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ABSTRACT 

Thermodynamic optimizations based on the maximum power and maximum power density criteria have been 
performed for a solar-driven heat engine with internal irreversibilities. In the analysis, it is assumed that the heat transfer 
from the hot reservoir is to be in the radiation mode and the heat transfer to the cold reservoir is to be in the convection 
mode. The power and power density functions have been derived, and maximizations of these functions have been 
performed for various design and operating parameters. The obtained results for the maximum power and power density 
conditions have been compared. 
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1. INTRODUCTION 

Power optimization studies of heat engines using 
finite time thermodynamics were started by Chambadal [1] 
and Novikov [2] and were continued by Curzon and 
Ahlborn [3]. Firstly, Curzon and Ahlborn [3] studied the 
performance of an endoreversible Carnot heat engine at 
maximum power output. During the last decade, many 
power optimization studies for heat engines based on 
endoreversible and irreversible models have been 
performed [4]. Wu [5], Chen and Wu [6] and Chen et al. 
[7] have taken specific power output (power output per 
unit total heat transfer area) as the optimization criterion. 
The first finite time thermodynamic analysis was 
performed for a solar driven heat engine by Sahin [8]. He 
showed the optimum operating conditions for a solar-
driven heat engine under maximum power output, and he 
also developed his model by considering the collective 
role of radiation and convection heat transfer from the hot 
reservoir [9]. Sahin et al. [10–12] performed optimization 
studies for an endoreversible Carnot heat engine and for 
reversible and irreversible Joule–Brayton heat engines 
using the power density as a new criterion. They showed 
that the power density analysis takes the effect of the 
engine size into account as related to the investment cost. 
Koyun [13] carried out a comparative performance 
analysis based on maximum power and maximum power 
density criteria for a solar-driven heat engine with external 
irreversibilities.  

This paper analyzes the maximum power and the 
maximum power density performances for a reversible 
Carnot cycle with internal irreversibility of heat transfer of 
a solar-driven heat engine with consideration to the ratio 
of heat transfer area between the hot and cold reservoir 
which is a design parameter. Internal irreversibility factor 
being the other important operating parameter.   
 
 
 
 

 

 
 

Nomenclature 
 
CH hot side heat transfer coefficient 
CL cold side heat transfer coefficient 
S entropy 
T temperature 
W&  power output  

dW&  power output 
η efficiency 
x          = CHTH

3 / CL
τ          = TL / TH

θ         = TX / TH
 
Subscripts 
C  Carnot 
CA  Curzon–Ahlborn 
H heat source 
L  heat sink 
θmp  maximum power condition 
θmpd  maximum power density condition 
 
Superscript 
_  dimensionless 
 

2. THE THEORETICAL MODEL 
The concept of an equilibrium and reversible 

Carnot cycle has played an important role in the 
development of classical thermodynamics. The reversible 
Carnot cycle has been used as an upper bound for heat 
engines. This upper bound of performance can only be 
achieved through a continuum of equilibrium states 
required for thermodynamically reversible processes, i.e. 
the equilibration rate for a change of state is infinitely 
faster than the rate of change of state. The T –S diagram of 
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the considered reversible solar-driven heat engine with 
internal irreversibilities is shown in Figure-1. 
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Figure-1. T-S diagram of a reversible solar-driven heat 
engine with internal irreversibility. 
 
The heat engine operates between two extreme 
temperatures (TH and TL). If the heat transfer from the hot 
reservoir is assumed to be radiation dominated then the 
heat flow rate QH from the hot reservoir to the heat engine 
can be written as 
                            (1) )( 44

XHHHH TTACQ −=&

 
The heat flow rate QL from the heat engine to the cold 
reservoir, assuming convection dominance, can be written 
as 
                                      (2) )( LYLLL TTACQ −=&

 
In Eqs. (1) and (2), CH and CL are the heat transfer 
coefficients of the hot and cold side heat exchangers, 
respectively. 
From the .first law of thermodynamics, the power output 
of the cycle is 

             LH QQW &&& −=

)()( 44
LYLLXHHH TTACTTAC −−−=   (3)                                             

 
The thermodynamic efficiency can be written as  

    
H

L

Q
Q
&

&
−= 1η                           

                    
)(

)(1 44
XHHH

LYLL

TTAC
TTAC
−
−

−=                       (4) 

 
Assuming an ideal gas, the maximum volume in the cycle 
V4 can be written as 

                              
4

4
4 P

mRTV =                                   (5)               

Where, m is the mass of the working .fluid and R is the 
ideal gas constant. In the analysis, the minimum pressure 
in the cycle (P4) is taken to be constant. The power 
density, defined as the ratio of power to the maximum 
volume in the cycle [14–15] then takes the form 
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From the second law of thermodynamics for an 
irreversible cycle, the change in the entropies of the 
working fluid for heat addition and heat removing 
processes yields, 
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One can rewrite the inequality in Eq. (7) as                                             
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With the above definition I becomes 
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Substituting equation (1) and (2)  in equation (8), we have 
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Where,   Ar = AH/AL= ratio of area of hot reservoir to cold 
reservoir 
   I = internal irreversibility 

Substituting equation (9) in (3), (4) and (6), dimensionless 

power output (
LLL TAC

WW
&

= ), thermal efficiency and 

dimensionless power density output 

(

mR
PAC

W
W

LL

d
d

4
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= ) can be expressed as 
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I
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))1()(1( 44 −−−−
=         (12) 

Where, θ = TX / TH ;  

τ = extreme temperature ratio =TL / TH ;  

x = temperature constant = CHTH
3 / CL                          

To find the optimum working fluid temperature under 
maximum power and power density conditions, Equations 

(11) and (12) are differentiated with respect to θ and the 
resulting derivative is set to zero as 

4Ar
3 x2θ11 + 8Ar

2I x θ8 - 8Ar
3 x2 θ7 + 4ArI2 θ5 -(8Ar

2I x + 

3ArIτ)θ4 + 4Ar
3x2 θ3 - ArIτ = 0                                        (13)    

7A2
rxθ8+4ArIθ5-(6Arx+ 3τ)Ar θ4 - Ar(τ + Ar x) = 0        (14)                    

 
The optimum values of θ have to satisfy Equations (11) 
and (12) for maximum power and power density outputs 
respectively. The solution of these equations can be done 
numerically. 

 
 3. RESULTS AND DISCUSSION 

The variations of the normalized power (W /W max) and power density (Wd /Wd max) as functions of thermal 
efficiency for various extreme temperature ratios τ) are shown in Figures 2a and b, respectively (x = 0.01, Ar = 2, I = 0.8). 
Thermal efficiency at max power (ηmp) and thermal efficiency at maximum power density (ηmpd) decrease as τ increases. 
Comparisons of the Carnot efficiency (ηC = 1-τ), the Curzon–Ahlborn efficiency (ηCA = 1 – τ0.5), the thermal efficiency at 
maximum power (ηmp) with the thermal efficiency at maximum power density (ηmpd) are given in Figure-3 ( x = 0.01, Ar  = 
2, I = 0.8). As can be seen from Figure-3, thermal efficiency at maximum power (ηmp) and at max. power density (ηmpd) 
vary similarly with respect to τ. Further both of these are less than the Curzon- Ahlborn efficiency when τ > 0.3. 

 

 
Figure-2(a). Variation of normalized power (work) output with thermal efficiency 

for different τ values (Ar = 2; I = 0.8; x = 0.01). 
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Figure-2(b). Variation of normalized power (work) density with thermal efficiency 

for different τ values (Ar =2; I = 0.8; x = 0.01). 

 
Figure-3. Variations of efficiency with τ (Ar = 2; I = 0.8: x = 0.01). 

 
Figures 4a and b show the variations of the normalized power (W /Wmax) and power density (Wd /Wd max) as functions 
of thermal efficiency for various irreversibility factors (I). Thermal efficiency at max power (ηmp) and thermal efficiency at 
maximum power density (ηmpd) increases as irreversibility decreases (i.e. when the values of I increases). Comparisons of 
the Carnot efficiency (ηC = 1-τ), the Curzon–Ahlborn efficiency (ηCA = 1 – τ0.5), the thermal efficiency at maximum power 
(ηmp) and the thermal efficiency at maximum power density (ηmpd) are given in Fig. 5 with respect to irreversibility factor, I 
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(x = 0.01, Ar = 2, τ = 0.3).As can be seen from the figure, the thermal efficiency at max. power density(ηmpd) is marginally 
greater than that at max. power (ηmp) for all values of I. Also both these efficiencies are greater than the Curzon- Ahlborn 
efficiency when I >0.8. 

 
Figure-4(a). Variation of normalized power (work) output with thermal efficiency 

for different I values (Ar = 2; τ = 0.3; x = 0.01). 
 

 
Figure-4(b). Variation of normalized power (work) density with thermal efficiency 

for different I values (Ar = 2; τ = 0.3; x = 0.01). 
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Figure-5. Variations of efficiency with I (Ar = 2; τ = 0.3: x = 0.01). 

 
The variations of the normalized power (W /W max) and power density (Wd /Wd max) as functions of thermal efficiency 
for various area ratios (Ar) are shown in Figures 6a and b, respectively (x = 0.01,τ = 0.3, I = 0.8). Thermal efficiency at 
max power (ηmp) and thermal efficiency at maximum power density (ηmpd) decrease as Ar increases. But the decrease in 
efficiency at normalized power (W /W max) with respect to Ar is not that great as compared to the efficiency at normalized 
power density (Wd /Wd max). Comparisons of the Carnot efficiency (ηC = 1-τ), the Curzon–Ahlborn efficiency (ηCA = 1 – 
τ0.5), the thermal efficiency at maximum power (ηmp) with the thermal efficiency at maximum power density (ηmpd) are 
given in Figure-7 in terms of Ar (x = 0.01, τ = 0.3, I = 0.8). As can be seen from Figure-7, thermal efficiency at maximum 
power density (ηmpd) is greater than efficiency at max. power (ηmp) for all values of Ar . 
 

 
Figure-6(a). Variation of normalized power (work) with respect to thermal efficiency 

for different Ar values ( I = 0.8, τ = 0.3  and x = 0.01). 
 

6                       



                   VOL.1, NO.3, OCTOBER 2006                                                                                                                     ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

 
Figure-6(b). Variation of normalized power (work) density with respect to thermal efficiency 

for different Ar values ( I = 0.8, τ = 0.3  and x = 0.01). 
 

 
Figure-7. Variations of efficiency with Ar (I = 0.8; τ = 0.3: x = 0.01). 

 
Figures 8a and b show the variations of the normalized power (W /Wmax) and power density (Wd /Wd max) as functions 
of thermal efficiency for various temperature constant values, x (Ar = 2; τ = 0.3; I = 0.8). Thermal efficiency at max power 
(ηmp) and thermal efficiency at maximum power density (ηmpd) increases as x decreases.  
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These results can be clearly seen from Figure-9. The variations of efficiency at maximum power output and efficiency at 
maximum power density are given with respect to x. The Carnot and Curzon–Ahlborn efficiencies are also included in 
Figure-9 for comparison. Since τ is taken to be constant (τ = 0.3), both ηC and ηCA are constant at 0.45 and 0.7, 
respectively.   As can be seen from the figure, the thermal efficiency at max. power density(ηmpd) is greater than that at 
max. power (ηmp) for all values of x and ηmpd becomes equal to ηCA for high value of x.. ηmpd approaches ηmp only for small 
values of x.  The typical values of x for solar driven heat engines are expected to be less than 1 [13].  

 

 
Figure-8(a). Variation of normalized power (work) with thermal efficiency 

for different x values (Ar = 2; τ = 0.3; I = 0.8). 
 

 
Figure-8(b). Variation of normalized power (work) density with thermal efficiency 

for different x values (Ar = 2; τ = 0.3; I = 0.8). 
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Figure-9. Variations of efficiency with x (Ar = 2; I = 0.8 ; τ = 0.3). 

 
In order to study the effects of τ, x and Ar on the optimum temperature values, the variation of θmp and θmpd with respect to 
τ, x and Ar are plotted in Figure-10. In these figures, θmp and θmpd correspond to the optimum θ values for the maximum 
power output and maximum power density conditions. As can be seen from the Figure-10(a), variations between θmp and 
θmpd  with respect to τ is nil and both increases sharply with respect to τ and reaches 1 (x = 0.01: I = 0.8; Ar = 2). From 
Figure-10(b), it is seen that θmpd is greater than θmp for all values of x (τ = 0.3: I = 0.8; Ar = 2). From Figure-10(c), it is 
observed that both θmpd and θmp increases gradually with respect to Ar (x = 0.01: I = 0.8; τ = 0.3) and θmpd is slightly greater 
than θmp.

 
Figure-10(a). Variation of θmp and θmpd with respect to τ (x = 0.01: I = 0.8; Ar = 2). 
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Figure-10(b). Variation of θmp and θmpd with respect to x (τ = 0.3: I = 0.8; Ar = 2). 

 
Figure-10(c). Variation of θmp and θmpd with respect to Ar (x = 0.01: I = 0.8; τ = 0.3). 

 
4. CONCLUSION 

A maximum power and power density analysis of 
a reversible solar-driven heat engine with internal 
irreversibilities is performed. The obtained results are 
compared with published results that employ finite time 
thermodynamics [14]. It is shown that the efficiency at 
maximum power density output is bigger than the 
efficiency at maximum power output. It is also shown the 
area ratio between the reservoirs should be low & internal 
irreversibility should be low (i,e I >>0.7) for better 

performance in efficiency of the solar driven Carnot heat 
engine.  
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