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ABSTRACT 

This paper presents methods for the design of non-uniform filter banks. The filter bank structure is obtained from 
a uniformly modulated filter bank by using an allpass transform which has a lossless frequency function and a nonlinear 
phase function. The proposed design method includes quadratic optimization with linear constraints. Considered 
applications are subband adaptive filtering and subband coding. Analysis filter banks and synthesis filter banks are 
designed in two subsequent stages, and design objectives include minimization of subband aliasing as well as 
reconstruction output residual aliasing components on an individual basis. This way to formulate design objectives is 
appropriate for filter banks used in subband adaptive filtering. Other design objectives are to optimize the overall filter 
bank response for low amplitude and phase distortion. Designs with phase compensation for linear phase overall response 
are included. Examples are included of filter banks with increasing bandwidth. 
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1. INTRODUCTION 

Filter banks with the aliasing cancellation 
property have been of great interest in numerous 
applications, and design methods taking aliasing into 
account have been considered in an early stage [1, 2]. An 
overview is presented in [3].  

Non-uniform filter banks have been of interest in 
speech enhancement, since by appropriate design it is 
possible to get a model, corresponding to the human 
auditory system [7]. They are also successfully applied to, 
speech recognition and speech coding. Non-uniform filter 
banks have also been proposed for subband adaptive 
filtering, e.g. in spectral subtraction for speech 
enhancement, [8], and beamforming for subband 
microphone arrays [9]. The filter banks addressed in this 
paper are non-uniform filter banks with polyphase 
structure. They utilize a lossless frequency transformation 
similar to a bilinear transform to obtain the non-uniformity 
[10]. These frequency transformed filter banks have 
previously been presented [11, 12], and are known to 
approximate the Bark frequency scale, or critical band 
scale, very accurately [7]. However, these filter banks are 
also known to cause phase distortion, which is 
inappropriate for coding or communications applications. 
The phase distortion can be compensated for by phase 
compensation filters [13]. 

This paper proposes novel methods for the design 
of filter banks in two stages. First a non-uniform analysis 
bank is designed and then a matching synthesis filter bank 
is designed, given the analysis filter bank.  Quadratic 
criteria with linear constraints is used and evaluated. A 
common aim is to design the analysis and synthesis banks 
with pre-specified parameters, such as number of 
subbands, filter lengths, delays and decimation factors.  

In the first stage the analysis filter bank is 
designed in such way that aliasing terms in the subbands 

are minimized. In the second stage the synthesis filter 
bank is designed, based on the analysis filter bank, such 
that the overall response is optimized and the 
reconstruction aliasing terms are minimized. 

Generally, filter bank design methods are reduced 
to the design of a single prototype for the analysis and 
synthesis filter banks in order to obtain nearly perfect 
reconstruction properties. In the two stage design methods 
the amplitude distortion, phase distortion (delay) and 
aliasing distortion can be minimized or controlled for the 
analysis and synthesis filter banks separately.  
 
2. QUADRATIC OPTIMIZATION WITH LINEAR 
     CONSTRAINTS  

The minimization of aliasing energy on an 
individual basis with respect to response constraints can be 
done by combining the quadratic cost functions 3 JII

A (a) 
and JII

S (b) with the linear constraints, for the analysis and 
synthesis filter bank respectively.  
 
2.1. Analysis of filter bank design criterion  

The minimization of subband aliasing energy 
with respect to constraints on the passband ripple can be 
formulated as  
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 Using the matrix notations, the formulation in Eq. 
(1) can be approximated by the finite dimensional 
quadratic program  
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2.2. Synthesis of filter bank design criterion  
The minimization of reconstruction aliasing 

energy with respect to constraints on the overall response 
ripple can be formulated as  
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 Using previous notations, the formulation in Eq. (3) can 
be approximated by the finite dimensional quadratic 
program 
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3. DESIGN EXAMPLES  

In both the analysis and synthesis filter bank 
design, the maximum response ripple is set to σ = 0.01 and 
parameter C is set to C = 8.  
 
3.1 Example without phase compensation - QP1

  

Filter banks are designed without phase 
compensation in the synthesis filter bank. The resulting 
analysis filters Hm(z) and synthesis filters Gm(z) are 
shown in Figure-1. The stopbands of the analysis and 
synthesis filters clearly exhibit minimum energy 
characteristics. The magnitude and the group delay of the 
overall response, T(ejω) and the average magnitude of the 
aliasing terms Savg(ω) are shown in Figure-2.  

 
Figure-1. Design Example QP1. Magnitude responses of 
the analysis filters |Hm(ejω)| and synthesis filters |Gm(ejω)|, 

for m = 0, . . . , M − 1. The analysis and synthesis filter 
banks are designed using quadratic optimization with 

linear constraints. There is no phase compensation in the 
synthesis filter bank. The cost function value for the 

analysis filter bank design is JII
A (a) = −81.6 dB. 

 
Figure-2. Design Example QP1. Overall magnitude 

response |T(ejω)|, group delay and maximum output signal 
aliasing magnitude Savg(ω). The cost function value for the 

synthesis filter bank design is JII S (b) = −91.7 dB. 
 
3.2. Example with phase compensation - QP2.  

Filter banks are designed without phase 
compensation in the synthesis filter bank. The delay 
parameter for the phase compensation filters is set to p = 
6. The resulting analysis filters Hm(z) and synthesis filters 
Gm(z) are shown in Figure-3. The magnitude and the 
group delay of the overall response, T(ejω) and the average 
magnitude of the aliasing terms Savg(ω) are shown in 
Figure-4.  
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Figure-3. Design Example QP2. Magnitude responses of 
the analysis filters |Hm(ejω)| and synthesis filters |Gm(ejω)|, 

for m = 0, . . . , M − 1. The analysis and synthesis filter 
banks are designed using quadratic optimization with 
linear constraints. Phase compensation is used in the 
synthesis filter bank. The cost function value for the 

analysis filter bank design is JII
A

 (a) = −81.6 dB. 

 
Figure-4. Design Example QP2. Overall magnitude 

response |T(ejω)|, group delay and maximum output signal 
aliasing magnitude Savg(ω). The cost function value for the 

synthesis filter bank design is JII
S (b) = −86.6 dB. 

 
 
 

4. Conclusions 
In this paper, two stage design methods are 

presented for the design of non-uniform filter banks using 
Quadratic optimization with linear constraints. The 
polyphase structure with allpass functions is used with or 
without the compensation of nonlinear phase in the 
synthesis filter bank. One of the design objectives of the 
proposed method is to minimize the magnitude of all 
aliasing components individually, such that aliasing 
distortion is minimized although phase alterations occur in 
the subbands as in subband adaptive filtering. Design 
examples are given of filter banks with increasing 
bandwidth with a comparison of the results obtained with 
different design criteria. 
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