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ABSTRACT 

The study of unsteady hydromagnetic free convective memory flow of incompressible and electrically conducting 
fluids past an infinite vertical porous plate in the presence of constant suction and heat absorbing sinks have been made. 
Approximate solutions have been derived for the mean velocity, mean temperature, mean skin-friction and mean rate of 
heat transfer using multi-parameter perturbation technique. It is observed that magnetic field strength decreases the mean 
velocity of the fluid. Also the mean skin-friction and mean rate of heat transfer of the conducting fluid decreases with the 
increase in magnetic field strength. 
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INTRODUCTION 

The effect of  magnetic field on free convective  
flow of electrically conducting fluids past a semi-     
infinite flat plate has been analysed by (Gupta, 1960), 
(Singh and Cowling, 1963) and (Nanda and  Mohanty, 
1970). The unsteady free convective flow past an infinite 
plate with constant suction and heat sources has been 
studied by (Pop and Soundalgekar, 1974). (Raptis and 
Kofousias, 1982) had studied   the magnitohydrodynamic 
(MHD) free convection flow and mass transfer through a 
porous medium bounded by an infinite vertical plate with 
constant heat flux. (Sacheti et al., 1994) have obtained an 
exact solution for the unsteady MHD problem. MHD free 
convective flow with Hall current in a porous medium for 
electrolytic solution (viz. salt water) was studied by (Sattar 
and Alam, 1995). But they have neither considered the 
effect of constant suction nor included the heat absorbing 
sink and viscous dissipation. The propagation of thermal 
energy through mercury and electrolytic solution in the 
presence of external magnetic field and heat absorbing 
sinks has wide range of application in chemical and 
aeronautical engineering, atomic propulsion, space science 
etc. Unsteady effect  on  MHD free  convective  and  mass  
transfer flow through  porous  medium  with constant  
suction and constant  heat flux  in rotating  system  was 
studied  by (Sharma, 2004). MHD convective flow of a 
micropolar fluid past a continuously moving vertical 
porous plate in the presence of heat generation/absorption 
was studied by (Rahman and Sattar, 2006). 

The objective of this study was to extend the 
work of (Sahoo et al., 2003) to memory fluid. The mixture 
of polymethyl mehacrylate and pyridine at 25°C 
containing 30.5g of polymer per liter behaves very nearly 
as the (Walter’s liquid model B, 1960, 1962). 
 
FORMULATION OF THE PROBLEM 

Let the x-axis be taken in the vertically upward 
direction along the infinite vertical plate and y-axis normal 
to it. Neglecting the induced magnetic field and applying 

Boussineqs approximation, the equations of the flow is 
governed as: 
∂ v / ∂ y = 0     (1) 
i.e, v  =  - v 0  ( constant )    (2) 
  
∂ u / ∂ t +v ∂ u / ∂ y = g β ( T-T∞ ) + ν  ∂2 u / ∂ y2 – B1( ∂3 
u / ∂ t ∂ y2  +  v ∂ 3u / ∂ y3 ) - σ B0 

2  u / ρ  (3)  
 
∂ T / ∂ t +v ∂ T / ∂ y =  κ  ∂ 2 T / ∂ y2 + S ( T-T∞ ) +  ν /Cp 
( ∂ u / ∂ y)2      (4) 
 
On disregarding the Joulean heat dissipation, the boundary 
conditions of the problem are: 
 
y = 0:  u = 0, v = - v0,  T =  Tw + ε (T w -  T∞ ) e i ω t  
      (5) 
y→ ∞  :   u→ 0,  T →T∞ . 
 
Introducing the non-dimensional quantities and 
parameters, 
 
y* = y v0 / ν,          t* = t v0 2 / 4 ν,          ω* = 4 ν ω / v0

2,    
u* = u / v0
 
ν  =   ή 0 / ρ,           Pr = ν / K’,               S * = 4 S ν / v0

2,    
K = K0 / ρ Cp  
 
T* = (T – T∞) /  ( T w – T∞),       Gr = ν g β ( Tw – T∞ ) / 
v0

3, 
  
Ec = v0

2 / Cp ( Tw - T∞ ),   M = (σ B0
2 / ρ) ν / v0

3,   Rm = B1 
v0

2 / ν 2       (6) 
 
where  g,  β, ν,  B0,  σ,  B1,  ρ, κ,  Cp,  Pr,  Gr,  S,  Ec,  M 
and  Rm  are  acceleration  due  to  gravity, kinematic 
visco-elasticity, kinematic viscosity, magnetic field of  
uniform strength, electrical conductivity, coefficient  of  
volumetric expansion, density, thermal conductivity, 
specific heat at constant pressure, Prandtl number, 
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Grashoff number, Sink strength, Eckert number, Hartmann 
number and Magnetic Reynolds number, respectively. 
Using equations (5) and (6), equations (2) and (3) become: 
 
1/4∂ u / ∂ t  - ∂ u / ∂ y = Gr T + ∂ 2 u / ∂ y 2  - Rm ( 1/4(∂ 3 u 
/ ∂ t ∂ u2 ) -  ∂ 3 u / ∂  y 3 )  - M u   (7) 
and  
(Pr / 4) ∂ T / ∂ t  - Pr ∂ T / ∂ u = ∂ 2 T / ∂ y2 + Pr S T /  4 + 
Pr Ec ( ∂ u /  y)2      (8)  
(after dropping the asterisks) 
 
The corresponding boundary conditions are: 
 
y = 0:     u = 0,   T = 1 + ε e i ω t  
y→ ∞ :    u → 0,  T → 0    (9) 
  
To solve equations (7) and (8), we assume ω to be very 
small and the velocity and temperature in the 
neighbourhood of the plate as 
 
u ( y, t ) =  u0 (y) + ε e i ω t  u 1 (y), and 
T(y, t) = T0(y) +  ε e i ω t  T1(y)   (10) 
 
where u0 and T0 are mean velocity and mean temperature. 
Substituting (10) in equations (7) and (8), equating 
harmonic and non-harmonic terms for mean velocity and 
mean temperature, after neglecting coefficient of ε2, we 
get 
 
Rm u 0 111 + u 0 11 + u 0 1 – M u 0  = - Gr T0  (11) 
 
T 0 11 + Pr T 0 1 + Pr S T0 / 4  = - Pr Ec ( u0 1 )2 (12) 
 
The equation (11) is third order differential equation due 
to presence of elasticity. Therefore u 0 is expanded using  
(Beard and Walters rule, 1964). 
 
u 0 =   u 00  + R m u 01    (13) 
 
Zero-order of Rm  
 
u 00 11 + u 00 1  - M u 00 = - Gr T0   (14) 
 
First-order of Rm  
 
u 01 11+ u 01 1  – M u 01 = - u 00 

111   (15) 
 
Using multiparameter perturbation technique and 
assuming Ec << 1, we write 
 
u 00 =  u 000 + Ec u 001                  (16) 
  
u 01 =  u 011 + Ec u 012                  (17) 
  
T 0 = T 00 + Ec T 01                                                        (18) 
 
Using equations (16), (17) and (18) in the equations (12), 
(14) and (15) and equating the coefficient of Ec 0 and Ec 1,  

 we get the following sets of differential equations  
 
Zero-order of Ec 
 
u 000 11 + u 000 1  - M u 000 = - Gr T 00    (19) 
 
u 011 11 + u 011 1  - M u 011 = - u 000   

111  (20) 
  
T 00 11 + Pr T00 1 + Pr S T00 / 4 = 0   (21) 
 
First – order of Ec :  
 
u 001 11+ u 001 1 – M u 001 = - Gr T 01    (22) 
 
u 012 11+ u 012 1  – M u 012 = - u 001  

111                                             (23) 
 
T 01 11 + Pr T 01 1 + Pr S T 01 = -2 Pr (u 000

1 )2  (24) 
 
The corresponding boundary conditions are:  
 
y = 0: u 000 = u 001 = u 011 = u 012 = 0, 
T 00 = 1, T 01 = 0     (25) 
y→ ∞: u000 → u001 → u011 → u012 → 0, 
T00 →T 01→ 0 
 
SOLUTION OF THE PROBLEM 

Solving these differential equations from (19-24), 
using boundary conditions (25), and then making use of 
equations (16-18).  
Finally with the help of equation (13), we obtain the mean 
velocity u 0 and mean temperature T 0 as follows 
  
u 0 = { [ t 2 ( exp(- l 2 y ) – exp(- l1 y ))  + Ec ( t 22 exp(-l 2 
y) – t18 exp (-l1 y) +  t19 exp (-2 l 2 y)  +  t 20  exp ( -2 l1 y) - 
t 21 exp(-t3 y)) ] + R m  [ ( - t 33 exp(-l 2 y) –  y t32 exp (-l 2 
y)+ t 33 exp ( l1 y) ) + Ec (  ( t 35 + y t34  ) exp(-l 2 y) – t 28 
exp(-l1 y) + t 29 exp(- 2 l 2 y)+ t 30 exp(-2 l1 y) – t 31exp(- t3 
y ) ) ] }      (26) 
 
T 0 = {exp (-l1 y) + Ec (t14 exp (-l1 y) – t11 exp (- 2 l2 y) – 
t12 exp (- 2 l1 y) + t13 exp (-t3 y) ) }   (27)  
 
Mean Skin-Friction and Mean Rate of Heat Transfer 

The mean skin friction at the plate in 
dimensionaless form is given by  
  
τ ω m =  ( ∂ u 0 / ∂ y) y = 0   = u 0 ′ (0)   (28) 
  
τ ω m = { t 2 ( l1- l2 ) + Ec ( l2(-t 22 - 2 t19) + l1( t18-2 t 20 )+ t3 
t21)} +  R m{ ( t 33 l 2  – t 32 – l1 t33 ) +  Ec ( - t 35 l 2 + t 34 + 
t28 l1 – 2 l2 t29 – 2 l1 t30 + t3 t31  )  }   (29) 
 
Similarly, the mean rate of heat transfer at the plate is 
given by  
 
q ω m = ( ∂ T0 / ∂ y ) y = 0 = T 0 ′ (0)   (30) 
q ω m  =  -l1 + Ec [ -l1 t 14 + 2 l2 t11 + 2 l1 t12 – t3 t13 ] (31) 
l1 = 1/2[Pr +√ (Pr 2 – Pr S)], l 2 = 1/2[1 +√(1+4M)] 
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DISCUSSION AND CONCLUSIONS where t1 to t 35 are constants and their expressions are not 
presented here for the sake of  brevity. Table-1 showed the mean skin-friction for 

mercury and electrolytic solution. It was noticed that the 
increase in magnetic field strength decreases the mean 
skin-friction, for both mercury and electrolytic solution. 
Similar effect noted in sink strength. 

 
 
 
 
 

Table-1. Values of mean skin-friction τ ω m  for fixed values of  Gr = 5.0, 
Ec = 0.001 and ω = 5.0

 

Pr M S τ ω m 

1.0 -0.05 2.73809 

5.0 -0.05 1.56413 

 

Mercury ( Pr = 0.025 ) 

5.0 -0.10 1.55651 

1.0 -0.05 7.21121 

5.0 -0.05 2.50342 

 

Electrolytic solution (Pr = 1.0 ) 

5.0 -0.10 2.49426 

 
Table-2 showed the mean rate of heat transfer for mercury and electrolytic solution. It was observed that the mean 

rate of heat transfer decreases with the increase in magnetic field strength or sink strength for both mercury and electrolytic 
solution. 
 

Table-2. Values of mean rate of heat transfer q ω m for fixed values of Gr = 5.0, 
Ec = 0.001 and ω = 5.0 

 

Pr M S q ω m 

1.0 -0.05 -0.0336 

5.0 -0.05 -0.0341 

 

Mercury ( Pr = 0.025) 

 5.0 -0.10 -0.0404 

1.0 -0.05 -0.9946 

5.0 -0.05 -1.0111 

 

Electrolytic solution (Pr = 1.0) 

 5.0 -0.10 -1.0232 

 
The profiles of mean velocity are shown in Figure-1. It depicts the effects of Hartmann number, sink-strength and 

Prandtl number on the mean velocity. It was observed that the increase in external magnetic field strength and sink-strength 
decreases the mean velocity. It was also clear from Figure-1 that the mean velocity was greater for mercury (Pr = 0.025) 
than that of electrolytic solution (Pr = 1.0). 
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      Figure-1. Effects of Pr, S and M on mean velocity for fixed 
              values of (Gr = 5.0, Ec = 0.001 and ω = 5.0). 

Figure-2 depicts the effects of M, Pr, Gr, Ec and S on the mean temperature. It was observed that the increase in 
rtmann number M decreases the mean temperature. But it is different in decrease in sink-strength increases the mean 
perature. It was also observed that increase in Grashoff number, thereby heating the plate, increases the mean 
perature. Also increase in Eckert number increases the fluid temperature. It was observed that the mean temperature is 
re for mercury (Pr = 0.025) than for electrolytic solution (Pr = 1.0). 
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Figure-2. Effects of M, Pr, Gr, Ec and S on mean temperature.  
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