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ABSTRACT 

The present work is aimed at optimizing the metal removal rate of die sinking electric discharge machining 
(EDM) by considering the simultaneous affect of various input parameters. The experiments are carried out on Ti6Al4V, 
HE15, 15CDV6 and M-250. Experiments were conducted by varying the peak current and voltage and the corresponding 
values of metal removal rate (MRR) were measured. Multiperceptron neural network models were developed using Neuro 
solutions package. Genetic algorithm concept is used to optimize the weighting factors of the network. It is observed that 
the developed model is within the limits of the agreeable error when experimental and network model results are compared 
for all performance measures considered. It is further observed that the maximum error when the network is optimized by 
genetic algorithm has been reduced considerably. Sensitivity analysis is also done to find the relative influence of factors 
on the performance measures. It is observed that type of material is having more influence on the performance measures. 
 
Keywords: model, hybrid, EDM, MRR, optimization, artificial neural network, genetic algorithm. 
 
Notation 
 

V -Voltage 
A -Current 
Ip -Peak Current 
I max -Maximum current 
t -Machining time 
Yk -Output of the network 
Qk -Measured performance 
Ek -Simple mean square error 
Zj -Output at the hidden layer 
W -Weights of the network 
Ra -Surface roughness 
Rmin -Minimum values of the real variables 
Rmax -Maximum values of the real variables 
N -Normalized value of the real variable 
 
1.0. INTRODUCTION 

The selection of appropriate machining 
conditions for the optimum MRR during electric discharge 
machining (EDM) process is based on the analysis relating 
the various process parameters to metal removal rate 
(MRR).  Traditionally this is carried out by relying heavily 
on the operator’s experience or conservative technological 
data provided by the EDM equipment manufacturers, 
which produced inconsistent machining performance. The 
parameter settings given by the manufacturers are only 
applicable for the common steel grades. The settings for 
new materials such as Titanium alloys, Aluminum alloys, 
special steels, advanced ceramics and metal matrix 
composites (MMCs) have to be further optimized 
experimentally. Optimization of the EDM process often 
proves to be difficult task owing to the many regulating 
machining variables. A single parameter change will 
influence the process in a complex way. Thus the various 

factors affecting the process have to be understood in 
order to determine the trends of the process variation. The 
selection of best combination of the process parameters for 
an optimal MRR involves analytical and statistical 
methods. In addition, the modeling of the process is also 
an effective way of solving the tedious problem of relating 
the process parameters to the metal removal rate. 

The settings for new materials such as: Titanium 
alloys, Aluminium alloys and special steels have to be 
further optimized experimentally. It is also aimed to select 
appropriate machining conditions for the EDM process 
based on the analysis relating the various process 
parameters to MRR. It is aimed to develop a methodology 
using an input-output pattern of data from an EDM 
process to solve both the modeling and optimization 
problems. The main objective of this research is to model 
EDM process for optimum operation representing a 
particular problem in the manufacturing environment 
where defining the optimization objective function using a 
smooth, continuous mathematical formula is not possible. 
It has been hard to establish models that accurately 
correlate the process variables and performance of EDM 
process. When new and advanced materials appear in the 
field, it has not been possible to use existing models and 
hence experimental investigations are always required. 
Undertaking frequent tests or many experimental runs is 
also not economically justified. In light of this, the present 
work describes the development and application of a 
hybrid artificial neural network (ANN) and genetic 
algorithm (GA) methodology to model and optimize the 
EDM process. 

At first, experiments involving discharge 
machining of Ti6Al4V, HE15, 15CDV6 and M250 at 
various levels of input parameters namely current, voltage 
and machining time are conducted to find their effect on 
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metal removal rate. The second phase involves the 
establishment of the model using multi-layered feed 
forward neural network architecture. GA finds the 
optimum values of the weights that minimize the error 
between the measured and the evaluated (output from the 
network) performance parameters, where genetic 
evolution establishes a strong intercommunication 
between the neural network pattern identification and the 
GA optimization tasks. Hybrid models are developed for 
metal removal rate. The developed hybrid model is 
validated with some of the experimental data, which was 
not used for developing the model. 
 
2.0. LITERATURE REVIEW 

In the past few decades, a few EDM modeling 
tools correlating the process variables and surface finish 
have been developed. Tsai and Wang [1] established 
several surface models based on various neural networks 
taking the effects of electrode polarity in to account. They 
subsequently developed a semi-empirical model, which 
dependent on the thermal, physical and electrical 
properties of the work piece and electrode together with 
pertinent process parameters. It was noted that the model 
produces a more reliable surface finish prediction for a 
given work under different process conditions [2]. Jeswani 
et al., [3] studied the effects of work piece and electrode 
materials on SR and suggested an empirical model, which 
focused solely on pulse energy, whereas, Zhang et al., [4] 
proposed an empirical model, built on both peak current 
and pulse duration, for the machining of ceramics. It was 
realized that the discharge current has a greater effect on 
the MRR while the pulse-on time has more influence on 
the SR and white layer. Lin et al., [5] employed gray 
relational analysis for solving the complicated 
interrelationships between process parameters and the 
multiple performance measures of the EDM process. 
Marafona and Wykes [6] used the Taguchi method to 
improve the TWR by introducing high carbon content to 
the electrode prior to the normal sparking process. Lin et 
al., [7] employed it with a set of fuzzy logic to optimize 
the process parameters taking the various performance 
measures in to consideration. Tzeng and Chen [8] 
optimized the high speed EDM process by making use of 
dynamic signal to Noise ratio to classify the process 
variables in to input signal, control and noise factors 
generating a dynamic range of output responses. Kesheng 
Wang et al., [9] discussed the development and 
application of hybrid artificial neural network and genetic 
algorithm methodology to modeling and optimization of 
electric discharge machining. But, they considered only 
the pulse on time and its effect on MRR. Oguzhan Yilmaz 
et al., [10] used a user friendly fuzzy based system for the 
selection of electro discharge machining process 
parameters. Effect of other important parameters like 
current, voltage and machining time on TWR, SR, over 
cut and hardness is not considered. Even though efforts 
were made by some authors [11-16] to characterize the 
discharge machining of new materials like Ti6Al4V, 

15CDV6 etc, modeling and optimization using hybrid 
technique was not attempted. 

The EDM process has a very strong stochastic 
nature due to the complicated discharge mechanism [17] 
making it too difficult to optimize the sparking process. In 
several cases, S/N ratios together with the analysis of 
variance (ANOVA) techniques are used to measure the 
amount of deviation from the desired performance 
measures and identify the crucial process variables 
affecting the process responses. A vast majority of the 
research work have been concerned with the improvement 
made to the performance indices, such as MRR, TWR and 
SR. Hence, a constant drive towards appreciating the 
MRR, TWR and metallurgy of EDMEd surface will 
continue to grow with the intension of offering a more 
affective means of improving the performance measures. 
Furthermore, the traditional EDM will gradually evolve 
towards micro electro discharge machining (MEDM) by 
further manipulating the capability of computer numerical 
control (CNC) but the MRR will remain a prime concern 
in fulfilling the demand of machining part in a shorter 
lead-time.EDM has made a significant inroad in the 
medical, optical, dental and jewelry industries, and in 
automotive and aerospace R and D areas [18]. An attempt 
has been made by Yin Fong Tzeng et al. [19] to present a 
simple approach for optimizing high speed electric 
discharge machining. These applications demand stringent 
machining requirements, such as the machining of high 
strength temperature resistant (HSTR) materials, which 
generate strong research interests and prompt EDM 
machine manufacturers to improve the machining 
characteristics.  

With regard to characterization of materials on 
EDM it is found that recently developed materials like 
Ti6Al4V, HE15, 15CDV6 and M250 are not explored till 
now. It is further proved that much work has not been 
done to create a model, which can predict the behavior of 
these materials when they are discharge machined. The 
scattered work done in the area of modeling does not 
include all-important parameters such as current, voltage 
and machining time. Hence, in light of the available 
literature it is aimed to address EDM on recently 
developed materials like Ti6Al4V, HE15, 15CDV6 and 
M250 considering different input variables for optimum 
solution with an aim to optimize MRR. Finding an optimal 
solution by creating a model of the process using neural 
network and then selecting the weights with the help of 
genetic algorithms is the main objective of present study. 
 
3.0. EXPERIMENTAL DETAILS 
 
3.1. Experimental setup 

A number of experiments were conducted to 
study the effects of various machining parameters on 
EDM process. These studies have been undertaken to 
investigate the effects of current, voltage, machining time 
and type of material on metal removal rate. All the four 
materials were discharge machined with copper tool 
electrode. Kerosene is used as dielectric medium. The 
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experiments are conducted on ELEKTRA 5535 *PS EZNC 
DIE SINKING ELECTRIC DISCHARGE MACHINE.  
 
3.2. Experimental procedure 

Figure-1 depicts the work piece prepared. They 
were cut into specimens by power hacksaw and then 
machined to the size of (44 x 54 x 43) mm. In the same 
way Aluminium block was cut into four specimens of each 
(39 x 50 x 37) mm. The work pieces were cut on the 
power hacksaw at length of 25 mm and then machined on 
lathe machine to get the mirror surface. The process 
parameters are being set as per the procedure i.e. varying 
the voltage at constant current, and varying the current at 
constant voltage to get the different results for each 
readings of input. After each experiment the weights of 
specimen and electrode are measured with digital 
weighing machine.  
 
3.3. Testing and evaluation of MRR 

Metal removal rate is directly calculated from 
experimental data. The weight of the specimen is taken 
before and after the machining process using a digital 
weighing machine. Before weighing the specimen is 
cleaned and dried to relieve it from debris and dirt. The 
difference of weight before and after machining gives the 
weight loss of the work piece during machining process. 
This weight is divided with machining time to get the 
metal removal rate in mm3/min. The accuracy of digital 
weighing machine is 10 mgs. A stopwatch with an 
accuracy of 0.01 min is used to measure the machining 
time. 

This is a rate of material removed from either 
work piece or tool Electrode.  
 

EWR = [1000* Electrode weight difference (gm)]/ 
[density (gm/cc)*machining Time (min)]   (1)   
                                                                                                
4.0. HYBRID MODEL 

First, an initial population of individuals is 
generated at random. Second, related neural network 
model is developed using Neurosolutions package. This 
package can give ANN models with and without the 
application of GA tool. ANN models are developed for 
both the cases to find the advantage of using GA for 
optimizing the weights of ANN. Lastly the three operators 
of GA: selection, crossover and mutation were applied to 
produce a new generation. The above operations were 
repeated until the given limitation number N of 
generations was reached. Combining the capabilities of 
ANN and GA, a methodology has been developed using 
an input-output pattern of data from an EDM process to 
solve both the modeling and optimization problems. In 
implementing this hybrid GA and ANN approach, the 
capability of neural networks to model and predict ill 
structured data is exploited together with the power of 
GAs for optimization. The functional optimization 
problem for this hybrid system can be expressed as 
follows: 
 

Optimize Y = f(X, W)    (2) 

 Where, Y represents the performance parameters; 
X is a vector of the input variables to the neural network, 
and W is the weight matrix that is evaluated in the network 
training process. F (.) represents the model for the process 
that is to be built through neural network training. To 
achieve the goal, a two-phase hybridization has been 
implemented. These two phases can be categorized as the 
modeling and optimization phase. The following relations 
were used to combine the inputs of the network at the 
nodes of the hidden layer and the output layer, 
respectively. 
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Both outputs at the hidden (Zj = f(Hj)) and output layer (Yk 
= f(Ok)) are calculated using sigmoid function, mainly 
because of its well known use as transfer function for 
many applications. Combining equation (2) and (3), the 
relation for the output of the network can be given as 
equation (4). 

 Yk = f (Ok) = f ( .
j

Wjk Zj∑ ) = f( .( )) 
j
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i
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       (4) 
 Finally the output of the network (Yk) was 
compared with the measured performance (Qk) of the 
process using a simple mean square error (Ek) as shown in 
equation (5) 
 

Ek = 2

1
(

z

k k
k

Y Q
=

−∑ )     (5) 

 

 To find the optimum structure and define the 
correlations, the errors were used as fitness functions with 
the weights of each link as chromosomes. After modeling 
in a GA tool, a relative importance concept has been used 
to establish a measure of significance for each input 
variable by defining the range of the chromosomes 
between 0 and 1 so that higher values are associated with 
more important variables. Further, the sum of the weights 
over all input variables at a node was constrained to +/-
0.1, so that the RI values could represent the percent 
contribution of each respective variable to the model 
performance.  
 
5.0. MODELING OF EDM PROCESS 
 
5.1. Introduction 

Comprehensive, qualitative and quantitative 
analysis of the EDM process and the subsequent 
development of models of metal removal rate is not only 
necessary for a better understanding of the process but are 
also very useful in parametric optimization, process 
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simulation, operation and process planning, parametric 
analysis, verification of the experimental results, and 
improving the process performance by incorporating some 
of the theoretical findings of N K Jain and V K Jain [21]. 
Successful integration of optimization techniques and 
adaptive control of EDM depends on the development of 
proper relationships between output parameters and 
controllable input variables, but the stochastic and 
complex nature of the process makes it too difficult to 
establish such relationships. The complicated machining 
phenomenon coupled with surface irregularities of 
electrodes, interaction between two successive discharges, 
and the presence of debris particles make the process too 
complex, so that complete and accurate physical modeling 
of the process has not been established yet [22, 23]. 

The unfulfilled need of physical modeling of 
EDM has motivated the use of data based empirical 
methods in which the process is analyzed using statistical 
techniques. M. Ghoreishi et al., [24] employed statistical 
and semi-empirical models of the MRR, SR and tool wear. 
But, the error analysis between predictions and 
experimental results showed that the models, especially 
the MRR model, have reasonable accuracy only if MRR is 
large. This reduces the reliability and versatility of their 
models for use under various machining conditions for 
different materials. Having compared the results of neural 
network model with estimates obtained via multiple 
regression analysis, Indurkhya and Rajurkar [25] 
concluded that the neural network model is more accurate 
and also less sensitive to noise included in the 
experimental data. But, they did not present any method of 
determining optimal input conditions to optimize the 
process for an arbitrary desired surface roughness. Tsai 
and Wang [26, 1] applied various neural network 
architectures for prediction of MRR and Ra in EDM. 
Compared with their previous semi-empirical models 
reported in [27, 2] the selected networks had considerable 
lower amounts of error, but no discussion was paid to the 
determination of operating conditions for different 
materials. 

The purpose of the present work is to present an 
efficient and integrated approach to cover main drawbacks 
of previously stated researches in this regard. An attempt 
is made to relate the input variables to metal removal rate 
of EDM process for different materials with the help of 
ANN and optimizing the weights of the network using 
Genetic algorithm. A software package Neuro solutions 
has been used for the purpose of forming the ANN and 
optimizing it with GA. First, a feed forward neural 
network is developed to establish the process model. 
Training and testing of the network are done using 

experimental data. Developed models are tested with a 
part of experimental data, which is not used for training 
purpose. 
  
5.2. Development of ANN model for predicting the 
        metal removal rate 

Modeling of EDM with feed forward neural 
network is composed of two stages: training and testing of 
the network with experimental machining data. The scale 
of the input and output data is an important matter to 
consider, especially, when the operating ranges of process 
parameters are different. The scaling or normalization 
ensures that the ANN will be trained effectively without 
any particular variable skewing the results significantly. 
As a result, all the input parameters are equally important 
in the training of network. Mapping each term to a value 
between –1 and 1 using the linear mapping formula did 
scaling. 

 

maxmin min)
min

max min

( ) (
( )

R R x N NN N
R R

− −
= +

−
  (6) 

 

where, N : normalized value of the real variable: Nmin = -1 
and Nmax= 1 R: real value of the variable; Rmin and Rmax : 
minimum and maximum values of the real variable, 
respectively, 
 
5.2.1. Network topology, training and testing 

A Generalized feed forward networks is used for 
developing ANN model. These networks are used for a 
generalization of the MLP (Multi-layer perceptron) such 
that connections can jump over one or more layers. The 
network has three inputs of current (I), voltage (V) and 
machining time (t) and output of MRR. The size of hidden 
layers is one of the most important considerations when 
solving actual problems using multi-layer feed forward 
network. Three hidden layers were adopted for the present 
model. Attempts have been made to study the network 
performance with a different number of hidden neurons. A 
number of networks are constructed, each of them is 
trained separately, and the best network is selected based 
on the accuracy of the predictions in the testing phase. The 
general network is supposed to be 4-n-1, which implies 4 
neurons in the input layer, n neurons in the hidden layer 
and one neuron in the output layer. Using a neural network 
package developed in Neuro Solution, different network 
configurations with different number of hidden neurons 
were trained, and their performance is checked. The 
experimental data used for training and production is 
given in Table-1. 
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Table-1. Data sets for ANN model. 
 

Material Current Voltage Mach. time MRR Remarks 
Ti 4 50 100 0.609 
Ti 8 50 69 0.687 
Ti 12 50 74 0.705 
Ti 16 50 65 0.722 
Ti 16 70 189 0.287 
Al 4 50 6.15 18.002 
Al 8 50 5 31.428 
Al 12 50 2 96.428 
Al 16 50 0.866 136.09 
Al 20 50 0.766 564.155 
15CDV6 5 50 60 3.547 
15CDV6 10 50 45 4.216 
15CDV6 15 50 20 10.64 
15CDV6 20 50 15 16.41 
MiS 12 50 25 8.5 
MiS 5 50 65 4.31 
MiS 10 50 45 5.63 
MiS 15 50 30 8.46 
MiS 20 50 25 9.75 
MiS 25 50 20 12.25 
Ti 16 30 132 0.684 
Ti 16 40 123 0.899 
Ti 16 50 130 0.712 
Ti 16 60 167 0.595 
MiS 12 55 30 7.12 
Al 16 30 1.75 108.16 
Al 16 40 0.9 83.33 
Al 16 50 0.866 202.078 
Al 16 60 1.6 68.73 
MiS 12 60 35 5.07 
15CDV6 12 40 45 4.44 
15CDV6 12 45 35 5.38 
15CDV6 12 50 30 6.71 
15CDV6 12 55 40 4.58 
15CDV6 12 60 45 5.2 
MiS 12 40 40 5.09 

Data sets for 
training the 
network 

MiS 12 45 30 7.29 
15CDV6 25 50 12 22.41 
Ti 20 50 68 0.896 
Al 16 70 1.25 108.57 

Production 
data sets 

 
5.3. Development of ANN model for predicting the 
       material removal rate  

Data given in Table-1 is utilized to develop the 
network. Data set 1 to 36 are considered for training the 
model, data sets 37 to 40 are used for production. Material 

type is considered as symbol. Tables-2 and 3 give the 
details of network. The errors obtained after training of the 
network with 30000 epochs and multiple training (three 
times) are given in Table-4. 
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Table-2. Details of ANN model. 
 

Input Parameters Hidden layers Training data 
sets 

Production 
data Sets 

Network 
Out put 

1.Current 
2.Voltage 
3.Machining time 
4.Type of material 

03 36 04 Surface 
roughness 

 
Table-3.  ANN training details. 

 

S. No. Description 

1. Number of epochs: 30,000 
2. Weights: online update 
3. Training: Multiple 

 
Table-4. Error analysis for the network of Metal removal rate. 

(a) 
 

All Runs Training Minimum Training Standard Deviation 
Average of minimum MSEs 0.001271529 0.000681472 
Average of final MSEs 0.001271529 0.000681472 

 
(b) 

Best Network Training 
Run # 3 
Epoch # 30000 
Minimum MSE 0.000805938 
Final MSE 0.000805938 

Training MSE

0
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Figure-1. Learning behavior of ANN model for MRR. 
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Figure-2. Comparison of experimental and ANN output without GA for MRR. 
 
Figure-1 depicts the convergence of MSE with epochs. 
The comparison between ANN model out put and 
experimental out put for training data sets are shown in 
Figure-2. The ANN predicted results are in good 

agreement with experimental results and the network can 
be used for production. Hence the production data sets are 
applied, and Table-5 shows the results from production of 
ANN model and comparison with experimental response.  

 
Table-5. Results from production data sets Metal removal rate. 

 

S. No. Experimental ANN predicted % Error 
1 7.29 8.2 12.48 
2 22.41 24.52 9.41 
3 0.896 1.22 36.16 
4. 108.57 118.96 9.56 
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Best Fitness (MSE) versus Generation
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Figure-3. Variation of best fitness with generation for MRR. 
 

 
Average Fitness (MSE) versus Generation
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Figure-4. Variation of average fitness with generation for MRR. 
 

The network is trained with the conditions given 
in Table-6.The results from training the network is 
depicted in Figures-3 and 4. It is clear that the best fitness 
is obtained after 14 generations. Similarly the lowest MSE 

for average fitness is obtained at 9 generation. The 
corresponding values are given in Table-7.  
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Table-6. Conditions for training the ANN with GA 
Metal removal rate. 

 

Number of Input P.E’s 04 
Number of Hidden P.E.’s 2 With GA 
Number of output P.E.s 01 
Maximum Epochs 30000 
Population size 8 
Maximum Generations  15 

 
Table-7. Fitness values Metal removal rate. 

 

Optimization 
summary Best Fitness Average 

Fitness 
Generation # 14 9 
Minimum MSE 0.000312556 0.000340645 
Final MSE 0.000312556 0.000343021 

 
Table-8. Comparison of best fitness with and without GA Metal removal rate. 

 

S. No. MSE of ANN without 
GA 

MSE of ANN with 
GA 

1 0.000805938 0.000312556 
 

Table-9. Results from production data sets Metal removal rate. 
 

S. No. Experimental ANN predicted % Error 
1 7.29 7.68 5.34979 
2 22.41 22.92 2.27577 
3 0.896 1.05 17.1875 
4. 108.57 113.03 4.10795 

 
Table-10. Sensitivity analysis values for MRR. 

 

Sensitivity Output MRR 
Material (MiS) 89.25300656 
Material (15CDV6) 49.34662003 
Material (Al) 0 
Material (Ti) 41.07240513 
CURRENT 1.624554483 
VOLTAGE 1.219876705 
TIME 0.296884413 

 
Table-8 shows the comparison of MSE for ANN 

with GA and without GA. It is observed that there is a 
considerable reduction in MSE for the developed network 
of ANN with GA. 
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Figure-5. Comparison of experimental and ANN with GA outputs for MRR. 
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Figure-6. Sensitivity analysis for MRR. 
 

The ANN with GA is tested with trained data sets 
and the comparison is shown in Figure-5. Comparison is 
made for all the 36 data sets used for training. Error 
analysis is made and the results are presented in Table-9. 
Error varied from in between 2.27% and 17.18%. The % 
error values are reduced considerably compared to the 

ANN without GA. The data is further analyzed for 
sensitivity to identify the influence of the varied input 
process parameters on output response metal removal rate. 
The results obtained are shown in figure6 and Table-10. 
Type of material is having more influence on metal 
removal rate.  
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CONCLUSIONS 
From the experiments that were conducted on the 

Die sinking EDM and the ANN models developed, the 
following interesting conclusions are drawn: 
 

 When current increases at constant voltage, MRR 
increases.  

 Maximum MRR takes place at a voltage of 40V and    
16A. 

 In case of titanium, better MRR, reduced over cut and 
less TWR, are obtained at 15 Amp current and 40V 
voltage.  

 In case of Aluminium alloy also, the MRR value 
increases with amperage. 

 Aluminium material follows the same parabolic curve 
as that of titanium. But it has maximum MRR at 50V 
and 16 Amp. 

 The MRR increases due to increase of current at 
constant voltage.  

 The MRR increases gradually and then decreases 
gradually due to the concept of critical resistance of 
the R-C circuit. 

 Hybrid models are developed for MRR considering 
all the four material together which can predict the 
behavior of these materials when machined on EDM. 

 The developed models are within the limits of 
agreeable error when experimental and model values 
are compared for all performance measures 
considered. 

 There is considerable reduction in mean square error 
when the network is optimized with GA. 

 From the sensitivity analysis it is concluded that type 
of material is having highest influence on all 
performance measures. 
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