
                  VOL. 2, NO. 6, DECEMBER 2007                                                                                                                   ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

STATISTICAL MODELS FOR THE ERRORS IN PRECIPITATION 
FORECASTS 

 
Mario Lefebvre1 and Liliane Guilbault1

1Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal, Québec, Canada 
E-mail: mlefebvre@polymtl.ca 

 
ABSTRACT 

We consider the problem of finding statistical models for the absolute value of the errors made by the Hydro-
Québec company in their precipitation forecasts (based on the ones produced by Environment Canada) for the current day. 
We find that a generalised Pareto distribution provides a very good fit to the data. We also divide the data set into various 
cases, in particular the case when at least 10mm of rain (or water equivalent of snow) were forecasted. 
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INTRODUCTION 

People responsible for the management of large 
dams rely on accurate temperature and precipitation 
forecasts to make important decisions concerning the 
stocking or releasing of water, given the impact of these 
decisions both upstream and downstream. In particular, 
managers must endeavour to avoid possible flooding. We 
analyse the errors in precipitation forecasts for the 
Brotkord Station of the Gatineau River basin, in Canada. 
The data cover the one-year time period from 29 May 
2003 to 28 May 2004. 

Up to now, few researchers have been interested 
in modeling the errors generated by precipitation forecasts 
(Accadia et al., 2003 and Johnson and Olsen 1998). 
Actually, as shown by some authors, including McBride 
and Ebert (2000), the verification of precipitation forecasts 
is already a difficult task. As mentioned by Déqué (2003) 
of the Centre National de Recherches Météorologiques 
(CNRM) in France, the unpredictable character of 
atmospheric movements implies that the forecasts can only 
be made for a few days in advance. To measure the 
success of a forecast, Déqué mentions the use of a spatio-
temporal correlation coefficient between the forecasts and 
the observations. Within a training course on climate 
simulators in a research center, Rousseau (2004) tried to 
model the forecasting errors of Météo France by making 
use of linear regression models to determine temporal 
links between the forecasting errors.  In our case, we will 
instead find statistical models that fit the data well in 
various situations. 

In the present study, we will look for statistical 
models by performing goodness-of-fit tests of these 
models to the data.  We will propose a general statistical 
model, as well as more specific models, which all fit well 
the observations for the station selected, for various 
subsets of the data set. 
 
RESULTS AND DISCUSSION 

We define the variables 
W = difference between the observed and forecasted 
precipitation for the current day; 
X = absolute value of W; 
Y = X, given that X > 0.2 mm; 

Z = Y – 0.2. 
First, we would like to find an acceptable model 

for the random variable X for the entire data set that 
consists of 228 observations (there were some missing 
data). However, because the data representing the 
observed precipitation provided by Hydro-Québec were 
rounded to 0.2 mm when they actually were in the interval 
(0, 0.2], we consider instead the random variable Y, which 
denotes the significant errors, namely the ones larger than 
0.2 mm. Moreover, to obtain a variable defined in the 
interval (0, ∞), we must subtract 0.2 from Y. 

As a model for Z, we propose a generalised 
Pareto distribution. That is, we suppose that 

( )( ) θθθ −+−= 112),;()1( czcczf Z  
for z > 0. To estimate the unknown parameters c (> 0) and 
θ (> 2), we can use the   method of moments: 
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Notice that the standard deviation sZ of the observations 
must be larger than their mean z , and  must be larger 
than 3 for the method to apply. From the 228 observations, 
we obtain that = 6.74 and = 0.038. 

θ̂

θ̂ ĉ
We performed a Pearson’s chi-square goodness-

of-fit test (see Hines and Montgomery 1990, for example) 
of this distribution to the data. We obtained a p-value 
equal to 0.554, which is very good. Furthermore, because 
the test takes for granted that the observations constitute a 
particular random sample of Z, we also conducted the 
same test with a subset of almost uncorrelated 
observations, and the model was again accepted with a 
large enough p-value. 

Next, since the forecasting error must surely be a 
function of the amount pf of forecasted precipitation, we 
will consider four cases separately, namely the cases when 
i) pf  = 0, ii) 0 < pf  < 5, iii) 5 ≤ pf  < 10 and iv) pf ≥ 10. To 
justify the assertion made above, we give the mean and the 
standard deviation (in mm) of the observations of X in the 
various cases considered: 
 

 all observations: x  = 5.18;  sX  = 8.49; 

   27 



                  VOL. 2, NO. 6, DECEMBER 2007                                                                                                                   ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2007 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

 forecast pf  = 0: x   = 2.28; sX  = 6.25; 
 0 <  pf  < 5: x   = 3.78; sX  = 6.98; 
 5 ≤  pf  < 10: x    = 8.58; sX  = 10.51; 
 pf   ≥ 10: x    = 15.69; sX  = 8.81. 

 
a. During the time period considered, 69 times (out of 

228) no precipitation at all was forecasted; 37 times, 
there indeed was no precipitation, while 10 times the 
observed precipitation was in the interval (0, 0.2].  We 
performed the Anderson-Darling normality test 
(available with the statistical software MINITAB) for 
the logarithm of the absolute values of the remaining 
22 forecasting errors (minus 0.2). We obtained an 
excellent p-value of 0.748. 

 
b. For the case when 0 < pf < 5, there were 108 data 

points. The forecasting errors were never equal to 
zero, but 19 times they were in the interval (0, 0.2]. A 
chi-square goodness-of-fit test performed with the 
absolute values of the significant errors showed that, 
as in the general case, a generalised Pareto distribution 
is an appropriate model for Z. The p–value is 0.303. 
Because it is particularly important to evaluate the risk 
of a thunderstorm (or a snowstorm) when the forecast 
calls for a large amount of precipitation, the cases 
when 5 to 10 mm of rain were forecasted, and that for 
which more than 10 mm of rain were forecasted are 
really crucial. 

 
c. 25 times we had 0 < pf < 5. Each time, the forecasting 

error was larger than 0.2mm. We calculated the 
absolute values of the errors (minus 0.2) and 
conducted an Anderson-Darling normality test. With a 
p-value of 0.204, the Gaussian distribution is 
acceptable in that case. 

 
d. Finally, there were also 25 days for which pf ≥ 10. All 

forecasting errors were larger than 0.2 mm. This time, 
we found that a lognormal distribution provides a 
truly excellent fit to the observations of the random 
variable Z, since the p-value is 0.980. 

 
In summary, the various distributions proposed for Z are 
the following: 
 

 all observations: generalised Pareto distribution; 
 forecast pf = 0: lognormal distribution; 
 0 < pf < 5: generalised Pareto distribution; 
 5 ≤ pf < 10: Gaussian distribution; 
 pf   ≥ 10: lognormal distribution. 

 
CONCLUSIONS 

We considered other stations as well as forecasts 
for one and two days ahead. Moreover, we also studied the 
summer and winter seasons separately. The same 
conclusions as above were obtained in most cases. 

We had to discard some stations because the 
observations of W were not reliable. In the case of the 
Brotkord Station, there were also outliers. For example, 

we had to eliminate a forecasting error equal to more than 
58mm, which is hardly possible. 

Except when 0 < pf < 5, there were few data 
points in the particular cases considered. Consequently, it 
would be interesting to perform the statistical tests again 
when new observations become available. 

A related problem consists in finding statistical 
models for the errors made in forecasting temperature. 
Although this problem seems relatively easy, the classical 
models, such as the Gaussian or the Laplacian distribution, 
do not appear to be appropriate. 
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