocity component

non-dimensional components of the magnetic field vector H
non-dimensional transverse components of the magnetic field
vector H

non-dimensional pressure

non-dimensional temperature

viscosity of the fluid

Reynolds number

magnetic pressure number

magnetic Reynolds number

Prandtl number

Eckert number

stream function

generalized energy function
vorticity function

functions

variables

real constants

real constants dependent on the parameter 0 ,and—n <6 <m.
real constants dependent on the parameter 6, and —t <0< 7.

real constants dependent on the parameter 0 , and —t<0<m.

differentiation with respect to cartesian coordinates X and Y.

differentiation with respect to & and 1.

differentiation with respect to the argument.

15
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=

Figure-1. Streamline pattern for Cos[%x+%y}+ X + y = constant
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7.5 ¢

7.5

B

Figure-5. Streamline pattern for Cosh| %x _TY +2 (x + y) = constant

20



VOL.1, NO.2, AUGUST 2006 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences ‘ Ea

©2006 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Figure-6. Streamline pattern for Cosh(0.819x - 0.574y)+ 0.2(x + y) = constant
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7.5

V3

Figure-7. Streamline pattern for Sinh(% X +7 yJ —4(x + y) =constant
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7.5

NG

Figure-8. Streamline pattern for Sinh{% X— - y] +5(x + y) =constant
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Figure-9. Streamline pattern for Sinh[0.6l(u

72

B — (x + y) =constant

ISSN 1819-6608
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s

V3

. . 1
Figure-10. Streamline pattern for Exp{— % X+ % yJ —Exp| — {— - X+ 3 yJ - (x + y) = constant
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