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ABSTRACT 

Energy efficiency is an important property of mobile and pervasive computing devices. Dynamic voltage scaling   
(DVS) is an energy saving technique, achieve this property by reducing energy dissipation of the core by lowering the 
supply voltage and operating frequency. In this paper a simulation environment for testing of different DVS algorithms 
under EDF and RM have been discussed- as there are no standard simulators readily available in market. The simulator 
environment provides a framework for objective performance evaluations of different DVS algorithms. Several key DVS 
algorithms recently proposed for hard real-time periodic task sets have been compared; analyzed for their energy efficiency 
and discussed the performance differences quantitatively. It is shown through simulations that the real time DVS 
algorithms closely approach the theoretical lower bound on energy consumption and can easily reduce energy consumption 
(15-20%) in an embedded real-time system. 
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1. INTRODUCTION 

Dynamic voltage scaling (DVS) is an emerging 
technology to reduce the power consumption of handheld 
and mobile devices. The energy usage of computer 
systems is becoming more important, especially for 
battery operated portable devices. The displays, disks and 
CPUs are the most power consuming components of a 
computer system. The power management of most of the 
systems handles the display and disk power with ease. 
They get to save power by switching on and off the power 
of the display and disks at idle time. The power of the 
system is based on CPU’s speed of execution. And the 
only way to reduce the power consumed by the CPU is to 
reduce the speed. With the hunger for more speed and 
performance, the reduction of CPU speed for saving power 
becomes unacceptable. There has to be a system that 
would reduce the CPU power at times when there is no 
CPU usage and will clock at full speed when there is 
heavy processor load. Answer to this requirement is the 
Dynamic voltage scaling. Dynamic Voltage Scaling is the 
technique of dynamically reducing the processor speed 
and thereby reducing the voltage and power consumption. 
Reducing energy consumption is important in portable 
computers due to their limited battery capacity. An energy 
saving technology that has recently begun appearing in 
modern portable computers are dynamic voltage scaling, 
the ability to change processor’s voltage without 
rebooting. DVS tries to tradeoff between performance and 
battery life by taking into account the important 
characteristics of most current computer systems: (1) the 
peak computing rate needed is much higher than the 
average throughput that must be sustained; and (2) the 
processors are based on CMOS logic. Since the energy 
dissipated per cycle with CMOS circuitry scales 

quadratically to the supply voltage (E ∞V2), DVS can 
potentially provide a very large net energy savings through 
frequency and voltage scaling [1, 2]. 

In this paper, it is described DVS simulator, an 
integrated simulation environment for DVS algorithms, 
which can be used in comparing the energy efficiency of 
various DVS algorithms.  Real-Time scheduler integration 
and basic RT-DVS algorithms are explained briefly in 
section 2. The simulation environments are discussed in 
section 3. Simulation studies and result analysis are shown 
in section 4. Conclusions and future directions are given in 
last section.  
 
2. REAL-TIME DVS ALGORITHM 

In order to realize the reduced energy-
consumption benefits of DVS in a real-time embedded 
system, a new DVS algorithm that is tightly coupled with 
the actual real-time scheduler of the operating system is 
needed. In 1973, Liu [3] presented the rate monotonic 
(RM) algorithm as an optimal fixed priority-scheduling 
algorithm, and the earliest-deadline-first (EDF) algorithm 
as optimal dynamic priority scheduling algorithm. RM is a 
static priority scheduler, and assigns task priority 
according to period. EDF is a dynamic priority scheduler 
that sorts tasks by deadlines.  

In a classical model of real time system there is a 
set of ‘n’ independent tasks that need to be executed 
periodically. Each task (Ti) has an associated period (Pi), 
deadline (Di) and a worst-case computation time (Ci). Let 
U be the total utilization of this task set. A sufficient 
condition [4, 5] for feasible scheduling of the task set with 
real time scheduler is 
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Research into DVS algorithms can be classified into two 
categories: (1) Algorithms that attempt to estimate the 
future utilization of the processor based on the past 
information and (2) Algorithms that use task deadlines to 
guide performance setting decisions. The disadvantages of 
the former are its unresponsiveness to dynamically 
changing workloads, but are simpler in their 
implementation. For hard real-time systems, there are two 
types of voltage scheduling approaches [6, 7] depending 
on the voltage scaling granularity: intra-task DVS (Intra 
DVS) and inter-task DVS (Inter-DVS). The intra-task 
DVS algorithms adjust the voltage within an individual 
task boundary, while the inter-task DVS algorithms 
determine the voltage on a task-by-task basis at each 
scheduling point. The main difference between the two 
approaches is whether the slack times [8] are used for the 
current task or for the tasks that follow. Inter DVS 
algorithms distribute the slack times from the current task 
to the following tasks, while Intra DVS algorithms use the 
slack times from the current task for the current task itself. 
Three heuristics DVS algorithms were brought up by Pillai 
and Shin [9] working with RM or EDF task scheduling. 
The first one, static scheduling, selects only one lowest 
possible operating frequency to let all tasks meet all the 
deadlines. The second one, cycle-conserving scheduling, 
determines the lowest frequency for each schedule task 
satisfying the acceptance test. In the acceptance test, the 
bound of the total utilization is decreased to the optimum 
speed of the system. Then, the system updates the actual 
utilization, according to the full speed, that the previous 
task used in order to calculate the next task speed. The last 
heuristic, look ahead scheme tries to defer as much work 
as possible, and sets the operating frequency to meet the 
minimum work that must be done now to ensure that all 
future deadlines are met. The simulation results are shown 
that the look-ahead scheduling is the best among three 
heuristics in almost all cases. 
 
3. DVS SIMULATOR 
  A simulator is developed for the operation of 
hardware capable of voltage and frequency scaling with 
real-time EDF/RM scheduling. It takes periodic real time 
tasks as an input which is scheduled under EDF/RM 
scheduling policy. It supports all the inter DVS algorithms 
and it can be used to compare the energy efficiency of 
different inter DVS algorithms using the same task set 
specification under the same machine configuration 
(Figure-1). Using this evaluation, one can decide the best 
DVS algorithm for the given application on the given 
hardware platform. It can be used as well when evaluating 
a given DVS algorithm under various evaluation 
conditions.   

The following subsection describes our simulator and the 
assumptions made in its design. Later, it is shown some 
simulation results and provides insight into the most 
significant system parameters affecting RT-DVS energy 
savings. 
 
3.1. Simulator 
  It requires three inputs; a task set specification, 
duration of simulation and a machine specification. The 
task set specification describes various task set 
characteristics that affect the energy efficiency of a DVS 
algorithm while the machine specification describes the 
machine characteristics that affect the energy efficiency of 
a DVS algorithm. The Inter DVS Module is responsible 
for the whole operation of simulator. 
 
3.2. Inter DVS module 

The Inter DVS Module is responsible for 
scheduling tasks and plays a role of a real-time scheduler 
in a hard real-time system. The priority-based scheduling 
can be implemented by maintaining two queues [10], one 
called run queue and the other called delay queue. The run 
queue holds tasks that are waiting to run and the tasks in 
the queue are ordered by priority (state 3). The task that is 
running on the processor is called the active task (state 2). 
The delay queue holds tasks that have already run in their 
periods and are waiting for their next periods to start 
again. They are ordered by the time at which their release 
is due. When the scheduler is invoked, it searches the 
delay queue to see if any tasks should be moved to the run 
queue. If some of the tasks in the delay queue are moved 
to the run queue, the scheduler compares the active task to 
the task at the head of the run queue.  

The Inter DVS Module consists of three sub 
modules one for estimating available slack times, one for 
execution of task and the another one for estimating 
energy consumed by a task in a particular invocation. The 
slack estimation is done by the slack estimation module, 
which computes the total available time for the scheduled 
task while the task execution module (state 4), which 
determines the operating speed for the scheduled task and 
simulates the execution of the task, does the slack 
distribution. The energy estimation module (state 6) takes 
the timing and speed information from the task execution 
module and computes the energy consumption of the 
current task execution using the current machine 
specification. Energy consumption is calculated using E ∝ 
Exe time * fi *VDD

2   where VDD is the supply voltage, fi is 
the operating frequency and Exe time is execution time of 
task. The state machine diagram for real time DVS 
scheduling of the simulator is shown in Figure-1. 
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4.2. Simulation results and discussions 

 

It is  assumed that a  task set of 3 tasks [Table-1]  
is to be run on a DVS simulated machine[11,12] that 
provides three relative operating frequencies (0.5, 0.75 and 
1.0) and corresponding voltages (3, 4 and 5) respectively. 
RT-DVS algorithms were simulated to determine the most 
important system parameters that affect energy 
consumption. Since many factors affect the energy 
efficiency of DVS algorithms the comparative study 
cannot answer all the DVS performance questions. In this 
paper, the performance of RT-DVS algorithms is 
compared for various parameters like idle factors, and 
worst case execution times using the simulator.  A 
theoretical lower bound was included for energy 
dissipation. This lower bound reflects execution 
throughputs only, and does not consider any timing issues. 
No real algorithm can do better than this theoretical lower 
bound. From simulation graphs, it is interesting to note 
that look ahead algorithm is closer to this theoretical lower 
bound. 

Task Set Machine  S1 
Generator Details 

S2 

S4 S6 

S5 S7 

S3 

 
 S1: Initializing scheduler; S2: Task selection; S3: Task set 

update; S4: Task execution; S5: End time check; S6: 
Energy estimation state; S7: Halt state. 

Table-1. Example specifications. 
 

Ti Ci (WCET) Pi Invocation 1 Invocation 2 
1 3 ms  8 ms 2 ms 1 ms 
2 3 ms 10 ms 1 ms 1 ms 
3 1 ms 14 ms 1 ms 1 ms 

Figure-1. State machine diagram for RT – Scheduling. 
 
4. SIMULATION AND RESULT ANALYSIS 

Using C++ and VB we have developed a 
simulator for the operation of hardware capable of voltage 
and frequency scaling with real-time EDF/RM scheduling. 
The following subsection describes the assumptions made 
in its design. Later, we show some simulation results and 
provide insight into the most significant system parameters 
affecting RT-DVS energy savings. 

 
Varying idle level 

To evaluate the impact of halt feature of the 
processor on energy efficiency of the RT-DVS algorithm, 
different idle specifications were tested. Idle factor is 
defined as the ratio of energy consumed in a cycle while 
the processor is halted to the energy consumed in a normal 
execution cycle. To see how an imperfect halt feature 
affects power consumption, several simulations of RT-
DVS algorithm were performed varying the idle level 
factors between 0.01 and 1.0 as shown in Figure-2. When 
idle level is 0 the impact of dynamic voltage scaling 
algorithm is relatively marginal compared to static 
algorithm. But when idle level increases to 1 (same energy 
consumption as in normal operation) the percentage saving 
with voltage scaling improves because dynamic voltage 
scaling algorithms switch to the lowest frequency and 
voltage while the static one does not. From simulated 
results it is observed that the performance of the look 
ahead EDF algorithm is relatively better than other 
algorithms because idle time is utilized efficiently. 

 
4.1. Assumptions 
 

I. The processor considered has discrete and finite 
frequencies (f1<f2…. <fm). 

II. The switching between frequency levels may occur 
anywhere within the task and the switching overheads 
are negligible in comparison with the task deadlines. 

III. The scheduler follows EDF/RM Scheme.  
IV. For simplicity, only task execution and idle (halt) 

cycles are considered. 
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Figure-2. Normalized energy consumption of simulated machine with utilization factor 0.8 
and idle level factors 0.01 and 1.0 

 
Varying computation time 

To evaluate the impact of worst case processor 
utilization (WCPU) of task set on the energy efficiency of 
the RT-DVS algorithm, different WCPU specifications 
were tested. The real-time task sets are specified by their 
period and worst-case computation time and actual 
computation. These tasks are generated by randomly 
choosing parameters assuming uniform distribution.  
When the WCPU of a given task set is less than 1.0, the 

tasks have inherent static slack times. Figure 3 shows 
simulation results for tasks that require a constant 90% and 
70% of their worst-case execution cycles (WCEC) for 
each invocation. The results indicate that when the task set 
utilization is low, the look ahead EDF algorithms consume 
the same amount of energy, because task set with low 
utilizations usually have enough slack and idle slots, so 
that task set can be operated at the lowest speed level and 
it is closer to the theoretical lower bound.  
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Figure-3. Normalized energy consumption of simulated machine with idle factor 0.2 
and worst-case execution cycles (WCEC) of 0.90 and 0.70 

 
CONCLUSIONS 

In this paper it is discussed about a simulation 
environment to test the performance of various DVS 
algorithms under EDF and RM. The simulator has been 
designed such a way that any new DVS algorithm can be 
evaluated easily by adding new task execution module to 
it. It also supports to add new machines specifications to in 
it. It is shown that the most significant parameters 
affecting energy conservation through RT-DVS 
mechanisms and the extent to which CPU power 
dissipation can be reduced. Furthermore, look-ahead and 
cycle-conserving RT-DVS mechanisms can achieve close 
to the theoretical lower bound on energy. From the 
simulated results it is indicated that 15% to 20% energy 

savings can be achieved, even including irreducible 
system energy overheads and using task sets with high 
values for both worst-case and average-case utilizations. 
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