
 VOL. 2, NO. 4, AUGUST 2007 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

A SIMULATION SOFTWARE DEVELOPMENT FOR PERFORMANCE
ANALYSIS OF DVS ALGORITHM FOR LOW POWER EMBEDDED

SYSTEM

A. Chilambuchelvan1, S. Saravanan2 and J. Raja Paul Perinbam3

1Department of ECE, IRTT, Erode, Tamilnadu, India
2Department of EEE, JCE, Chennai, Tamilnadu, India

3Department of ECE, CEG, Anna University, Tamilnadu, India
E-mail: chilambuchelvan_a@yahoo.com

ABSTRACT

Energy efficiency is an important property of mobile and pervasive computing devices. Dynamic voltage scaling
(DVS) is an energy saving technique, achieve this property by reducing energy dissipation of the core by lowering the
supply voltage and operating frequency. In this paper a simulation environment for testing of different DVS algorithms
under EDF and RM have been discussed- as there are no standard simulators readily available in market. The simulator
environment provides a framework for objective performance evaluations of different DVS algorithms. Several key DVS
algorithms recently proposed for hard real-time periodic task sets have been compared; analyzed for their energy efficiency
and discussed the performance differences quantitatively. It is shown through simulations that the real time DVS
algorithms closely approach the theoretical lower bound on energy consumption and can easily reduce energy consumption
(15-20%) in an embedded real-time system.

Keywords: RT-DVS, EDF, RM, idle factor, utilization, energy consumption.

1. INTRODUCTION

Dynamic voltage scaling (DVS) is an emerging
technology to reduce the power consumption of handheld
and mobile devices. The energy usage of computer
systems is becoming more important, especially for
battery operated portable devices. The displays, disks and
CPUs are the most power consuming components of a
computer system. The power management of most of the
systems handles the display and disk power with ease.
They get to save power by switching on and off the power
of the display and disks at idle time. The power of the
system is based on CPU’s speed of execution. And the
only way to reduce the power consumed by the CPU is to
reduce the speed. With the hunger for more speed and
performance, the reduction of CPU speed for saving power
becomes unacceptable. There has to be a system that
would reduce the CPU power at times when there is no
CPU usage and will clock at full speed when there is
heavy processor load. Answer to this requirement is the
Dynamic voltage scaling. Dynamic Voltage Scaling is the
technique of dynamically reducing the processor speed
and thereby reducing the voltage and power consumption.
Reducing energy consumption is important in portable
computers due to their limited battery capacity. An energy
saving technology that has recently begun appearing in
modern portable computers are dynamic voltage scaling,
the ability to change processor’s voltage without
rebooting. DVS tries to tradeoff between performance and
battery life by taking into account the important
characteristics of most current computer systems: (1) the
peak computing rate needed is much higher than the
average throughput that must be sustained; and (2) the
processors are based on CMOS logic. Since the energy
dissipated per cycle with CMOS circuitry scales

quadratically to the supply voltage (E ∞V2), DVS can
potentially provide a very large net energy savings through
frequency and voltage scaling [1, 2].

In this paper, it is described DVS simulator, an
integrated simulation environment for DVS algorithms,
which can be used in comparing the energy efficiency of
various DVS algorithms. Real-Time scheduler integration
and basic RT-DVS algorithms are explained briefly in
section 2. The simulation environments are discussed in
section 3. Simulation studies and result analysis are shown
in section 4. Conclusions and future directions are given in
last section.

2. REAL-TIME DVS ALGORITHM

In order to realize the reduced energy-
consumption benefits of DVS in a real-time embedded
system, a new DVS algorithm that is tightly coupled with
the actual real-time scheduler of the operating system is
needed. In 1973, Liu [3] presented the rate monotonic
(RM) algorithm as an optimal fixed priority-scheduling
algorithm, and the earliest-deadline-first (EDF) algorithm
as optimal dynamic priority scheduling algorithm. RM is a
static priority scheduler, and assigns task priority
according to period. EDF is a dynamic priority scheduler
that sorts tasks by deadlines.

In a classical model of real time system there is a
set of ‘n’ independent tasks that need to be executed
periodically. Each task (Ti) has an associated period (Pi),
deadline (Di) and a worst-case computation time (Ci). Let
U be the total utilization of this task set. A sufficient
condition [4, 5] for feasible scheduling of the task set with
real time scheduler is

27

 VOL. 2, NO. 4, AUGUST 2007 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

U =∑
=

−≤
n

i

nn(Di,Pi)Ci/
1

1

)12(min for RM

U = for EDF 1),min(/
1

≤∑
=

n

i
PiDiCi

Research into DVS algorithms can be classified into two
categories: (1) Algorithms that attempt to estimate the
future utilization of the processor based on the past
information and (2) Algorithms that use task deadlines to
guide performance setting decisions. The disadvantages of
the former are its unresponsiveness to dynamically
changing workloads, but are simpler in their
implementation. For hard real-time systems, there are two
types of voltage scheduling approaches [6, 7] depending
on the voltage scaling granularity: intra-task DVS (Intra
DVS) and inter-task DVS (Inter-DVS). The intra-task
DVS algorithms adjust the voltage within an individual
task boundary, while the inter-task DVS algorithms
determine the voltage on a task-by-task basis at each
scheduling point. The main difference between the two
approaches is whether the slack times [8] are used for the
current task or for the tasks that follow. Inter DVS
algorithms distribute the slack times from the current task
to the following tasks, while Intra DVS algorithms use the
slack times from the current task for the current task itself.
Three heuristics DVS algorithms were brought up by Pillai
and Shin [9] working with RM or EDF task scheduling.
The first one, static scheduling, selects only one lowest
possible operating frequency to let all tasks meet all the
deadlines. The second one, cycle-conserving scheduling,
determines the lowest frequency for each schedule task
satisfying the acceptance test. In the acceptance test, the
bound of the total utilization is decreased to the optimum
speed of the system. Then, the system updates the actual
utilization, according to the full speed, that the previous
task used in order to calculate the next task speed. The last
heuristic, look ahead scheme tries to defer as much work
as possible, and sets the operating frequency to meet the
minimum work that must be done now to ensure that all
future deadlines are met. The simulation results are shown
that the look-ahead scheduling is the best among three
heuristics in almost all cases.

3. DVS SIMULATOR
 A simulator is developed for the operation of
hardware capable of voltage and frequency scaling with
real-time EDF/RM scheduling. It takes periodic real time
tasks as an input which is scheduled under EDF/RM
scheduling policy. It supports all the inter DVS algorithms
and it can be used to compare the energy efficiency of
different inter DVS algorithms using the same task set
specification under the same machine configuration
(Figure-1). Using this evaluation, one can decide the best
DVS algorithm for the given application on the given
hardware platform. It can be used as well when evaluating
a given DVS algorithm under various evaluation
conditions.

The following subsection describes our simulator and the
assumptions made in its design. Later, it is shown some
simulation results and provides insight into the most
significant system parameters affecting RT-DVS energy
savings.

3.1. Simulator
 It requires three inputs; a task set specification,
duration of simulation and a machine specification. The
task set specification describes various task set
characteristics that affect the energy efficiency of a DVS
algorithm while the machine specification describes the
machine characteristics that affect the energy efficiency of
a DVS algorithm. The Inter DVS Module is responsible
for the whole operation of simulator.

3.2. Inter DVS module

The Inter DVS Module is responsible for
scheduling tasks and plays a role of a real-time scheduler
in a hard real-time system. The priority-based scheduling
can be implemented by maintaining two queues [10], one
called run queue and the other called delay queue. The run
queue holds tasks that are waiting to run and the tasks in
the queue are ordered by priority (state 3). The task that is
running on the processor is called the active task (state 2).
The delay queue holds tasks that have already run in their
periods and are waiting for their next periods to start
again. They are ordered by the time at which their release
is due. When the scheduler is invoked, it searches the
delay queue to see if any tasks should be moved to the run
queue. If some of the tasks in the delay queue are moved
to the run queue, the scheduler compares the active task to
the task at the head of the run queue.

The Inter DVS Module consists of three sub
modules one for estimating available slack times, one for
execution of task and the another one for estimating
energy consumed by a task in a particular invocation. The
slack estimation is done by the slack estimation module,
which computes the total available time for the scheduled
task while the task execution module (state 4), which
determines the operating speed for the scheduled task and
simulates the execution of the task, does the slack
distribution. The energy estimation module (state 6) takes
the timing and speed information from the task execution
module and computes the energy consumption of the
current task execution using the current machine
specification. Energy consumption is calculated using E ∝
Exe time * fi *VDD

2 where VDD is the supply voltage, fi is
the operating frequency and Exe time is execution time of
task. The state machine diagram for real time DVS
scheduling of the simulator is shown in Figure-1.

28

 VOL. 2, NO. 4, AUGUST 2007 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4.2. Simulation results and discussions

It is assumed that a task set of 3 tasks [Table-1]
is to be run on a DVS simulated machine[11,12] that
provides three relative operating frequencies (0.5, 0.75 and
1.0) and corresponding voltages (3, 4 and 5) respectively.
RT-DVS algorithms were simulated to determine the most
important system parameters that affect energy
consumption. Since many factors affect the energy
efficiency of DVS algorithms the comparative study
cannot answer all the DVS performance questions. In this
paper, the performance of RT-DVS algorithms is
compared for various parameters like idle factors, and
worst case execution times using the simulator. A
theoretical lower bound was included for energy
dissipation. This lower bound reflects execution
throughputs only, and does not consider any timing issues.
No real algorithm can do better than this theoretical lower
bound. From simulation graphs, it is interesting to note
that look ahead algorithm is closer to this theoretical lower
bound.

Task Set Machine S1
Generator Details

S2

S4 S6

S5 S7

S3

 S1: Initializing scheduler; S2: Task selection; S3: Task set

update; S4: Task execution; S5: End time check; S6:
Energy estimation state; S7: Halt state.

Table-1. Example specifications.

Ti Ci (WCET) Pi Invocation 1 Invocation 2
1 3 ms 8 ms 2 ms 1 ms
2 3 ms 10 ms 1 ms 1 ms
3 1 ms 14 ms 1 ms 1 ms

Figure-1. State machine diagram for RT – Scheduling.

4. SIMULATION AND RESULT ANALYSIS

Using C++ and VB we have developed a
simulator for the operation of hardware capable of voltage
and frequency scaling with real-time EDF/RM scheduling.
The following subsection describes the assumptions made
in its design. Later, we show some simulation results and
provide insight into the most significant system parameters
affecting RT-DVS energy savings.

Varying idle level

To evaluate the impact of halt feature of the
processor on energy efficiency of the RT-DVS algorithm,
different idle specifications were tested. Idle factor is
defined as the ratio of energy consumed in a cycle while
the processor is halted to the energy consumed in a normal
execution cycle. To see how an imperfect halt feature
affects power consumption, several simulations of RT-
DVS algorithm were performed varying the idle level
factors between 0.01 and 1.0 as shown in Figure-2. When
idle level is 0 the impact of dynamic voltage scaling
algorithm is relatively marginal compared to static
algorithm. But when idle level increases to 1 (same energy
consumption as in normal operation) the percentage saving
with voltage scaling improves because dynamic voltage
scaling algorithms switch to the lowest frequency and
voltage while the static one does not. From simulated
results it is observed that the performance of the look
ahead EDF algorithm is relatively better than other
algorithms because idle time is utilized efficiently.

4.1. Assumptions

I. The processor considered has discrete and finite
frequencies (f1<f2…. <fm).

II. The switching between frequency levels may occur
anywhere within the task and the switching overheads
are negligible in comparison with the task deadlines.

III. The scheduler follows EDF/RM Scheme.
IV. For simplicity, only task execution and idle (halt)

cycles are considered.

29

 VOL. 2, NO. 4, AUGUST 2007 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Idle factor: 0.01

0

0.2

0.4

0.6

0.8

1

0.27 0.38 0.49 0.56 0.76

Utilization

N
or

m
al

iz
ed

 E
ne

rg
y

static EDF static RM cc EDF cc RM la EDF bound

Idle factor: 1.0

0

0.2

0.4

0.6

0.8

1

0.27 0.38 0.49 0.56 0.76
Utilization

N
or

m
al

iz
ed

 E
ne

rg
y

stat ic EDF static RM cc EDF cc RM la EDF bound

Figure-2. Normalized energy consumption of simulated machine with utilization factor 0.8
and idle level factors 0.01 and 1.0

Varying computation time

To evaluate the impact of worst case processor
utilization (WCPU) of task set on the energy efficiency of
the RT-DVS algorithm, different WCPU specifications
were tested. The real-time task sets are specified by their
period and worst-case computation time and actual
computation. These tasks are generated by randomly
choosing parameters assuming uniform distribution.
When the WCPU of a given task set is less than 1.0, the

tasks have inherent static slack times. Figure 3 shows
simulation results for tasks that require a constant 90% and
70% of their worst-case execution cycles (WCEC) for
each invocation. The results indicate that when the task set
utilization is low, the look ahead EDF algorithms consume
the same amount of energy, because task set with low
utilizations usually have enough slack and idle slots, so
that task set can be operated at the lowest speed level and
it is closer to the theoretical lower bound.

90% of WCEC

0

0.2

0.4

0.6

0.8

1

0.27 0.38 0.49 0.56 0.76

Utilization

N
or

m
al

iz
ed

 E
ne

rg
y

static EDF static RM cc EDF cc RM la EDF bound

70% of WCEC

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.38 0.43 0.59

Utilization

N
or

m
al

iz
ed

 E
ne

rg
y

static EDF static RM cc EDF cc RM la EDF bound

Figure-3. Normalized energy consumption of simulated machine with idle factor 0.2
and worst-case execution cycles (WCEC) of 0.90 and 0.70

CONCLUSIONS

In this paper it is discussed about a simulation
environment to test the performance of various DVS
algorithms under EDF and RM. The simulator has been
designed such a way that any new DVS algorithm can be
evaluated easily by adding new task execution module to
it. It also supports to add new machines specifications to in
it. It is shown that the most significant parameters
affecting energy conservation through RT-DVS
mechanisms and the extent to which CPU power
dissipation can be reduced. Furthermore, look-ahead and
cycle-conserving RT-DVS mechanisms can achieve close
to the theoretical lower bound on energy. From the
simulated results it is indicated that 15% to 20% energy

savings can be achieved, even including irreducible
system energy overheads and using task sets with high
values for both worst-case and average-case utilizations.

REFERENCES

[1] Burd, T. D., and Broderen, R. W. 1995. Energy
efficient CMOS microprocessor design. Proceedings
of the 28th Annual Hawaii International Conference
on System Sciences. Volume 1: Architecture (Los
Alamitos, CA, USA, January), T. N. Mudge and B.
D. Shriver, Eds., IEEE Computer Society Press. pp.
288-297.

30

 VOL. 2, NO. 4, AUGUST 2007 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

[2] T. Pering, T. Burd, and R. Brodersen. 1998.
Dynamic voltage scaling and the design of a low-
power microprocessor system. Power Driven Micro
architecture Workshop, attached to ISCA98.

[3] C.L. Liu and J.W. Layland. 1973. Scheduling

Algorithms for Multiprogramming in a hard real
time environment. Journal of the Association for
Computing Machinery. Vol. 20(1): 44-61.

[4] Liu, J.W.-S. 2000. Real-time systems. Prentice Hall.

[5] Hong, M. Potkonjak and M.B. Srivastava. 1998.

On-line Scheduling of Hard Real-time Tasks on
Variable Voltage Processor. Proceedings of the
IEEE/ACM International Conference on Computer-
Aided Design. pp. 653-656.

[6] H. Aydin, R. Melhem, D. Mosse and P. M. Alvarez.

2001. Dynamic and Aggressive Scheduling
Techniques for Power- Aware Real-Time Systems.
Proceedings of IEEE Real- Time Systems
Symposium. December.

[7] W. Kim, J. Kim and S. L. Min. 2002. A Dynamic

Voltage Scaling Algorithm for Dynamic-Priority

Hard Real-Time Systems Using Slack Time
Analysis. Proceedings of Design, Automation and
Test in Europe (DATE’02). pp. 788-794. March.

[8] J. Lehoczky and S. Thuel. 2000. Algorithm for

scheduling hard aperiodic tasks in fixed priority
systems using slack time stealing. Proc. of the IEEE
Real-Time Systems Sympopsium.

[9] P. Pillai and K.G. Shin. 2001. Real-Time Dynamic

Voltage Scaling for Low-Power Embedded
Operating Systems. ACM symposium on operating
system principles.

[10] Y. Shin, K. Choi and T. Sakurai. 2000. Power

Optimization of Real-Time Embedded Systems on
Variable Speed Processors. Proceedings of the
International Conference on Computer-Aided
Design. pp. 365-368. November.

[11] Advanced Micro Devices Corp. 2000. Mobile

AMD-K6+ Processor Data Sheet. Publication #
23446.

[12] Intel Corporation. 2000. Mobile Intel Pentium-III

Processor in BGA2 and MicroPGA2 Packages.

31

