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ABSTRACT 

A method of identifying the buckling load of a beam-column is presented based on a technique named ‘Multi-
segment Integration technique’. This method has been applied to a number of problems to ascertain its soundness and 
accuracy. We consider a boundary-value problem for the beam-column equation, in which the boundary conditions mean 
that i) it is hinged at both ends; ii) it is fixed at both ends; and iii) it is fixed at one end and hinged at the other end. The 
results obtained by Finite Difference method are compared in order to determine the efficiency of this method. 
 
Keywords: beam, column, boundary, finite method, multi-segment integration technique. 
 
INTRODUCTION 

The beam-column problem is generally 
approached from the standpoint of the strength of 
materials, which drastically simplify the more precise 
methods of the theory of elasticity and plasticity. The 
term “beam-column” is used here to specify a structural 
member which is subjected simultaneously to axial 
compressive force and bending moment. The first 
investigation of the buckling of columns under axial 
compression go back about two centuries to Euler and his 
study of the elastica, while the initial investigations of 
necking in bars are already more than a century old. In 
the early years, columns were designed empirically and 
their ultimate strength was determined entirely by the 
crushing strength of the material similar to that of the 
fracture strength in tension members.  

It was vaguely understood that column strength 
is somehow related to the column length. Van 
Musschenbroek (1729) first recognized this and presented 
an empirical formula for column strength in terms of 
column length l. Euler (1759) was the first to derive the 
Euler column formula and proved theoretically that there 
is another criterion for column strength which is 
independent of crushing or yielding of material. In this 
early development, the column behavior is analyzed by 
using the linear theory based on linear elastic material 
property and small deflection approximation of the 
column. Amba Rao (1967) is one of many authors who 
have shown that in the presence of a compressive axial 
load, the natural frequency of a beam reduces and finally 
becomes zero when the critical Euler buckling load is 
reduced. Euler developments of columns and beam-
columns have been reviewed by Bleich (1952) and 
Timoshenko (1953). Elastic beam-columns were solved 
by Timoshenko and Gere (1961), Thompson and Hunt 
(1973) and many others, for various end conditions. 
Plastic studies of beam-columns were started by Von 
Karman (1908, 1910) and Chwalla (1928). 

In this paper, we first introduce the basic 
equation of beam-column theory and we present the 
analytical expression of the deflection equation for 
different boundary conditions. Then we present the Euler 

buckling load for q(x) = 0. Next we present the 
formulation of the fourth order non-homogeneous beam-
column equation using both Finite Difference method and 
Multi-segment Integration technique. Finally we establish 
some results on critical load and graphical presentation of 
buckling load obtained from Multi-segment Integration 
technique. 
 
MATHEMATICAL MODEL 

The basic equation of beam-column theory is a 
differential equation, linking the displacement of the 
center line w(x) to the axial compressive load P and the 
lateral load q(x). That is,  

            q
dx

wdP
dx

wdEI =+ 2

2

4

4                             (1.1) 

together with the boundary condition                              
i)  ( ) ( ) ( ) ( ) 000 =′′==′′= lwlwww                             (1.2a) 
ii) ( ) ( ) ( ) ( ) 000 =′==′= lwlwww             (1.2b) 
ii) ( ) ( ) ( ) ( ) 000 =′′==′= lwlwww                             (1.2c) 
where E is the Young’s modulus of the beam, I is the area 
moment of inertia of the beam’s cross section.  

 
Figure-1(a). Beam-column with both ends hinged. 

 
Figure-1(b). Beam-column with both ends fixed. 
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Figure-1(c). Beam-column with one end fixed and other 

end hinged. 
 

Equation (1.1) and the boundary conditions (1.2) 
arise from the study of elastic stability and have definite 
physical meanings. Equation (1.1) describes the 
deflection or deformation of a beam-column under a 
certain force. The boundary condition (1.2a), (1.2b), and 
(1.2c) means that the beam-column is hinged at the end   
x = 0 and x = l, is fixed at the end x = 0 and x = l, is fixed 
at the end x = 0 and is hinged at the end x = l 
respectively. Now the general solution of Equation (1.1) 
is 
w(x) = A cos k x + B sin k x + C x + D + f(x)             (1.3) 
in which  

f(x) = .x
P2
q 2    

 
CALCULATION OF DEFLECTION FUNCTION 

When we consider the beam-column with both 
ends hinged, then using the boundary conditions given in 
Equation (1.2a) and applying those in Equation (1.3), we 
get the following deflection equation 
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The maximum deflection occurs at the mid-span and then 
deflection equation becomes,  
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When we consider the beam-column with both 
ends fixed, we use the boundary conditions given in 
Equation (1.2b) and applying those in Equation (1.3), we 
get the following deflection equation 
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The maximum deflection occurs at the mid-span and then 
deflection equation becomes,  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +−+−=⎟

⎠
⎞

⎜
⎝
⎛

222
1

422

2 l
l

ll
l

ll ksinkcotkcosk
Pk

qw  

 

When we consider the beam-column with one end fixed 
and the other end hinged, we use the boundary conditions 
given in Equation (1.2c) and applying those in Equation 
(1.3), we get the following deflection equation 
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CALCULATION OF BUCKLING LOAD 

We consider here a beam subject to an axial 
compressive load P. The buckling load Pcr then satisfies 
the equation 

     02

2

4

4
=+

dx
wdP

dx
wdEI cr

                              (1.4) 

where E is the Young’s modulus of the beam, I is the area 
moment of inertia of the beam’s cross section, Pcr is the 
buckling load, and w is the transverse displacement. 
The general solution of Equation (1.4) is 
w(x) = A cos k x + B sin k x + C x + D                       (1.5) 
where  

IE
Pk = . 

Applying the boundary conditions given in Equation 
(1.2a) in Equation (1.5), we get 
A + D = 0, 
B sin k  + A cos k  + C  + D = 0, l l l
A = 0, 
B sin k  + A cos k  = 0.  l l
For non-trivial solution, the characteristic equation is 

,0

00ksinkkcosk
000k
1lksinkcos
1001

22

2 =

−−
−

ll

ll  

which yields A = C = D = 0 and B sin k  = 0. l
The solution of this equation is k =  nl π  

⇒ ,nk 2

22
2

l

π
=  

⇒ 
IE

P  =  
2

22

l

πn , 

⇒ P  =  E I 
2

22

l

πn , n = 1, 2,… 

Therefore the buckling load occurs when n = 1 and we 
get 

Pcr = 
2

2

l

IEπ . 

Again applying the boundary conditions given in 
Equation (1.2b) in Equation (1.5), we get 
A + D = 0, 
B sin kl  + A cos k l  +Cl  + D = 0,  
A = 0,       
B sin kl  + A cos k l  = 0.  
For non-trivial solution, the characteristic equation is 
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The expansion of this determinant leads to 
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One solution of this equation is 
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Therefore the buckling load occurs when n = 1 and we 
get 
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π
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Again applying the boundary conditions given in 
Equation (1.2c) in Equation (1.5), we get 
A + D = 0, 
 B sin k  + A cos kl +C l  + D = 0,  l
 k B + C = 0,      
 - k2 B sin k - kl 2 A cos kl  = 0. 
For non-trivial solution, the characteristic equation is 
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The expansion of this determinant leads to             
 0=− lll ksinkcosk
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The solution of this equation is kl  = 4.493. So we can 
write 
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This equation determines the value of the buckling load. 
But in case of a beam-column problem, it is 

impossible to find the buckling load manually by 
traditional methods for the problem (1.1)-(1.2). For this 
reason we use Finite Difference method and Multi-
segment Integration technique to calculate the buckling 
load and the answers obtained are not the exact but 
approximate solutions. 
 
 

 
FINITE DIFFERENCE METHOD 

The problem (1.1)-(1.2) is formulated from a 
mathematical point of view. 

 
Figure-2. Discretization of a domain. 

Finite Difference Formulae for Governing Differential 
Equation (1.1): 

1. Forward Difference Formula: 
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2.   Backward Difference Formula: 
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3.    Central Difference Formula: 
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          We use all three formulae to determine the 
deflection of the beam-column. We use forward 
difference formula for node 2, backward difference 
formula for node 8 and central difference formula for 
node 4, 5 and 6. 

Finite Difference Formulae for boundary conditions 
(1.2a): 

0f1 = ,    at node 1,  

0f2f5f4f 1234 =+−+− , at node 3, 

0f9 = ,    at node 9, 

0f2f5f4f 9876 =+−+− , at node 7. 

Finite Difference Formulae for boundary conditions 
(1.2b): 

0f1 = ,    at node 1, 

0f3f4f 123 =−+− ,  at node 3, 

0f9 = ,    at node 9, 

0f3f4f 987 =+− ,  at node 7. 

Finite Difference Formulae for boundary conditions 
(1.2c): 

0f1 = ,    at node 1, 

0f3f4f 123 =−+− ,  at node 3, 

0f9 = ,    at node 9, 

0f2f5f4f 9876 =+−+− , at node 7. 
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MULTI-SEGMENT INTEGRATION TECHNIQUE 

The Multi-segment Integration technique is 
developed by Kalnins and Lestingi (1967) and it involves 
much less computational work. This method has been 
applied to a number of problems to ascertain its 
soundness and accuracy. But the success of this method is 
limited to the very simple problems which can be 
managed just as well by direct integration. Finite element 
formulation of such problems, which ultimately resolves 
into solution of a large number of linear algebraic 
equations, has often met the problem of non-convergence. 
To overcome the difficulty of direct integration of the 
following problem, Kalnins and Lestingi (1967) 
developed a Multi-segment method of Integration which 
avoided integration over large ranges of x. 

The linear ordinary differential equation of order 
m is given in matrix form as  
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We can write the given boundary conditions in the matrix 
form 

                            (1.6) E)b(yD)a(yC =+
Let the solution be 
        y(x) = Y(x) . G +Z(x)                                    (1.7) 
where  

G is known as the constants of integration, 
Y(x) is known as general solution and 
Z(x) is known as particular solution. 

Consider 

[ ] I)a(Ywith)x(Y.)x(A)x(Y
dx
d

==                          (1.8) 

[ ] 0)a(Zwith)x(B)x(Z.)x(A)x(Z
dx
d

=+=               (1.9) 

Evaluating Equation (1.7) at x = a, we get 
 y (a) = Y(a) G + Z (a). 
This follows that G = Y (a). 
Again evaluating Equation (1.7) at x = b, we get 
 y (b) = Y(b) G + Z (b).                 (1.10) 
where Y(b) is evaluated at Equation (1.8) by Runge Kutta 
method of order 4 with initial condition Y(a) = I and Z(b) 
is evaluated at Equation (1.9) by Runge Kutta method of 
order 4 with initial condition Z(a) = 0. 
Solving Equation (1.6) and (1.10), we get 
         [ ] .E)b(Z)a(y.)b(YD)a(yC =++

[ ] ).b(Z.DE)b(Y.DC)a(y −=+⇒  

[ ] [ ].)b(Z.DE)b(Y.DC)a(y −+=⇒ −1  
By this way we can obtain the numerical solution of y(x) 
at the intermediate grid points between x = a and x = b. 
 
FORMULATION OF THE PROBLEM (1.1-1.2) 
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The governing differential equation in matrix form is 
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The boundary conditions in matrix form is 
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i) For boundary conditions (1.2a): 
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ii) For boundary conditions (1.2b): 
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iii) For boundary conditions (1.2c): 

C = , D = , E = . 
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RESULTS 

To illustrate these procedures consider a beam-
column that is i) hinged at both ends, ii) fixed at both 
ends, iii) fixed at one end and hinged at other end subject 
to an axial force P and lateral load q as shown in Figures 
1(a), 1(b), 1(c), respectively. The buckling loads Pcr of a 
beam-column with length l m, KNm2= 100=EI 2, and 
q = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25 kN/m calculated 
using both Finite Difference method and Multi-segment 
Integration technique that is used in this paper, are given 
in Table-1, and the buckling shape of the beam-column is 
also shown in Figures 1(a), 1(b) and 1(c), respectively. 

The Figures 3(a), 3(b) and 3(c) show that for a 
lateral load q, the lateral displacement produce but when 
the lateral load q reaches the critical value Pcr then it will 
not return to its initial position and if q exceeds Pcr then 
the beam-column will collapse after a slight disturbance. 
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Figure-3(a). Critical load of a beam-column with both 

end hinged. 
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Figure-3(b). Critical load of a beam-column with both 

end fixed. 

0

100

200

300

400

500

0 0.001 0.002 0.003 0.004 0.005
w (l /2)

P

q = 0.01 q = 0.05

q = 0.10 q = 0.15

q = 0.20 q = 0.25

 
Figure-3(c). Critical load of a beam-column with one end 

fixed and the other end hinged. 
 

From the following results, it is apparent that the 
approximate solutions yield very good estimates of the 
values obtained from both the methods, and that any error 
is simply a function of the number of iterations used. The 
proposed methods therefore provide a straightforward and 
effective numerical technique for the problem (1.1)-(1.2). 

Table-1. Buckling load of a beam-column 

Boundary   
conditions 

Euler 
critical 

load 

Finite 
difference 

method 

Multi-segment 
Integration 
technique 

Both ends 
hinged 246.74 247.23 246.82 

Both ends 
fixed 986.96 994.65 991.02 

One end 
fixed and 
the other 
end hinged 

504.75 505.11 504.69 

 
CONCLUSION 

This paper makes a brief comparison between 
the proposed method and the familiar finite difference 
technique. From the results, we have found that the 
Multi-segment Integration technique is seen to be capable 
of solving this kind of problem and that the method is 
both effective and efficient. 
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APPENDIX 

Formulas for Computing Second Derivative. 
 

Derivative Formula Error 

Forward Difference 2
i1i2i3i

h

f2f5f4f +−+− +++  O(h2) 

Backward Difference 2
3i2i1ii

h

ff4f5f2 −−− −+−
 O(h2) 

f''(xi) 

Central Difference 2
1ii1i

h

ff2f −+ +−
 O(h2) 

 
Formulas for Computing Fourth Derivative. 

 

Derivative Formula Error 

Forward 
Difference ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+

+−+

+++

++++

i1i2i3i

4ii6ii

fff231f
-ffff-

h 1893200
1545912

4
1 57

4  O(h2) 

Backward 
Difference ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+

+−+

−−−

−−−−

i1i2i3i

4i5i6i7i
4 f18f93f200231f-

f154f59f12f-

h4

1
 O(h2) f''''(xi) 

Centered 
Difference ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−
+−−

−

+++

3-i2i1-ii

1i2i3i
4 ff2f-f4

ff2f

h4
1

 O(h2) 
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