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ABSTRACT 

Primitive variable approach has been used to model the Navier Stokes Equation. This is the method by which one 
can see what is going on in boundary layer. In the present work that primitive variable approach is considered to calculate 
incompressible, steady state laminar boundary layer along a flat plate with different flow conditions. This approach uses 
implicit finite difference method which consists of replacing the partial derivatives with respect to flow direction by finite 
differences. As a result the partial differential equations are approximated by ordinary differential equations. This method 
is capable of solving any flow problem for which the boundary layer equations remain valid. This implicit finite difference 
scheme is advantageous comparing to explicit finite difference scheme because the results are unconditionally stable 
regardless the step size. In the present work, the method is used to compute accurately the separation points of flow. 
 
Keywords: Navier, stokes, equation, model, laminar, boundary, layer, implicit, finite, difference. 
 
INTRODUCTION 

The determination of the separation point in 
boundary layer flows has been the subject of many 
investigations over the past few decades. The solution of 
boundary layer calculation for a given pressure 
distribution has received a great deal of attention in the 
past century as well as present. With modern computers, 
it is now possible to obtain a very accurate solution for 
two dimensional laminar flow up to separation point. 
Transition and turbulence still require some empiricism, 
but various developments have come to the forefront to 
make general formulations more attractive. 

For a fixed pressure distribution, the boundary 
layer equations become singular at separation point with 
back flow near the wall past separation, the equation 
become unstable in the down stream direction. Further 
more, when separation is involved, there is a strong 
interaction between the free stream and the boundary 
layer and the two can not be determined separately. To 
determine the separation point, the usual procedure is to 
apply numerical methods to the governing partial 
differential equations, compute the full- field solution, 
and thereby obtain the streamwise station at which the 
wall shear stress approaches zero. This solution 
procedure is not free from its difficulties; it is well 
known that the wall shear stress approaches zero in a 
singular fashion at the separation point, a fact that 
invariably gives rise to problems of numerical 
convergence there. 

Primitive variable approach has been used to 
model the Navier Stokes equation. By this method one 
can see what is going on within the boundary layer. For 
the reason of efficient computation, the most popular 
codes use transformed variables- stream function 
coordinates, Falkner Skan stretching.    

Finite difference method is used to solve either 
the Euler equation or the “thin –layer” Navier Stokes 
equation subjected to the arbitrary boundary conditions. 
It consists of replacing the partial derivative with respect 

to the flow direction by finite differences, so that the 
partial differential equation becomes approximated by an 
ordinary differential equation. Implicit finite difference 
scheme is used which is having more advantages 
compared to the explicit finite difference method, like 
the results are unconditionally stable, regardless of the 
step sizes. 

The initial profiles are calculated using 
similarity variables to remove the singularity at the 
starting point to start the calculations. In transformed 
plane, boundary layer is nearly of uniform thickness for 
many flow situations. The thrust of the current work is 
towards combining general transformations, and implicit 
finite difference algorithms into available and versatile 
flow program. Comparisons are made with other exact 
solutions with the present method. It appears capable of 
solving any flow problem for which the boundary layer 
equations themselves remain valid. 
 
REVIEW OF LITERATURE 

Boundary layer theory is one of those 
inventions that allow a giant step to be taken to 
understand. The concept of a boundary layer was first 
introduced by Ludwig Prandtl, a German 
aerodynamicist, in 1904. Prandtl showed that many 
viscous flows can be analyzed by dividing the flow into 
two regions, one close to solid boundaries, the other 
covering the rest of the flow. Only in the thin region 
adjacent to a solid boundary, which is actually known as 
boundary layer, is the effect of viscosity important.  

The boundary layer concept provided the link 
that had been missing between theory and practice. 
Furthermore, the boundary layer concept permitted the 
solution of viscous flow problems that would have been 
impossible through application of the Navier-Stokes 
equations to the complete flow field (Today, computer 
solutions of the Navier-Stokes equations are common). 
Thus the introduction of the boundary layer concept 
marked the beginning of the modern era of fluid 
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mechanics. The idea of boundary layer completed the 
theory of attached flows at high Reynolds numbers and 
placed potential flow in its proper perspective. The step- 
by- step solution of the first order boundary layer 
equations was considered by Prandtl in 1938. 

Kosson (1963) presented an approximate 
solution for two dimensional, incompressible, laminar 
boundary layer flow with arbitrary pressure gradient. 
Paskonov (1963) studied the solution of the boundary 
layer equations in the physical coordinates; using the 
Implicit finite difference scheme. The governing 
equations are replaced with finite differences such that 
the coupling between equations is initially neglected. 
Then an iteration process is employed to obtain desired 
accuracy of the dependent variables. In his work a 
procedure is described which allow the step size across 
the boundary layer to vary. 

At about the same time, a similar implicit 
technique was developed independently for the boundary 
layer equations in physical coordinates by Blottner 
(1970).  In this work coupling between the equations is 
allowed which was absent in previous work. This results 
in tri diagonal matrix with elements, which is some what 
more complicated to solve than the uncoupled equations. 
The transformed boundary layer equations were replaced 
by an implicit finite difference scheme and coupling 
between equations was included. Krause (1967) showed 
same approach of solution technique in his paper 
 One of the problems with all previous methods 
is the starting of the solution of the equations. Initial 
profiles of the dependent variables are required across 
the boundary layer at some point and then the solution 
proceeds downstream. For sharp bodies one would want 
to start the solution at the tip, where as for blunt body the 
solution should start at the stagnation point. At the tip of 
the sharp body, the boundary thickness goes to zero and 
the finite difference scheme is inappropriate in the 
physical coordinates. 
 So the boundary layer equations are 
transformed into similarity variables, then in the 
transformed plane boundary layer thickness is nearly of 
uniform thickness for many flow situations. The partial 
differential equations reduce to ordinary differential 
equations at the tip of the body or at stagnation point. 
The solution of this ordinary differential equations 
provides initial conditions for a finite difference 
solution, which can start at the beginning of the body. 

In a paper by Fussell and Hellums (1965) an 
implicit finite difference procedure is applied to 
similarity form of a boundary layer equation. The 
method of treatment of boundary conditions involving 
normal derivatives has an important influence on 
accuracy. Moses (1985) described the method of 
solution using implicit finite difference approach for the 
viscous layer based on the strip integral equation. A line 
relaxation procedure was used for inviscid flow, solved 
simultaneously with the boundary layer in each step. 
Steger (1978) in his work showed solution technique of 
two dimensional geometries of any shape. The arbitrary 

shaped body can be rearranged into a definite shape so 
that it can be solved using finite difference formula. He 
mainly showed the blending of an implicit finite 
difference scheme with transformations that permit the 
use of automatic grid generation technique. Jameson et 
al (1986) introduced a different approach of solution of 
Euler equation. They used multigrid solution using 
implicit finite scheme. It was shown in that paper that 
the schemes of the approximate factorization type can be 
adapted for use in conjunction with a multigrid 
technique to produce a rapidly convergent algorithm for 
calculating steady state solution of the Euler equation.   

Smith et. al. (1963) in his one paper presented a 
method for solving the complete incompressible laminar 
boundary layer equations, both two dimensional and 
axisymmetric, in essentially full generality and with 
speed. In subsequent papers (1970, 1972), he showed 
application potential flow and boundary layer theory in 
aerodynamics. He also showed the solution technique of 
the laminar boundary layers by means of differential 
difference method. Wehrle (1986) in later time presented 
an analytical scheme for determination of the separation 
point in laminar boundary layer flows. Unlike 
conventional approaches the scheme does not require the 
full-field solution of the governing partial difference 
equation, but rather the solution of a first order set of 
boundary layer equations defined in the neighborhood of 
the leading age. 

In the present case solution of the boundary 
layer equations in untransformed or primitive variables 
approach is considered as of Blottner. At the starting 
point of solution the boundary layer equations are 
transformed to similarity variables. Implicit finite 
difference scheme is used to solve the boundary layer 
equations. The scheme is demonstrated to compute 
accurately the separation points of several flows for 
which comparison with previously published results are 
possible. 
 
MATHEMATICAL MODEL 

The influence of viscosity at high Reynolds 
number makes the Navier-Stokes equation simple and 
yield approximate solution. For the sake of simplicity, 
consider two dimensional flow of a fluid with very small 
viscosity, flowing over a surface. With the exception of 
the immediate neighborhood of the surface, the velocity, 
U∝, and the pattern of the stream lines and the velocity 
distribution deviate only slightly from those in 
frictionless (potential) flow. 

The two dimensional (2-D), incompressible 
equations of motion with constant transport properties 
are, 
 
Continuity equation: 

0
y
v

x
u

=
∂
∂

+
∂
∂      (1) 

 
 

14                       



                   VOL.1, NO.3, OCTOBER 2006                                                                                                                     ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

x-momentum equation: 
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y- momentum: 
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According to Prandtl the 2-D, steady, 

incompressible boundary layer equations are  

0
y
v

x
u
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∂
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+
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With boundary conditions: 

( )xUuy
0v,0u0y

=∞=
===

   (5) 

 
The equations (3) and (4) are the simplified 

Navier Stokes Equation. It can be referred as the system 
of two simultaneous equations for the two unknown u 
and v. The pressure ceased to be an unknown function 
and can be evaluated from the potential flow solution for 
the body with the aid of the Bernoulli equation.  

At the outer edge of the boundary layer, for 
steady flow, the parallel component u becomes equal to 
that in the outer flow U(x). Since there is no large 
velocity gradient at this point the equation (4) is further 
simplified by putting  

 

dx
dP1

dx
dUU

ρ
−=      (6) 

 
Finally we get the simplified 2-D steady state 

boundary layer equations in the following form 
 
Continuity equation: 

0
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∂
∂

+
∂
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Momentum equation: 
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METHOD OF SOLUTION 

A simple and direct method, known as primitive 
variable approach, is used in this work. In this method 
the primitive variables (u , v) and (x , y) are used without 
transformation for various laminar boundary layers.  

The finite difference model of each term of the 
equation (8) represent the level ‘n’ of the finite 
difference mesh. To keep the model at level ‘n’, 

combination of forward difference and central difference 
formula are used for different terms of the equation (8). 
All terms are centered at level ‘n’ for the numerical 
accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m , n+1 m+1 , n+1

∆y m , n m+1 , n 

m , n-1 ∆y m+1 , n-1 

 
 

Figure-1. Finite difference mesh for a two dimensional 
  boundary layer. 
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Multiplying the equation (9) by 
nm,u

∆x yields, 
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             (10) 
 

⇒

( )
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2
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Where,
∆y2u
∆xv

β
u∆y

∆xα
nm,

nm,

nm,
2 ==       (12) 

 
Equation (11) has to be simultaneously solved for 

.  n,1mu +

To find the  equation (7) is modeled using forward 
difference 

nmv ,1+

0
∆y

vv
∆x

uu 1n1,mn1,mnm,n1,m =
−

+
− −+++                (13) 

 

Previous values           Next values 
v ∆x 

u 
x x + ∆x 
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In this case the first term is at level ‘n’ and second term 
is at level '' 2

1−n  leading to a poor numerical accuracy. 
Bringing ∂u/∂x down to 'n' 2

1−  by using an average 
value. 

⎥
⎦

⎤
⎢
⎣

⎡

∆

−
+

∆

−
=

∂
∂ −−++

x
uu

x
uu

2
1

x
u 1n,m1n,1mn,mn,1m

avg
 (14) 

 
To solve for , the required form of the equation is nmv ,1+

[ 1nm,1n1,mnm,n1,m

1n1,mn1,m

uuuu
x2

∆y

vv

−−++

−++

−+−
∆

−=

]

Beginning from the bottom and eliminating one 
variable at a time until reaching the top, where un-1 is 

found. F

 the stagnation point (Hiemenz flow) or 
over a flat plate (Blasius flow), two 

independ           (15) 

 
Boundary conditions 
 
No slip    um,1= vm,1 = 0 
Known initial profiles  u1,n, v1,n  
 
Inversion of Tri-Diagonal Matrix 

Assuming that n=1 is the wall and n=N is the 
free stream , equation (11) represents (N-2) numbers of 
equations, each with three unknown namely um+1,n-1;  
um+1,n ; and um+1,n+1. The set of algebraic equations are 
then written in tri-diagonal matrix form. Gauss 
elimination method is used to invert the matrix. The 
equation (11) can be rewritten in following form  

 
       (16) n1n1,mnn1,mn1n1,mn DuCuBuA =++ +++−+

where, 
( )

( )
( )

(11)equationtheofsidehandrightD
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n

n

n

n

=
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There are only two unknowns at the bottom, 

n=2, where un+1=0 (no slip condition) and only two 
unknowns at the top, n=N, where un= U(x). Writing the 
equation for grid points across the boundary layer 

n1nnnn1nn

1nn1n1n1n2n1n

4544434

3433323

2322212

DuCuBuA
DuCuBuA

DuCuBuA
DuCuBuA
DuCuBuA

=++
=++

=++
=++
=++

+−

−−−−−−

    (17) 

  
Applying the boundary conditions u1=0 and un+1=1, the 
first and last equations become 

nnnn1nn

23222
CDuBuA

DuCuB
−=+

=+

−
               (18) 

 

ollowing the back substitution, picking up in 
terms of un+1 until reaching the value of u2. After solving 
the tri diagonal matrix, the values um+1,n are to be 
substituted in the equation (15) to get the normal 
velocity at all positions across the boundary layer. 
Therefore the solution process marches towards 
downstream by knowing the values of um+1,n and vm+1,n at 
the next station. 

 
Initial profiles 

In
streaming flow 

ent variables are combines into one dependent 
variable η. 

δ(x)
yη =                               (19) 

 
Where, δ(x) – scaling function for ‘y’  

ssuming a scaling function u (x) to make the velocity A e
profile similar. 

( )ηf
(x)u

y)(x,u

e
=                                          (20) 

 
At this stage ue(x) and δ (x) are undetermined functions. 

nalysis of boundary layer equations will determine A
ue(x) and x. At any ‘x’ location the stream function is  

∫ ∫ ′=
∂
∂

=
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e dηfδudy
y
ψψ                                 (2

0 0
1) 

 
Since ψ = 0 at y = 0 for all x, f(0) = 0 
=u δ ƒ(η)                 (22) 

city und b plyin
les to the above equation. 
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The momentum equation for y bou
flow is 

 a stead ndary layer 
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Combining equations (19, 20) and equations (23, 24) 
ield y
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Then the equation is written as 
′+αff′′+β(1-f′2)=0                (26) 

s α a β are defined a

fuuδffδuηfδuηfufu e
e =′′′−′′+⎤⎢⎣
⎡ ′′′−′′′

f′′
 
Where the coefficient nd s 
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( )δu
dxv

α e=                  dδ        (27.1) 

dx
du

v
δβ e

2
=               (27.2) 

 
Equ tion (26) is an ordinary d

equation of f(η) only if α and β do not depend on ‘x’ and 
are cons

by putting 

a ifferential 

tant. 
The solution of the coupled equation can further 

be simplified 

( )e
2 uδ

dx
d

ν
1β2α =−              (28.1) 

⇒ ( ) ( ) e
2            (28.2) ν

10 uδxxβ2α =−−  
 
Solving the equation (28.2) yield 

eu
δ =    

νxβ)(2α −
           (28.3) 

 
Generally ue and x both will be positive; in certain 
situation x and ue may have opposite signs. 

eu
νxδ =                  (29) 

 
The external velocity ue(x) is found by using the 
equation 27.2) and (28.3) s (

dx
du

u
xβ e
e

±=                  (30) 

 
After integration we get  ue = u0 (x/L)m (31) 

here the u0 and L are arbitrary constants and  

 that governs the str is 
quation 26) wit  α an  β  

                    

w
   

m =            if ue and x have 

         

The e
e  ( hout d

quation eam function 

f′′′+ 2
1

(m+1)ff′′+m(1-f′2) = 0               (32)
  

Where  
1m

0 L
x

u
νL

y
δ
yη ==               (33) 

The above equation is known as Falkner-Skan equation, 
Substituting m = β as considering ue and x have the same 
sign. 

( ) ( ) 0f1ff12
1f 2 =′−β+′′+β+′′′                (34) 

 
The Falkner-Skan profiles supply most of the initial 
conditions like 

β = 1 plane stagnation point 
1<β<0 wedge half angle 
β = 0 flat plate with sharp leading edge. 

 
RESULTS AND DISCUSSION 

The numerical calculation is applied to analyze 
different types of flow. The flows considered here are 
flowing over flat plate with sharp leading edge. The 
family of potential flows u(x) = u0 – axn (n = 1 , 2 , 3…) 
causes separation of the boundary layer (laminar) in a 
relatively short distance. This case provides a good test 
of the scheme for strong adverse pressure gradients since 
reliable results have been obtained by analytical and as 
well as numerical solutions. Howrath first gave the 
analytical solution of the problem.  

In the simplest case with n = 1, which was 
treated by L. Howrath , is another example of a 
boundary layer for which the velocity profiles are not 
similar. L. Howrath introduced in this case a new 
independent variable 

νx
u

y
2
1η 0=  

Another assumption is  
0u

axxL
x == ∗  

A simple decelerating non similar velocity distribution 
for n = 1 as given by Howrath 
u(x) = u0 (1 - x/L)                  (35) 
Where,  

u0= free stream velocity distribution 
L = Reference length 
 
As mentioned earlier, the implicit finite 

difference model is used to predict the separation point 
for the above non similar flow. Arbitrary values can be 
taken for u0 and L, since the results are non-dimensional. 

+
⎟
⎠
⎞

⎜
⎝
⎛

 For sharp bodies the solution starts at the tip of 
the body where the boundary layer thickness is zero and 
the finite difference scheme is inappropriate. So the 
boundary layer equations are transformed into similarity 
variables in order to make the boundary layer thickness 
uniform. 

Same sign 
Opposite sign 

 β 
-β 
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Figure-2. Velocity distribution in the boundary Layer along a flat plate, after Balsius. 

 
Figure-3. Transverse velocity component in boundary layer along a flat plate. 

 
 The non linear third order differential equation 
after simplification is solved numerically with this 
current method. After solution we get the velocity 
profiles of well know Blasius equation. Figure-3 depicts 
the velocity distribution in the boundary layer along a 
flat plate. It is clearly visible form the figure that the 
longitudinal velocity component beyond the boundary 
layer becomes same as free stream velocity. Within the 
boundary layer the obvious variation of velocity is 
observed. The velocity profile here posses a very small 
curvature at the wall and turns abruptly further in order 
to reach the asymptotic value. 

 The transverse velocity component is observed 
in the Figure-3. This velocity component exhibits same 
asymptotic nature beyond the boundary layer thickness. 
As flow moves from the leading edge the component 
differ form zero value. That means at the outer edge 
there is a flow outward which is due to the fact that 
increasing boundary layer thickness causes the fluid to 
be displaced form the wall as it flows along it. There is 
no boundary layer separation in these cases as the 
pressure gradient is equal to zero.  
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Figure-4. Velocity profiles for Howrath flow. 
 

0

0.2

0.4

0.6

0.8

1

1.2

-0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

x/L

S
he

ar
 s

tre
ss

Sh. Stress

 
 

Figure-5. Shear stress distribution for Howrath flow. 
 

The initial profiles are calculated for β = 0. The 
step sizes for the method of calculating the initial profile 
are ∆x = 0.01 & ∆y = 0.1. Calculation of the initial 
profile has to be specified accurately to have the 
agreeable results further downstream. Figure 4 shows the 
velocity profiles and figure 5 shows the computed values 
of shear stress for Howrath flow. The profiles become 
increasingly S-shaped in the downstream and finally the 
separation occurs at x/L ~0.120. 

The exact separation point, i.e. the point where 
f″ = 0, can not be calculated for the linearly retarded 
flow because the boundary layer becomes singular there.  

 
That too the pressure distribution around the separation 
point can not be taken arbitrarily but must satisfy certain 
conditions connected with the existence of back flow 
downstream of separation. In the region of separation the 
solution becomes very sensitive to the value of f″, which 
makes it difficult to find the exact value that satisfies the 
outer boundary conditions.  
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COMPARISON OF RESULTS OBTAINED 
BY PRESENT METHOD WITH CLASSICAL 
ANALYTICAL SOLUTIONS 
 

Other classical solutions of the boundary layer 
equations for special u(x) are, 
Tani Flow: u = u0(1 - x*n)                 (36)
 where,  n = 2, 4, 8 and x*=x/L 
  n = 2;   Quadratically retarded flow 
  n = 4; Quartically retarded flow 
  n = 5;  Octally retarded flow 

Gortler Flow: u = u0(1 - x)n               (37) 
  where, n = 2

1  , 2 

  u = u0(1 + x)n               (38) 
  n = -1, -2 

For the Howrath – Tani type of retarded flows, 
a graph is drawn between the separation point and the 
value of ‘n’ as shown in figure 6. In the same manner 
graphs are drawn for Gortler flows for different values of 
‘n’ as shown in Figures 7 and 8. 
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Figure-6. Comparison of separation of Howrath-Tani flows between present method and exact method 
for different values of exponent n. 
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Figure-7.  Comparison of separation of Gortler flow between present method and exact method 
for different values of exponent n; [(1-x)n ; n = 1/2 , 2]. 
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Figure-8.  Comparison of separation of Gortler flow between present method and exact method 
for different values of exponent n; [(1+x)n ; n = -1 , -2]. 

 
Computational effort of the present method 
 

Considering the above figures it is clearly 
visible that the present method to calculate the 
separation point of laminar boundary layer convincingly 
agrees with previously published results.  This Implicit 
method is algebraic model of continuity and momentum 
equation which points on the downstream iteration. 
Computation time per step ∆x is larger than for explicit 
scheme but the point to mention in favor of the method 
is that of no numerical instability. The step size can be as 
large as possible but it is only subjected to the normal 
truncation errors, which do not oscillate. 

This Implicit finite difference scheme reveals 
that only those boundary flows can be calculated for 
which the normal velocity component at the initial 
station is specified in addition to the tangential velocity 
component. The specification of the ‘v’ becomes 
necessary as the implicit scheme is formulated by 
discarding the continuity equation and using the 
momentum equation to determine the ‘x’ derivatives of 
‘u’. The continuity equation is then employed to evaluate 
‘v’ at the next ‘x’ station.  

In this current method, the step sizes ∆x and ∆y 
need not to be equal. The results are unconditionally 
stable regardless of step sizes ∆x and ∆y. ∆y is selected 
in such a way that 20 or more points exist within the 
boundary layer, and ∆x should be small enough that 
changes in from station to station are less than 5 
percent. 

n,mu

 

 
 
CONCLUSION 

This new approach deals with the solution of 
the laminar boundary layers. We have presented in this 
work the primitive variable approach as calculating tool 
of the boundary layer problem. Primitive variable 
approach has given the results which are matching with 
the previously published results quite accurately. 

It has been concluded that implicit finite 
difference method along with the transformations to 
remove singularity at the starting point is very useful in 
analyzing the different types of flows. In this approach 
visualization of the things can be done which is not 
possible in transformation plane like Falkner-Skan 
stretching, stream function coordinates. 

This method is highly depends on the initial 
profile as well as derivation of the ordinary differential 
equations. The overall analysis is extremely sensitive, if 
the separation region is relatively small, as the method 
does not involve iteration process. 
 

NOMENCLATURE 
u ,v velocity components 

∆x step size in ‘x’ direction 

∆y step size in ‘y’ direction 

x , y coordinates along and normal to the surface of 
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the body 

f (η) function related to stream function 

L reference length 

µ viscosity coefficient 

τ shear stress 

ψ stream function 

ν kinematic viscosity 

η transformed ‘y’ coordinate in the boundary 

layer equation 

U velocity of the main stream at the edge of the 

boundary layer 

m exponent in free stream velocity variation of 

similar flow, U = cxm

α , β finite difference mesh size parameters 

δ boundary layer thickness 

Subscripts 

∞ free stream conditions 

e external conditions 

i designation of mesh point in x-direction 

J designation of mesh point in y-direction 

Superscript 

primes (′)  differentiation with respect to η 
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