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ABSTRACT 

Basically the active power demands at various load buses need to be estimated ahead of time in order to plan the 
generation and distribution schedules, for contingency analysis and also for monitoring the system security. A great deal of 
attention has been given in recent years to the question of setting up the demand models for the individual appliances and 
their impact on the aggregated demand. For the allocation of spinning reserve it would be necessary to predict the load 
demands at least an hour ahead.  

A method using ANN based technique is developed for short-term load forecast. The technique is tested on real 
time data collected from a 220 KV / 132 KV / 33 KV / 11 KV Renigunta Sub-Station, A.P, India. Calculations are done 
based on the hourly data of active power variations obtained over a period of one month. The active powers were used as 
input quantities for training the ANN and obtained the respective output active powers for the corresponding day. 
 
Keywords: short-term, load, forecasting, ANN. 
  
1.0 INTRODUCTION 

For the purpose of optimal planning and 
operation of large-scale power systems, modern control 
theory and optimization techniques are being applied with 
the expectation of considerable reduction in cost.  In 
achieving this goal, the knowledge of future load on power 
system is the first prerequisite, therefore, long and short-
term load forecast are very important. 

Short-term [1] load forecast plays a key role in the 
formulation of economic, reliable and secure operating 
strategies for the power system. The principal objective of 
the STLF function was to provide load predictions as basic 
inputs for the following: 
 

 The basic generation scheduling functions. 

 Assessing the security of the power system at any 
point of time. 

 Timely dispatcher information. 
 

  Load forecasting with lead times, from a few 
minutes to several days, helps the system operator to 
schedule spinning reserved allocation effectively. The 
short-term load forecast (STLF) is needed for control and 
scheduling of power system, and also as inputs to load 
flow or contingency analysis. The STLF can also provide 
wide information regarding vulnerable situations that may 
take place, in advance. 

The manually entered data may include weather 
updates, old forecasting parameter data. The significant 
effect of STLF on power system operations and 
production costs depends upon its accuracy. System 
dispatches must anticipate the system load patterns so as to 
have sufficient generation. The errors in load forecasts 
could affect in planning reserve requirement.  
Underproduction of load results in a failure to provide the 
necessary reserves, which in turn, translates to higher costs 
due to the use of the expensive peaking units. Over 
production of load, on the other hand, involves the start-up 
of too many units resulting in unnecessary increase in 

reserves and hence operating costs. Hence it is necessary 
to see that forecasted data has least errors. 

Various algorithms [2, 3] have been suggested in 
the literature for STLF.  They are mainly classified into: 
 

 Time series models 

 Regression models 
 

Time-Series models employ the historical load 
data for extrapolation to predict future load.  These models 
assure that the load term in stationary and treat any 
abnormal data point as bad data.  General problems with 
the time series approach include the inaccuracy in 
predictions and numerical instability. Since these models 
do not utilize weather information, they often give 
inaccurate results as there is a strong correlation between 
the behavior of power consumption and weather variables 
such as temperature, humidity, cloud cover and wind 
speed. 

Regression models analyze the relationship 
between weather variables and loads. The conventional 
regression approaches use linear or pise-wise linear 
representations. The regression approach finds the 
functional relationships between selected weather 
variables and load demands. 

G. Gross et al., [4] discuss the state of the art in 
short-term load forecasting. The Paper reviews the 
important role of STLF in the on-line scheduling and 
security functions of an energy management system 
(EMS). It then discusses the nature of the load and the 
factors influencing its behavior. 

H. Mori et al., [5] present a clustering method for 
preprocessing input data of short-term load forecasting in 
power systems. Clustering the input data prior to 
forecasting with the artificial neural network (ANN) 
reduces the prediction errors observed. In this Paper, an 
ANN is used to deal with one-step ahead daily maximum 
load forecasting, and the deterministic annealing (DA). 
Clustering is employed to classify input data into clusters. 

   19 



                                   VOL. 3, NO. 2, APRIL 2008                                                                                                                          ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

S.Vemuri et al., [6] present a study to investigate 
whether the ANN model is system dependent, and/or case 
dependent. Data from two utilities are used in modeling 
and forecasting. The effectiveness of a next 24 hour ANN 
model in predicting 24 hour load profile at one time was 
compared with the traditional next 1 hour ANN model. 
The author mentions that weekend and holiday load 
forecasts deserve further investigation. 

I.Drezga et al., [7] describe a method for the 
input variable selection for artificial neural network based 
short-term load forecasting. This method is based on the 
phase-space embedding of a load-time series. It is stated 
that the accuracy of this method depends on temperature 
and cycle variables. 

A novel method is proposed in this paper that is 
devoid of the draw backs which are observed in the above 
mentioned papers. 
 
2.0 BACK PROPAGATION TECHNIQUE 

This back propagation [8] is useful for training 
multi layer artificial neural network. Back propagation is a 
systematic method for training multi layer artificial neural 
networks and it has mathematical foundation very 
strongly.  Back propagation has dramatically expanded the 
range of problems to which artificial neural networks can 
be applied. 

A set of inputs is applied either from the outside 
or from a previous layer. Each of these is multiplied by a 
weight and the products are summed. This summation is 
termed as “NET” and must be calculated for each neuron 
in the network. After “NET” is calculated the activation 
function f is applied to modify it, there by producing the 
signal OUT. 

 

OUT =
1

(1 )NETe−−
      ……………..……............  (1) 

 
 

NET=X1W1+X2W2+-----------+XNWN   ……..............  (2) 
 

 

OUT=f(NET)   …………………………..…………... (3) 
 

(1 )OUT OUT OUT
NET

∂
= −

∂
……………………...  (4) 

 
This function is called sigmoid. 
 The sigmoid compress the range of NET so that 
‘OUT’ lies between zero and one. Multi layer networks 
have greater representational power than single layer 
network only if non-linearity is introduced. The back 
propagation algorithm requires only that the function be 
every where differentiable. The sigmoid satisfies these 
requirements. 
 

A. The multilayer network 
 For training with back propagation a multi layer 
network may be considered. The first set of neurons, 
connecting to the inputs, serve only as distribution points, 
they perform no input summation. The input signal is 

simply passed on through the weights to their outputs.  
Each neuron in subsequent layer produces NET and OUT 
signals as described above. 
 

B. An overview of training 
The objective of training the network is to adjust 

the weight. So that application of a set of inputs produces 
the desired set of outputs. These input – output sets can be 
referred to as vectors. Training assumes that each input 
vector is paired with a target vector representing the 
desired output, and these are called a training pair.  
Usually, a network is trained over a number of training 
pairs.  This group of training pairs is called a training set. 

Before starting the training process, all the 
weights must be initialized to small random numbers.  
This ensures that the network is not saturated by large 
values of the weights, and prevents certain other training 
pathologies. 

For example, if the weights all start at equal 
values and if the desired performance requires unequal 
values, the network will not learn. 

Training the back propagation network requires 
the following steps: 
 

1. Select the next training pair from the training set; 
apply the input vector to the network input. 

2. Calculate the output of the network. 
3. Calculate the error between the network output and 

the desired output (the target vector from the training 
pair). 

4. Adjust the weights of the network in a way that 
minimizes the error. 

5. Repeat steps 1 to 4 for each vector in the training set 
until the error for the entire set is acceptably low. 

 

The operations required in steps 1 and 2 above 
are similar to the way in which the trained network will 
ultimately be used; that is, an input vector is applied and 
the resulting output is calculated.  Calculations are 
performed on a layer-by-layer basis. First the output of the 
neurons in layer j is calculated; these are then used as 
inputs to layer k; the layer k neuron outputs are calculated 
and these constitute the network output vector. 

In step 3, each of the network outputs, labeled 
OUT is subtracted from its corresponding component of 
the target vector to produce an error.  This error is used in 
step 4 to adjust the weights of the network, where the 
changes in polarity and magnitude of the weight are 
determined by the training algorithm. 

After enough repetitions of these four steps the 
error between actual outputs and target outputs should be 
reduced to an acceptable value and the network is said to 
be trained. At this point, the network is used for 
recognition and weights are not changed. 

Steps 1 and 2 can be expressed in vector from as 
follows; an input vector X is applied and an output vector 
Y is produced. The input target vector pair X and T comes 
from the training set.  The calculations are performed on X 
to produce the output vector Y. 
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As we have seen calculation in multi layer 
networks is done layer by layer, starting at the layer 
nearest to the inputs. The NET value of each neuron in the 
first layer is calculated as the weighted sum of its neuron’s 
inputs.  The activation function ‘f’ then squashes NET to 
produce the OUT value for each neuron in that layer.  
Once the set of outputs for a layer is found, it serves as 
input to the next layer. The process is repeated layer by 
layer, until the final set of network outputs is produced. 
 
C. Adjusting the weights of the output layers 

Because a target value is available for each 
neuron in the output layer, adjusting the associated 
weights is easily accomplished using a modification of the 
delta 8 rule.  Interior layers are referred to as “hidden 
layers” as their outputs have no target values for 
comparison. 

The output of neuron in layer k is subtracted from 
its target value to produce an error signal. This is 
multiplied by the derivative of the squashing function 
(OUT * (1-OUT)) calculated for that layer’s neuron k, 
thereby producing the ‘δ’ value. 

 

δ = OUT (1-out) (Target – OUT)   ……..…………...
    (5) 
 

Then ‘δ’ is multiplied by OUT from neuron in 
layer j, the source neuron for that weight in question. This 
product is in turn multiplied by a training rate coefficient 
η (typically 0.01 to 1.0) and the result is added to the 
weight. An identical process is performed for each weight 
proceeding from a neuron in the hidden layer to a neuron 
in the output layer. 
 
D.  Adjusting the weights of the hidden layer 

Hidden layers have no target vector, so the 
training process described above can’t be used.  Back 
propagation trains the hidden layers by propagating the 
output error back through the network layer-by-layer, 
adjusting the weights at each layer. 

For hidden layer, ‘δ’ must be generated without 
benefit of a target vector. First, ‘δ’ is calculated for each 
neuron in the output layer. It is used to adjust the weights 
feeding into the output layer, then it is propagated back 
through the same weights to generate a value of ‘δ’ for 
neuron in the first hidden layer. This value of ‘δ’ is used in 
turn to adjust the weights of this hidden layer and in a 
similar way, are propagated back to all preceding layers. 

Consider a single neuron in the hidden layer just 
before the output layer. In the forward pass, this neuron 
propagates its output value to neurons in the output layer 
through the interconnecting weights. During training these 
weights operate in reverse, passing the value of ‘δ’ from 
the output layer back to the hidden layer. Each of these 
weights is multiplied by the ‘δ’ value of the neuron to 
which is connects in the output layer. The value of ‘δ’ 
needed for the hidden layer neuron is produced by 
summing all such products and multiplying by the 
derivative of the squashing function. 

 

( )
1

1
n

pj pj qk pq
q

OUT OUT wδ δ
=

⎛ ⎞
= − ⎜

⎝ ⎠
∑ . ⎟

Y

 ………….    (6) 

 

E.  Back Propagation Algorithm 
The procedural steps considering 3 layer network 

are as follows: 
 

Step 1: Initialize weights and offsets 
Set all weights and offer (Bias) to small random 

values. 
 

Step 2: Present input and desired outputs  
Present a continuous valued input vector x1, x2 

…………… xn1 where N is the number of input nodes. 
Specify the desired (target) output T1, T2 ….. TN where Nj 
is number of output nodes. The input could be new on 
each trial and be presented cyclically until weights 
stabilize. 
 

Step 3: Calculate outputs at hidden layers.  
Use the sigmoidal nonlinerity to calculate output, 

Y1, Y2….. YNH at hidden layer by using the following 
relations. 
 

Step 4: Calculate the output at the output layer  
Calculate the output at the output layer using the 

sigmoidal nonlinearly and output at the previous stage. 
 

Step 5: Calculate Errors. 
 Compare the output with the target or desired 

outputs. Find the error, k which is the difference between 
the desired and calculated outputs. 

 

Step 6: Back propagate the error. 
 Back propagates the error at the output layer to 
the hidden layer. 
 

Step 7: Adapt weights using Error Back propagation rule. 
Adjust the weights (hidden-output) by using Error Back 
Propagation Rule. 
 

Step 8: Repeat by going to step 2. 
 
F. Implementation strategies of back propagation 
    algorithm 
 The back propagation algorithm can be 
successfully implemented by using two types of strategies. 
They are using true gradient descent rule and approximate 
gradient descent rule. 

The first method is also known as Batch 
Processing. This method follows the generalized delta 
rule. Weights will be adapted after placing all the training 
patterns in to the network. This is known as cycle or 
iteration. After each cycle, the weights will be adjusted 
using the error over all the patterns as given by the 
following equation. 

 

*ji j piw P=∑  …………………………………    (7) 
 

Where  ( ) ( )j pj pj pjP T Y f NET= −  is neuron j in 

output layer. 
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Momentum factor is not included in the above 
equations for the sake of simplicity. 

The second method, also known as sequential 
processing adapts weights in the network after placing 
every training pattern to the network. 

 

* *pji pji pj pjW W O Y=    ……….…………………    (8) 

Where  is the weight changed during ppjiW th 
pattern for weight connecting j-th neuron of the layer 
under consideration to the ith neuron of the previous layer. 
The batch processing i.e., true gradient descent rule, 
converges very slowly as the weights are adjusted only 
once in a cycle and it takes more memory to accommodate 
the error values for all patterns. 

The sequential processing i.e., approximate 
gradient descent rule is considered to converge fast in 
many practical cases as the weights are adjusted after 
presenting every training pattern. This method suffers 
from the problem of over correcting the weights which 
gives rise to oscillations in the error. The deviation from 
the gradient descent rule makes it difficult for the network 
to reach the minimum error position. The amount of 
deviation mainly depends on the learning rate used (η) and 
momentum factor (α) employed. As long as the learning 
rate is small, departure from the true gradient descent rule 
will be negligible and the delta rule will implement a close 
approximation to gradient descent rule. 
 
3.0 NETWORK CONFIGURATION AND 
     ARCHITECTURE 
 The network structure also affects the accuracy of 
the forecast. The relationship between the input and output 
determines the network structures, which can be 
approximated by 
 

• A linear function of the input variables 
• A non linear function of the input variables. 
 

• A combined linear and nonlinear function of the 
input variables. 

 

 Network configuration mainly depends on the 
number of hidden layers, number of neurons in each 
hidden layer and the selection of non-linearity. No clear 
cut guide lines exists up to date for deciding the 
architecture of ANN, though it is problem dependent. 
However, too small ANN can cause problem in learning/ 
memorization as well as poor generalization. Whereas, too 
large ANN can memorize very well but it can over 
generalize the relationship among inputs and outputs. The 
overgeneralization tends to produce poor performance for 
unseen data. In general a three layer ANN is employed. 

For a three layer ANN, the number of hidden 
neurons can be selected by one of the following thumb 
rules: 
 

1. (i-1) hidden neurons, where i is the number of input 
neurons. 

 

2. (i+1) hidden neurons, where i is the number of input 
neurons. 

 

3. For every 5 input neurons, 8 hidden neurons can be 
taken. This is developed seeing the performance of 
network within 5 inputs, 8 hidden neurons and 1 
output. 

 

4. (Number of input neurons, I) / (Number of output 
neurons, m), applicable for networks with m<i. 

 

5. Half the sum of input and output neurons. 
 

6. P/i neurons, where i is the input neurons and p 
represents number of training samples. 

 

In the present work, only configuration 2, 3 are used 
for comparison, even though the other configurations can 
also be tried. 
 
4.0 SYSTEM MODELING 

The System model involves the identification of 
parameters that influence prediction of the future load. On 
the basis of experience of the load dispatchers, the features 
of the load curve and the existing practices of load 
management, the inputs could be selected. 

A major part of the forecasting task is concerned 
with that of identifying the best possible model for the past 
load behavior. This is best achieved by decomposing the 
load model at any given point of time into a number of 
distinct components. 

In the present work, five inputs are selected from 
the previous day and five each from the previous weeks on 
the same day. Thus load inertia, day of the week effect is 
considered as the major factors. In this model, the inputs 
considered for training the network to predict the load of 
day d and hour h, L(d-h), are L(d-1, h-2), L(d-1, h-1),  
L(d-7,h-1), L(d-7, h+1), L(d-7, h+2) of the previous week 
same day hours are considered to smoothen the curve to 
eliminate the edging effect, thus making total of 10 inputs. 
 

A. Selection of network parameters 
Most works on feed forward networks uses 

constant learning rate beta (η) and momentum factor alpha 
(α) values. Generally, η = 0.25 and α = 0.9 yield good 
results for most of the problems. In fact the optimal values 
of and n are problem dependent. In this project η= 0.25 
and α = 0.75 are employed in training the ANN. 
 
B. Selection of nonlinearity 

Neural networks process the capability to 
generalize complex patterns and can represents non – 
linear function of any degree. The extent of non-linearity 
depends on activation function used. Hence, sigmoidal 
function which is universally preferred as an activation 
function is found to be satisfactory for many applications. 
In sigmoidal function abruptness factor (g) also affects its 
nonlinearity. When g is not mentioned it is assumed to be 
1.0. In this work ‘g’ is taken as 1.0. 
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C.  Normalization and denormalisation 
The inputs and targets to the neural network are 

to be in the range of 0.0 and 1.0 if any of the variables,  
say output variable assumes a value close to unity or zero, 
it causes difficulty in training as one or zero are never 
realized practically by the activation or threshold function. 
A way to overcome this difficulty is to normalize the 
variables between a suitable range of 0.1 to 0.9. 

Normalization of data should be done such that 
higher values should not suppress the influence of lower 
values sand symmetry of activation function is retained. 
Many methods for normalization are specified, but most 
widely used method using linear transformation is as 
follows:  

The possible minimum and maximum values are 
to be specified considering both training and testing 
patterns. Normalization can be done by using same 
minimum and maximum values for different types of input 
and output variables treating input and / or output 
variables of same type as one group. The resolution will be 
high if later is used. By extending the same logic more 
resolution can be achieved when separate minimum and 
maximum values are used for every input and / or output 
variable. 
 
Denormalization 

Denormalization is the inverse process of 
normalization. As the output of the neural network will be 
in the range of 0.0 to 1.0 it is necessary to demoralize the 
output of the network in order to interpret their result and 
to assess the performance of the networks. 

It is very important to see that the 
denormalization is an exact inverse process of 
normalization. The same minimum and maximum values 
are used in the normalization and denormalization.  
 
D. Initializing weights 

The aim of the training process is to arrive at a set 
of weights which satisfies the input and output relationship 
specified by the training examples. It is obvious that if the 
initial weights are close in values to the final weights then 
the number of iterations needed during training will be 
less, but there is no method or logic to arrive at initial 
weights which are close to the final weights, only leaving 
possibility of having arbitrary initial weights. 

Rumelhart pointed out that if all the initial 
weights are same in value or zero there is a possibility of 
starting process at a global / local maxima which in most 
of the cases doesn’t lead to reach global minima on error 
surface. The only one way to avoid this is to select all 
initial weights randomly. The range in which the initial 
weights will lie is considered to affect the number of 
iterations required. In the proposed work a small random 
weights I the range of 0.5 to 5.5 are used. 

Once the trained networks are finalized, as the 
additional training patterns are included, the network can 
be further trained progressively for a fixed number of 
iterations, starting from the final converged weights, rather 
than starting from random weights. 
 
 E. Number of training patterns 

The minimum numbers of patterns required are 
half the number of input neurons and the maximum is 
equal to the product of number of input neurons and 
number of hidden neurons or five times the number of 
input neurons, which ever is less. However, no 
justifications can be given to such thumb rules. In this 
work, performance of configurations 2-3 are studied with 
number of training patterns more than 7 for every network. 
 
5.0 CASE STUDIES AND RESULTS 

Load details are obtained from 220 KV / 132 KV/ 
33 KV/11 KV Renigunta sub-station. Several case studies 
were conducted and the results obtained for one of the 
case studies are furnished as follows. 
 

A.  Forecast of Renigunta Sub-Station  
 

Network Configuration :        network - 1 
 

No. of input nodes : 10 
 

No. of output nodes : 1 
 

No. of hidden nodes : 21 
 

This network is trained for 1 to 12 hours on 10th 
January. The 10 inputs presented for any pattern with  
target hour ’t’ are taken from the previous day i.e., 9th 
January,   t-2,t-1, t, t+1, t+2 hours ( 5hours) and from the 
previous week of same day i.e., 3rd January, t-2,t-1, t, t+1, 
t+2 hours (5hours). All the input and output data are active 
powers in megawatts. 
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Table-1. Training Data. 
 

Pattern 
No. 

          Out 
put 
data 

1 80 88 88 92 100 76 74 76 80 90 80 
2 84 80 88 88 92 75 76 74 76 80 80 
3 88 88 92 100 100 74 76 80 80 104 90 
4 88 92 100 100 120 76 80 90 104 108 100 
5 92 100 100 120 128 80 90 104 108 110 108 
6 100 100 120 128 132 90 104 108 110 112 120 
7 100 120 128 132 130 104 108 110 112 104 128 
8 120 128 132 130 118 108 110 112 104 104 132 
9 128 132 130 118 126 110 112 104 104 108 138 

10 132 130 118 126 106 112 104 104 108 100 128 
 

Table-2. Training output in normalized form. 
 

Pattern 
No. 

Output 
Calculated Target Error  

1. 0.177791 0.175 -0.002791 
2 0.173286 0.175 0.001714 
3. 0.298854 0.3 0.001146 
4. 0.425416 0.425 -0.000416 
5. 0.524335 0.525 0.000665 
6. 0.676235 0.675 -0.001235 
7. 0.773668 0.775 0.001322 
8. 0.825921 0.825 -0.000921 
9. 0.898349 0.9 -0.001651 

10. 0.7778684 0.775 -0.000684 
 

Table-3. Training output in denormalised form. 
 

   Output Calculated Target 
1. 80.223315 80 
2. 79.862884 80 
3. 89.908375 90 
4. 100.003328 100 
5. 107.946762 108 
6. 120.098782 120 
7. 127.8934 128 
8. 132.073681 132 
9. 137.867953 138 

10. 128.054724 128 
 

The training network is tested for 4th, 6th and 8th 
hours 11th January. The 10 inputs presented for any pattern 
with target hour‘t’ are taken from the previous day i.e., 
10th January t-2, t-1, t, t+1, t+2 (5 hours) add from the 
previous week of same day i.e., 4th January t-2, t-1, t, t+1, 
t+2 (5 hours). 

 

Table-4. Input data. 
 

Patte-
rn No. Input Data 

1 80 90 100 108 120 80 76 80 92 108 

2 100 108 120 128 132 80 92 108 112 122 

3 120 128 132 138 128 108 112 122 108 108 

 
Table-5. Testing output in denormalized form. 
 

Pattern No. Actual Output (MW) 
1 83.90567 
2 117.362076 
3. 128.324297 

 
6.0 CONCLUSIONS 
 In this work an attempt is made to develop a 
software package for obtaining and studying “SHORT 
TERM LOAD FORECASTING USING ARTIFIFICAL 
NEURAL NETWORKS”. It is aimed to present the results 
of investigation carried out in this work with the real time 
data collected from RENIGUNTA substation, A.P, India. 

The training of ANN for the prediction of the load of 
a particular day includes 

 

No. of training patterns    = 8 
 

No. of input nodes      = 10  
 

No. of hidden nodes      = 21 
 

No. of output nodes      = 1 
 Training of neural network is done with learning 
rate, η = 0.25 and momentum factor, α = 0.75. The final 
converged weights are used to test on pattern sets the 
results of the actual value obtained from ANN are 
tabulated. 

Finally, it is conclude that the neural network 
based forecasting of load provide solution much faster 
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than the conventional methods without degrading the 
accuracy the development and enhancement of training 
algorithms enables the application of ANN to still larger 
power systems thus making it suitable for real time 
applications. 
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