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ABSTRACT 

A numerical simulation of two-dimensional laminar steady-state natural convection in a square tilt open cavity has 
been numerically studied. The opposite wall to the aperture is placed at either isothermal heat source or isoflux heat source, 
while the surrounding fluid interacting with the aperture is maintained at an ambient temperature. The two remaining walls 
are assumed to be adiabatic. The fluid concerned is air with Prandtl number fixed at 0.71. The governing mass, momentum 
and energy equations are expressed in a normalized primitive variables formulation. In this paper, a finite element method 
for steady-state incompressible natural convection flows has been developed. The streamlines and isotherms are produced, 
heat transfer characteristics is obtained for Rayleigh numbers from 103 to 106 and for an inclination angles of the cavity 
ranges from 0º to 60º. The results show that the Nusselt numbers increases with the Rayleigh numbers. Also the average 
Nusselt number changes substantially with the inclination angle of the cavity while better thermal performance is also 
sensitive to the boundary condition of the heated wall. 
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INTRODUCTION 

Natural convection in open cavities has received 
considerable attention because of its importance in several 
thermal engineering problems, for example, in the design 
of electronic devices, solar thermal receivers, uncovered 
flat plate solar collectors having rows of vertical strips, 
geothermal reservoirs, etc. During the past two decades, 
several experiments and numerical calculations have been 
presented for describing the phenomenon of natural 
convection in open cavities. Those studies have been 
focused in the present work to study the effect on flow and 
heat transfer for different Rayleigh numbers, aspect ratios, 
and tilt angles.  

Le Quere et al. (1981) investigated thermally 
driven laminar natural convection in enclosures with 
isothermal sides, one of which facing the opening. They 
used primitive variables and finite difference expressions 
suitable for treating problems with large temperature and 
density variations. The computational domain was an 
enlarged domain comprising a square open cavity and a far 
field surrounding it. Penot (1982) studied a similar 
problem using stream function-vorticity formulation. He 
also used an enlarged computational domain similar to that 
of Le Quere et al. (1981) with approximately same 
boundary conditions. Chan and Tien (1985a) studied 
numerically a square open cavity, which had an isothermal 
vertical heated side facing the opening and two adjoining 
adiabatic horizontal sides. The boundary conditions at far 
field were approximated to obtain satisfactory solutions in 
the open cavity. Despite the difficulties due to unknown 
boundary conditions at the opening plane, few studies 
have also been undertaken using a computational domain 
restricted to the cavity. Chan and Tien (1985b) studied 
numerically shallow open cavities and also made a 
comparison study using a square cavity in an enlarged 
computational domain. They found that for a square open 

cavity having an isothermal vertical side facing the 
opening and two adjoining adiabatic horizontal sides, the 
results obtained at high Rayleigh numbers would satisfy 
the previous works. In a similar way, Mohamad (1995) 
studied inclined open square cavities, by considering a 
restricted computational domain. Different from those by 
Chan and Tien (1985b), gradients of both velocity 
components were set to zero at the opening plane. It was 
found that heat transfer was not sensitive to inclination 
angle and the flow was unstable at high Rayleigh numbers 
and small inclinations angles. Polat and Bilgen (2002) 
studied numerically inclined open shallow cavities in 
which the side facing the opening was heated by constant 
heat flux, two adjoining walls were insulated and the 
opening was in contact with a reservoir at constant 
temperature and pressure. The computational domain was 
restricted to the cavity. Angirasa (1992) showed that the 
inclusion of the outside domain into the computations has 
a minimal effect on the heat transfer results for those 
cavities where one wall is isothermal and other two walls 
are adiabatic. 

The finite element method is one of the numerical 
methods that have received popularity due to its capability 
for solving complex structural problems (Cook, 1989, 
Zienkiewicz, 1991). The method has been extended to 
solve problems in several other fields such as in the field 
of heat transfer (Lewis et al., 1996, Dechaumphai, 1999), 
electromagnetics (Jini, 1993), biomechanics (Gallagher et 
al., 1982), etc. In spite of the great success of the method 
in these fields, its application to fluid mechanics is still 
under intensive research. This is due to the fact that the 
governing differential equations for general flow problems 
consist of several coupled equations which are inherently 
nonlinear. Accurate numerical solutions thus require a vast 
amount of computer time and data storage. One way to 
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minimize the amount of computer time and data storage is 
to employ an adaptive meshing technique (Dechaumphai, 
1995, Peraire et al., 1987). The technique places small 
elements in the regions of large change in the solution 
gradients to increase solution accuracy, and at the same 
time, uses large elements in the other regions to reduce the 
computational time and computer memory. 

As the first step toward accurate flow solutions 
using the adaptive meshing technique, this paper develops 
a finite element formulation suitable for analysis of 
steady-state natural convection flow problems. The paper 
starts from the Navier-Stokes equations together with the 
energy equation to derive the corresponding finite element 
equations. The computational procedure used in the 
development of the computer program is described. The 
finite element equations derived and then the computer 

program developed are then evaluated by example of 
natural convection in a square open cavity. 
 
PHYSICAL MODEL AND ASSUMPTIONS 

The heat transfer and the fluid flow in a two-
dimensional open square cavity of length L is considered, 
as shown in the schematic diagram of figure 1. The 
opposite wall to the aperture is placed at either isothermal 
heat source (ITHS), θH or isoflux heat source (IFHS), q, 
while the surrounding fluid interacting with the aperture is 
maintained to an ambient temperature θ∞. The two 
remaining walls were assumed to be adiabatic. The fluid is 
assumed to be air (Pr = 0.71) and Newtonian, and the fluid 
flow is considered to be laminar. The properties of the 
fluid are assumed to be constant. 

 
y (v) L 

g 

 

Figure-1. Schematic diagram of the square open cavity. 
 
MATHEMATICAL MODEL 

Natural convection is governed by the differential 
equations expressing conservation of mass, momentum 
and energy. The present flow is considered steady, 
laminar, incompressible and two-dimensional. The viscous 
dissipation term in the energy equation is neglected. The 
Boussinesq approximation is invoked for the fluid 
properties to relate density changes to temperature 
changes, and to couple in this way the temperature field to 
the flow field. The governing equations for steady natural 
convection flow can be written as: 
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where x and y are the distances measured along the 
horizontal and vertical directions, respectively; u and v are 
the velocity components in the x- and y-direction, 
respectively; θ denotes the temperature; γ and α are the 
kinematic viscosity and the thermal diffusivity, 
respectively; p is the pressure and ρ is the density; θH and 
θ∞ are the constant and ambient temperatures, respectively. 

The governing equations in non-dimensional 
form are written as follows: 
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Equations (5)-(8) were normalized using the following 
dimensionless scales: 
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Here Ra and Pr are Rayleigh and Prandtl numbers, 
respectively. The reference velocity Uo is related to the 
buoyancy force term and is defined as 
 

( )∞θ−θβ= hLgoU . 
 

The Nusselt number (Nu) is one of the important 
dimensionless parameters to be computed for heat transfer 
analysis in natural convection flow. The local Nusselt 
number can be obtained from the temperature field by 
applying 
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and the average or overall Nusselt number was calculated 
by integrating the temperature gradient over the heated 
wall as  
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FINITE ELEMENT FORMULATION 
The velocity and thermal energy equations (5)-(8) 

result in a set of non-linear coupled equations for which an 
iterative scheme is adopted. To ensure convergence of the 
numerical algorithm the following criteria is applied to all 
dependent variables over the solution domain  

∑ −≤−φ−φ 5101m
ij
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ij  

where φ represents a dependent variable U, V, P, and T; 
the indexes i, j indicate a grid point; and the index m is the 
current iteration at the grid level. The six node triangular 
element is used in this work for the development of the 
finite element equations. All six nodes are associated with 
velocities as well as temperature; only the corner nodes are 
associated with pressure. This means that a lower order 
polynomial is chosen for pressure and which is satisfied 
through continuity equation. The velocity component and 
the temperature distributions and linear interpolation for 
the pressure distribution according to their highest 
derivative orders in the differential Eqs (5)-(8) as 
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where α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element 
interpolation functions for the velocity components and 
the temperature, and Hλ are the element interpolation 
functions for the pressure. 

To derive the finite element equations, the 
method of weighted residuals (Zienkiewicz, 1991) is 
applied to the continuity Eq. (5), the momentum Eqs (6)-
(7), and the energy Eq. (8), we get 
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where A is the element area. Gauss’s theorem is then 
applied to Eqs (14)-(16) to generate the boundary integral 
terms associated with the surface tractions and heat flux. 
Then Eqs (14)-(16) become, 
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Here (14)-(15) specifying surface tractions (Sx, Sy) along 
outflow boundary S0 and (16) specifying velocity 
components and fluid temperature or heat flux that flows 
into or out from domain along wall boundary Sw. 
Substituting the element velocity component distributions, 
the temperature distribution, and the pressure distribution 
from Eqs (9)-(12), the finite element equations can be 
written in the form, 
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where the coefficients in element matrices are in the form 
of the integrals over the element area and along the 
element edges S0 and Sw as, 
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These element matrices are evaluated in closed-form ready 
for numerical simulation. Details of the derivation for 
these element matrices are omitted herein for brevity. 
 
COMPUTATIONAL PROCEDURE 

The derived finite element equations, Eqs (20)-
(23), are nonlinear. These nonlinear algebraic equations 
are solved by applying the Newton-Raphson iteration 
technique (Dechaumphai, 1999) by first writing the 
unbalanced values from the set of the finite element Eqs 
(20)-(23) as, 
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This leads to a set of algebraic equations with the 
incremental unknowns of the element nodal velocity 
components, temperatures, and pressures in the form, 
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The iteration process is terminated if the percentage of the 
overall change compared to the previous iteration is less 
than the specified value. 
 
RESULTS AND DISCUSSION 

The proposed problem is an open cavity with the 
left vertical wall maintaining at isothermal heat source and 
then isoflux heat source, while the top and bottom walls 
are adiabatic. Obviously for high values of Rayleigh 
number the errors encountered are appreciable and hence 
it is necessary to perform some grid size testing in order to 
establish a suitable grid size. Grid independent solution is 
ensured by comparing the results of different grid meshes 
for Ra = 106, which was the highest Rayleigh number. The 
total domain is discretized into 4806 elements that results 
in 32643 nodes. In order to validate the numerical code, 
pure natural convection with Pr = 0.71 in a square open 
cavity was solved, and the results were compared with 
those reported by Hinojosa et al. (2005), obtained with an 
extended computational domain. In Table 1, a comparison 
between the average Nusselt numbers is presented.  
 
 
 
 
 
 
 

Table-1. Comparison of the results for isothermal heat 
source with Pr = 0.71. 

 

Nu Ra 
Present 
work 

Hinojosa et al. 
[16] 

Error 
(%) 

103 1.32        1.30      1.54 
104 3.45 3.44 0.29 
105 7.41 7.44 0.40 
106 14.44 14.51 0.48 

 
The effect of inclination angle is examined for Φ 

= 0º, 10º, 30º, 45º, 60º and with aspect ratio A = 1. The 
hydrodynamic and thermal field in the cavity in the form 
of streamlines and isotherms for different Rayleigh 
numbers are shown in Figures 2 to 5 for inclination angles 
0º, 30º, and 60º as representative cases. A comparison 
between the steady-state patterns of streamlines from 
Rayleigh numbers of 103 to 106 with different angles is 
presented in Figure 2 and 4. Also a comparison between 
the steady-state patterns of isotherms from Rayleigh 
numbers of 103 to 106 with different angles is presented in 
Figure 3 and 5.  For the isotherm, the figures show that as 
the Rayleigh number and the inclination angle increases, 
the buoyancy force increases and the thermal boundary 
layers become thinner. For the streamlines, the figures 
show that the fluid enters from the bottom of the aperture, 
circulates in a clockwise direction following the shape of 
the cavity, and leaves toward the upper part of the 
aperture. The streamline patterns is very similar for first 
two Rayleigh numbers and the inclination angles, but the 
fluid moves faster for Ra = 104. Also, for Ra = 105 and 
106, the streamline patterns is similar but the upper 
boundary layer becomes thinner and faster, the velocity of 
the air flow moving toward the aperture increases, and the 
area that is occupied by the leaving hot fluid decreases 
compared with that of the entering fluid.  

Therefore, we see that as Ra increases, the flow 
becomes fully convective dominated, the cold fluid is 
entrained right to the left vertical wall where high 
temperature gradients are created, and the discharging 
fluid from the upper part of the cavity occupies smaller 
and smaller section of the opening. Isotherms and 
streamlines show that as the inclination angle of the heated 
wall increases, the velocity gradient increases at upper 
adiabatic wall, the strength of the circulation increases.  

The variation of the average temperature and 
Nusselt number with the Rayleigh number for isothermal 
heat source and also for the isoflux heat source are shown 
in Figures 6, 8 and 7, 9. In order to validate the numerical 
data shown in Figure-8, the results were compared with 
the ones reported by Hinojosa et al. (2005) obtained with 
an extended computational domain. 
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Figure-2. Steady-state streamlines for isothermal heat source with different Rayleigh numbers and inclination angles. 
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Figure-3. Steady-state isotherms for isothermal heat source with different Rayleigh numbers and inclination angles. 
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Figure-4. Steady-state streamlines for isoflux heat source with different Rayleigh numbers and inclination angles. 
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Figure-5. Steady-state is herms for isoflux heat source with different Rayleigh numbers and inclination angles. 
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Figure-6. Variation of the average temperature with the 

Rayleigh number for isothermal heat source. 
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Figure-7. Variation of the average temperature with the 

Rayleigh number for isoflux heat source. 
 

 
Figure-8. Variation of the average Nusselt number with the Rayleigh number for isothermal heat source. 
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Figure-9. Variation of the average Nusselt number with 

the Rayleigh number for isoflux heat source. 
 
CONCLUSION 

A finite element method for steady-state 
incompressible natural convection flow is presented. The 
finite element equations were derived from the governing 

flow equations that consist of the conservation of mass, 
momentum, and energy equations. The derived finite 
element equations are nonlinear requiring an iterative 
technique solver. The Newton-Raphson iteration method is 
applied to solve these nonlinear equations for solutions of 
the nodal velocity components, temperatures, and 
pressures. The above example demonstrates the capability 
of the finite element formulation that can provide insight 
to steady-state incompressible natural convection flow 
behaviors. 
 
NOMENCLATURE 
 

g gravitational acceleration (ms–2) 
Gr Grashof number 

k thermal conductivity of the fluid (Wm–1K–1) 
L height and width of the enclosure (m) 
Nu average Nusselt number 
p pressure (Nm–2) 
P non-dimensional pressure 
T non-dimensional temperature  
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Pr Prandtl number, υ/α 

q heat flux (Wm–2) 
Ra Rayleigh number, Gr·Pr 
u, v velocity components (ms–1) 
U, V non-dimensional velocity components 
x, y Cartesian coordinates (m) 
X, Y non-dimensional Cartesian coordinates 
Greek symbols 
α thermal diffusivity, (m2s–1) 
β thermal expansion coefficient (K–1) 
ρ density of the fluid (kgm–3) 
ν  kinematic viscosity of the fluid (m2s–1) 
 θ dimensional temperature (K) 
Φ inclination angle 
Abbreviations 
ITHS Isothermal heat source 
IFHS Isoflux heat source 
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