
 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

LOAD FORECASTING BY A NOVEL TECHNIQUE USING ANN

T. Gowri Manohar and V. C. Veera Reddy
Department of Electrical and Electronics Engineering, S.V.U. College of Engineering, Tirupati, A.P., India

E-mail: tgmanohar1973@rediffmail.com

ABSTRACT

Basically the active power demands at various load buses need to be estimated ahead of time in order to plan the
generation and distribution schedules, for contingency analysis and also for monitoring the system security. A great deal of
attention has been given in recent years to the question of setting up the demand models for the individual appliances and
their impact on the aggregated demand. For the allocation of spinning reserve it would be necessary to predict the load
demands at least an hour ahead.

A method using ANN based technique is developed for short-term load forecast. The technique is tested on real
time data collected from a 220 KV / 132 KV / 33 KV / 11 KV Renigunta Sub-Station, A.P, India. Calculations are done
based on the hourly data of active power variations obtained over a period of one month. The active powers were used as
input quantities for training the ANN and obtained the respective output active powers for the corresponding day.

Keywords: short-term, load, forecasting, ANN.

1.0 INTRODUCTION

For the purpose of optimal planning and
operation of large-scale power systems, modern control
theory and optimization techniques are being applied with
the expectation of considerable reduction in cost. In
achieving this goal, the knowledge of future load on power
system is the first prerequisite, therefore, long and short-
term load forecast are very important.

Short-term [1] load forecast plays a key role in the
formulation of economic, reliable and secure operating
strategies for the power system. The principal objective of
the STLF function was to provide load predictions as basic
inputs for the following:

 The basic generation scheduling functions.

 Assessing the security of the power system at any
point of time.

 Timely dispatcher information.

 Load forecasting with lead times, from a few
minutes to several days, helps the system operator to
schedule spinning reserved allocation effectively. The
short-term load forecast (STLF) is needed for control and
scheduling of power system, and also as inputs to load
flow or contingency analysis. The STLF can also provide
wide information regarding vulnerable situations that may
take place, in advance.

The manually entered data may include weather
updates, old forecasting parameter data. The significant
effect of STLF on power system operations and
production costs depends upon its accuracy. System
dispatches must anticipate the system load patterns so as to
have sufficient generation. The errors in load forecasts
could affect in planning reserve requirement.
Underproduction of load results in a failure to provide the
necessary reserves, which in turn, translates to higher costs
due to the use of the expensive peaking units. Over
production of load, on the other hand, involves the start-up
of too many units resulting in unnecessary increase in

reserves and hence operating costs. Hence it is necessary
to see that forecasted data has least errors.

Various algorithms [2, 3] have been suggested in
the literature for STLF. They are mainly classified into:

 Time series models

 Regression models

Time-Series models employ the historical load
data for extrapolation to predict future load. These models
assure that the load term in stationary and treat any
abnormal data point as bad data. General problems with
the time series approach include the inaccuracy in
predictions and numerical instability. Since these models
do not utilize weather information, they often give
inaccurate results as there is a strong correlation between
the behavior of power consumption and weather variables
such as temperature, humidity, cloud cover and wind
speed.

Regression models analyze the relationship
between weather variables and loads. The conventional
regression approaches use linear or pise-wise linear
representations. The regression approach finds the
functional relationships between selected weather
variables and load demands.

G. Gross et al., [4] discuss the state of the art in
short-term load forecasting. The Paper reviews the
important role of STLF in the on-line scheduling and
security functions of an energy management system
(EMS). It then discusses the nature of the load and the
factors influencing its behavior.

H. Mori et al., [5] present a clustering method for
preprocessing input data of short-term load forecasting in
power systems. Clustering the input data prior to
forecasting with the artificial neural network (ANN)
reduces the prediction errors observed. In this Paper, an
ANN is used to deal with one-step ahead daily maximum
load forecasting, and the deterministic annealing (DA).
Clustering is employed to classify input data into clusters.

 19

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

S.Vemuri et al., [6] present a study to investigate
whether the ANN model is system dependent, and/or case
dependent. Data from two utilities are used in modeling
and forecasting. The effectiveness of a next 24 hour ANN
model in predicting 24 hour load profile at one time was
compared with the traditional next 1 hour ANN model.
The author mentions that weekend and holiday load
forecasts deserve further investigation.

I.Drezga et al., [7] describe a method for the
input variable selection for artificial neural network based
short-term load forecasting. This method is based on the
phase-space embedding of a load-time series. It is stated
that the accuracy of this method depends on temperature
and cycle variables.

A novel method is proposed in this paper that is
devoid of the draw backs which are observed in the above
mentioned papers.

2.0 BACK PROPAGATION TECHNIQUE

This back propagation [8] is useful for training
multi layer artificial neural network. Back propagation is a
systematic method for training multi layer artificial neural
networks and it has mathematical foundation very
strongly. Back propagation has dramatically expanded the
range of problems to which artificial neural networks can
be applied.

A set of inputs is applied either from the outside
or from a previous layer. Each of these is multiplied by a
weight and the products are summed. This summation is
termed as “NET” and must be calculated for each neuron
in the network. After “NET” is calculated the activation
function f is applied to modify it, there by producing the
signal OUT.

OUT =
1

(1)NETe−−
 ……………..……............ (1)

NET=X1W1+X2W2+-----------+XNWN …….............. (2)

OUT=f(NET) …………………………..…………... (3)

(1)OUT OUT OUT
NET

∂
= −

∂
……………………... (4)

This function is called sigmoid.
 The sigmoid compress the range of NET so that
‘OUT’ lies between zero and one. Multi layer networks
have greater representational power than single layer
network only if non-linearity is introduced. The back
propagation algorithm requires only that the function be
every where differentiable. The sigmoid satisfies these
requirements.

A. The multilayer network
 For training with back propagation a multi layer
network may be considered. The first set of neurons,
connecting to the inputs, serve only as distribution points,
they perform no input summation. The input signal is

simply passed on through the weights to their outputs.
Each neuron in subsequent layer produces NET and OUT
signals as described above.

B. An overview of training
The objective of training the network is to adjust

the weight. So that application of a set of inputs produces
the desired set of outputs. These input – output sets can be
referred to as vectors. Training assumes that each input
vector is paired with a target vector representing the
desired output, and these are called a training pair.
Usually, a network is trained over a number of training
pairs. This group of training pairs is called a training set.

Before starting the training process, all the
weights must be initialized to small random numbers.
This ensures that the network is not saturated by large
values of the weights, and prevents certain other training
pathologies.

For example, if the weights all start at equal
values and if the desired performance requires unequal
values, the network will not learn.

Training the back propagation network requires
the following steps:

1. Select the next training pair from the training set;
apply the input vector to the network input.

2. Calculate the output of the network.
3. Calculate the error between the network output and

the desired output (the target vector from the training
pair).

4. Adjust the weights of the network in a way that
minimizes the error.

5. Repeat steps 1 to 4 for each vector in the training set
until the error for the entire set is acceptably low.

The operations required in steps 1 and 2 above
are similar to the way in which the trained network will
ultimately be used; that is, an input vector is applied and
the resulting output is calculated. Calculations are
performed on a layer-by-layer basis. First the output of the
neurons in layer j is calculated; these are then used as
inputs to layer k; the layer k neuron outputs are calculated
and these constitute the network output vector.

In step 3, each of the network outputs, labeled
OUT is subtracted from its corresponding component of
the target vector to produce an error. This error is used in
step 4 to adjust the weights of the network, where the
changes in polarity and magnitude of the weight are
determined by the training algorithm.

After enough repetitions of these four steps the
error between actual outputs and target outputs should be
reduced to an acceptable value and the network is said to
be trained. At this point, the network is used for
recognition and weights are not changed.

Steps 1 and 2 can be expressed in vector from as
follows; an input vector X is applied and an output vector
Y is produced. The input target vector pair X and T comes
from the training set. The calculations are performed on X
to produce the output vector Y.

 20

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

As we have seen calculation in multi layer
networks is done layer by layer, starting at the layer
nearest to the inputs. The NET value of each neuron in the
first layer is calculated as the weighted sum of its neuron’s
inputs. The activation function ‘f’ then squashes NET to
produce the OUT value for each neuron in that layer.
Once the set of outputs for a layer is found, it serves as
input to the next layer. The process is repeated layer by
layer, until the final set of network outputs is produced.

C. Adjusting the weights of the output layers

Because a target value is available for each
neuron in the output layer, adjusting the associated
weights is easily accomplished using a modification of the
delta 8 rule. Interior layers are referred to as “hidden
layers” as their outputs have no target values for
comparison.

The output of neuron in layer k is subtracted from
its target value to produce an error signal. This is
multiplied by the derivative of the squashing function
(OUT * (1-OUT)) calculated for that layer’s neuron k,
thereby producing the ‘δ’ value.

δ = OUT (1-out) (Target – OUT) ……..…………...
 (5)

Then ‘δ’ is multiplied by OUT from neuron in
layer j, the source neuron for that weight in question. This
product is in turn multiplied by a training rate coefficient
η (typically 0.01 to 1.0) and the result is added to the
weight. An identical process is performed for each weight
proceeding from a neuron in the hidden layer to a neuron
in the output layer.

D. Adjusting the weights of the hidden layer

Hidden layers have no target vector, so the
training process described above can’t be used. Back
propagation trains the hidden layers by propagating the
output error back through the network layer-by-layer,
adjusting the weights at each layer.

For hidden layer, ‘δ’ must be generated without
benefit of a target vector. First, ‘δ’ is calculated for each
neuron in the output layer. It is used to adjust the weights
feeding into the output layer, then it is propagated back
through the same weights to generate a value of ‘δ’ for
neuron in the first hidden layer. This value of ‘δ’ is used in
turn to adjust the weights of this hidden layer and in a
similar way, are propagated back to all preceding layers.

Consider a single neuron in the hidden layer just
before the output layer. In the forward pass, this neuron
propagates its output value to neurons in the output layer
through the interconnecting weights. During training these
weights operate in reverse, passing the value of ‘δ’ from
the output layer back to the hidden layer. Each of these
weights is multiplied by the ‘δ’ value of the neuron to
which is connects in the output layer. The value of ‘δ’
needed for the hidden layer neuron is produced by
summing all such products and multiplying by the
derivative of the squashing function.

()
1

1
n

pj pj qk pq
q

OUT OUT wδ δ
=

⎛ ⎞
= − ⎜

⎝ ⎠
∑ . ⎟

Y

 …………. (6)

E. Back Propagation Algorithm
The procedural steps considering 3 layer network

are as follows:

Step 1: Initialize weights and offsets
Set all weights and offer (Bias) to small random

values.

Step 2: Present input and desired outputs
Present a continuous valued input vector x1, x2

…………… xn1 where N is the number of input nodes.
Specify the desired (target) output T1, T2 ….. TN where Nj
is number of output nodes. The input could be new on
each trial and be presented cyclically until weights
stabilize.

Step 3: Calculate outputs at hidden layers.
Use the sigmoidal nonlinerity to calculate output,

Y1, Y2….. YNH at hidden layer by using the following
relations.

Step 4: Calculate the output at the output layer
Calculate the output at the output layer using the

sigmoidal nonlinearly and output at the previous stage.

Step 5: Calculate Errors.
 Compare the output with the target or desired

outputs. Find the error, k which is the difference between
the desired and calculated outputs.

Step 6: Back propagate the error.
 Back propagates the error at the output layer to
the hidden layer.

Step 7: Adapt weights using Error Back propagation rule.
Adjust the weights (hidden-output) by using Error Back
Propagation Rule.

Step 8: Repeat by going to step 2.

F. Implementation strategies of back propagation
 algorithm
 The back propagation algorithm can be
successfully implemented by using two types of strategies.
They are using true gradient descent rule and approximate
gradient descent rule.

The first method is also known as Batch
Processing. This method follows the generalized delta
rule. Weights will be adapted after placing all the training
patterns in to the network. This is known as cycle or
iteration. After each cycle, the weights will be adjusted
using the error over all the patterns as given by the
following equation.

*ji j piw P=∑ ………………………………… (7)

Where () ()j pj pj pjP T Y f NET= − is neuron j in

output layer.

 21

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Momentum factor is not included in the above
equations for the sake of simplicity.

The second method, also known as sequential
processing adapts weights in the network after placing
every training pattern to the network.

* *pji pji pj pjW W O Y= ……….………………… (8)

Where is the weight changed during ppjiW th
pattern for weight connecting j-th neuron of the layer
under consideration to the ith neuron of the previous layer.
The batch processing i.e., true gradient descent rule,
converges very slowly as the weights are adjusted only
once in a cycle and it takes more memory to accommodate
the error values for all patterns.

The sequential processing i.e., approximate
gradient descent rule is considered to converge fast in
many practical cases as the weights are adjusted after
presenting every training pattern. This method suffers
from the problem of over correcting the weights which
gives rise to oscillations in the error. The deviation from
the gradient descent rule makes it difficult for the network
to reach the minimum error position. The amount of
deviation mainly depends on the learning rate used (η) and
momentum factor (α) employed. As long as the learning
rate is small, departure from the true gradient descent rule
will be negligible and the delta rule will implement a close
approximation to gradient descent rule.

3.0 NETWORK CONFIGURATION AND
 ARCHITECTURE
 The network structure also affects the accuracy of
the forecast. The relationship between the input and output
determines the network structures, which can be
approximated by

• A linear function of the input variables
• A non linear function of the input variables.

• A combined linear and nonlinear function of the
input variables.

 Network configuration mainly depends on the
number of hidden layers, number of neurons in each
hidden layer and the selection of non-linearity. No clear
cut guide lines exists up to date for deciding the
architecture of ANN, though it is problem dependent.
However, too small ANN can cause problem in learning/
memorization as well as poor generalization. Whereas, too
large ANN can memorize very well but it can over
generalize the relationship among inputs and outputs. The
overgeneralization tends to produce poor performance for
unseen data. In general a three layer ANN is employed.

For a three layer ANN, the number of hidden
neurons can be selected by one of the following thumb
rules:

1. (i-1) hidden neurons, where i is the number of input
neurons.

2. (i+1) hidden neurons, where i is the number of input
neurons.

3. For every 5 input neurons, 8 hidden neurons can be
taken. This is developed seeing the performance of
network within 5 inputs, 8 hidden neurons and 1
output.

4. (Number of input neurons, I) / (Number of output
neurons, m), applicable for networks with m<i.

5. Half the sum of input and output neurons.

6. P/i neurons, where i is the input neurons and p
represents number of training samples.

In the present work, only configuration 2, 3 are used
for comparison, even though the other configurations can
also be tried.

4.0 SYSTEM MODELING

The System model involves the identification of
parameters that influence prediction of the future load. On
the basis of experience of the load dispatchers, the features
of the load curve and the existing practices of load
management, the inputs could be selected.

A major part of the forecasting task is concerned
with that of identifying the best possible model for the past
load behavior. This is best achieved by decomposing the
load model at any given point of time into a number of
distinct components.

In the present work, five inputs are selected from
the previous day and five each from the previous weeks on
the same day. Thus load inertia, day of the week effect is
considered as the major factors. In this model, the inputs
considered for training the network to predict the load of
day d and hour h, L(d-h), are L(d-1, h-2), L(d-1, h-1),
L(d-7,h-1), L(d-7, h+1), L(d-7, h+2) of the previous week
same day hours are considered to smoothen the curve to
eliminate the edging effect, thus making total of 10 inputs.

A. Selection of network parameters
Most works on feed forward networks uses

constant learning rate beta (η) and momentum factor alpha
(α) values. Generally, η = 0.25 and α = 0.9 yield good
results for most of the problems. In fact the optimal values
of and n are problem dependent. In this project η= 0.25
and α = 0.75 are employed in training the ANN.

B. Selection of nonlinearity

Neural networks process the capability to
generalize complex patterns and can represents non –
linear function of any degree. The extent of non-linearity
depends on activation function used. Hence, sigmoidal
function which is universally preferred as an activation
function is found to be satisfactory for many applications.
In sigmoidal function abruptness factor (g) also affects its
nonlinearity. When g is not mentioned it is assumed to be
1.0. In this work ‘g’ is taken as 1.0.

 22

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

C. Normalization and denormalisation
The inputs and targets to the neural network are

to be in the range of 0.0 and 1.0 if any of the variables,
say output variable assumes a value close to unity or zero,
it causes difficulty in training as one or zero are never
realized practically by the activation or threshold function.
A way to overcome this difficulty is to normalize the
variables between a suitable range of 0.1 to 0.9.

Normalization of data should be done such that
higher values should not suppress the influence of lower
values sand symmetry of activation function is retained.
Many methods for normalization are specified, but most
widely used method using linear transformation is as
follows:

The possible minimum and maximum values are
to be specified considering both training and testing
patterns. Normalization can be done by using same
minimum and maximum values for different types of input
and output variables treating input and / or output
variables of same type as one group. The resolution will be
high if later is used. By extending the same logic more
resolution can be achieved when separate minimum and
maximum values are used for every input and / or output
variable.

Denormalization

Denormalization is the inverse process of
normalization. As the output of the neural network will be
in the range of 0.0 to 1.0 it is necessary to demoralize the
output of the network in order to interpret their result and
to assess the performance of the networks.

It is very important to see that the
denormalization is an exact inverse process of
normalization. The same minimum and maximum values
are used in the normalization and denormalization.

D. Initializing weights

The aim of the training process is to arrive at a set
of weights which satisfies the input and output relationship
specified by the training examples. It is obvious that if the
initial weights are close in values to the final weights then
the number of iterations needed during training will be
less, but there is no method or logic to arrive at initial
weights which are close to the final weights, only leaving
possibility of having arbitrary initial weights.

Rumelhart pointed out that if all the initial
weights are same in value or zero there is a possibility of
starting process at a global / local maxima which in most
of the cases doesn’t lead to reach global minima on error
surface. The only one way to avoid this is to select all
initial weights randomly. The range in which the initial
weights will lie is considered to affect the number of
iterations required. In the proposed work a small random
weights I the range of 0.5 to 5.5 are used.

Once the trained networks are finalized, as the
additional training patterns are included, the network can
be further trained progressively for a fixed number of
iterations, starting from the final converged weights, rather
than starting from random weights.

 E. Number of training patterns

The minimum numbers of patterns required are
half the number of input neurons and the maximum is
equal to the product of number of input neurons and
number of hidden neurons or five times the number of
input neurons, which ever is less. However, no
justifications can be given to such thumb rules. In this
work, performance of configurations 2-3 are studied with
number of training patterns more than 7 for every network.

5.0 CASE STUDIES AND RESULTS

Load details are obtained from 220 KV / 132 KV/
33 KV/11 KV Renigunta sub-station. Several case studies
were conducted and the results obtained for one of the
case studies are furnished as follows.

A. Forecast of Renigunta Sub-Station

Network Configuration : network - 1

No. of input nodes : 10

No. of output nodes : 1

No. of hidden nodes : 21

This network is trained for 1 to 12 hours on 10th
January. The 10 inputs presented for any pattern with
target hour ’t’ are taken from the previous day i.e., 9th
January, t-2,t-1, t, t+1, t+2 hours (5hours) and from the
previous week of same day i.e., 3rd January, t-2,t-1, t, t+1,
t+2 hours (5hours). All the input and output data are active
powers in megawatts.

 23

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Table-1. Training Data.

Pattern
No.

 Out
put
data

1 80 88 88 92 100 76 74 76 80 90 80
2 84 80 88 88 92 75 76 74 76 80 80
3 88 88 92 100 100 74 76 80 80 104 90
4 88 92 100 100 120 76 80 90 104 108 100
5 92 100 100 120 128 80 90 104 108 110 108
6 100 100 120 128 132 90 104 108 110 112 120
7 100 120 128 132 130 104 108 110 112 104 128
8 120 128 132 130 118 108 110 112 104 104 132
9 128 132 130 118 126 110 112 104 104 108 138

10 132 130 118 126 106 112 104 104 108 100 128

Table-2. Training output in normalized form.

Pattern
No.

Output
Calculated Target Error

1. 0.177791 0.175 -0.002791
2 0.173286 0.175 0.001714
3. 0.298854 0.3 0.001146
4. 0.425416 0.425 -0.000416
5. 0.524335 0.525 0.000665
6. 0.676235 0.675 -0.001235
7. 0.773668 0.775 0.001322
8. 0.825921 0.825 -0.000921
9. 0.898349 0.9 -0.001651

10. 0.7778684 0.775 -0.000684

Table-3. Training output in denormalised form.

 Output Calculated Target
1. 80.223315 80
2. 79.862884 80
3. 89.908375 90
4. 100.003328 100
5. 107.946762 108
6. 120.098782 120
7. 127.8934 128
8. 132.073681 132
9. 137.867953 138

10. 128.054724 128

The training network is tested for 4th, 6th and 8th
hours 11th January. The 10 inputs presented for any pattern
with target hour‘t’ are taken from the previous day i.e.,
10th January t-2, t-1, t, t+1, t+2 (5 hours) add from the
previous week of same day i.e., 4th January t-2, t-1, t, t+1,
t+2 (5 hours).

Table-4. Input data.

Patte-
rn No. Input Data

1 80 90 100 108 120 80 76 80 92 108

2 100 108 120 128 132 80 92 108 112 122

3 120 128 132 138 128 108 112 122 108 108

Table-5. Testing output in denormalized form.

Pattern No. Actual Output (MW)
1 83.90567
2 117.362076
3. 128.324297

6.0 CONCLUSIONS
 In this work an attempt is made to develop a
software package for obtaining and studying “SHORT
TERM LOAD FORECASTING USING ARTIFIFICAL
NEURAL NETWORKS”. It is aimed to present the results
of investigation carried out in this work with the real time
data collected from RENIGUNTA substation, A.P, India.

The training of ANN for the prediction of the load of
a particular day includes

No. of training patterns = 8

No. of input nodes = 10

No. of hidden nodes = 21

No. of output nodes = 1
 Training of neural network is done with learning
rate, η = 0.25 and momentum factor, α = 0.75. The final
converged weights are used to test on pattern sets the
results of the actual value obtained from ANN are
tabulated.

Finally, it is conclude that the neural network
based forecasting of load provide solution much faster

 24

 VOL. 3, NO. 2, APRIL 2008 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

than the conventional methods without degrading the
accuracy the development and enhancement of training
algorithms enables the application of ANN to still larger
power systems thus making it suitable for real time
applications.

ACKNOWLEDGEMENT

The authors express their deep sense of gratitude
to the SPDCL staff for providing the required data to
carryout the proposed work. The authors also express their
heartfelt thanks to the Department staff members for
giving their valuable suggestions in obtaining the results
by the proposed method.

REFERENCES

[1] Mahalanabis A.K., Kothari P. and Ahson S.I. 1990.

Computer Aided Power System Analysis and Control.
Tata McGraw-Hill, India.

[2] Gross G., Galina F.D. 1987. Short Term Load
Forecasting. Proceedings of IEEE. 75(12): 1558-1573.

[3] Khaparde S.A., Lohitha A., Desai. 1991. U.B. Load
Forecasting using ANN. IEEE Tencon. 91: 208-212.

[4] G. Gross and F.D. Galina. 1987. Short Term Load
Forecasting. Proceedings of IEEE. 75(12): 1558-1573.

[5] H. Mori and A. Yuihara. 2001. Deterministic
annealing clustering for ANN-based short-term load
forecasting. IEEE Transactions on Power Systems. 16:
545-551.

[6] S. Vemuri et al. 1993. Neural network based short
term load forecasting. IEEE Transactions on Power
Systems. 8: 336-342.

[7] I. Drezga and S. Rahman. 1998. Input variable
selection for ANN-based short-term load forecasting.
IEEE Transactions on Power Systems. 13: 1238-1244.

[8] Haykin S. 2000. Neural Networks: A comprehensive
survey. Pearson Education, India.

 25

