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ABSTRACT 

Ohmic disspitaion effect on unsteady boundary layer flow and heat transfer of an incompressible electrically 
conducting memory fluid over a continuous moving horizontal non-conducting surface in the presence of transverse 
magnetic field, an oscillating free stream and volumetric rate of heat generation (or absorption) is investigated, neglecting 
induced magnetic field in comparison to the applied magnetic field. The velocity and temperature distributions are 
obtained numerically and presented in graphical form. The expressions of skin friction coefficient and rate of heat transfer 
in terms of Nusselt number at the surface are derived, numerically and their numerical values for various values of physical 
parameters are presented in Tabular form. 
 
Keywords: memory fluid, skin friction, nusselt number. 
  
INTRODUCTION 

A study of boundary layer (Lachmann, 1961; 
Schlitchtinh, 1968 and Bansal, 1977) behaviour on 
continuous solid  surface has attracted the attention of 
researchers because such flows find application in 
different areas such as aerodynamics extrusion of plastic 
sheets, the boundary  layer along material handling 
conveyers, the cooling of  an  infinite metallic plate in a 
cool bath and the boundary layer along liquid film in 
condensation processes (Skiadis, 1961) studied 
theoretically the boundary layer flow on a continuous 
semi-infinite sheet moving steadily through  otherwise 
quiescented fluid environment. Sparrow and Cess, 1961 
presented temperature dependent heat sources or sink in a 
stagnation point flow. Heat transfer in laminar flow flow 
of the Newtonian heat generating fluids was treated by 
(Foraboschi and Federice, 1964). Skin-friction and heat 
transfer on a continuous flat surface moving in a parallel 
free stream was discussed by (Abdel Hafez, 1965). Flow 
and heat  transfer  in  the  boundary  layer  on   a  
continuous   moving  surface was  discussed by (Tsou  et. 
al, 1967). (Raptis and Tzivanidis, 1981) discussed the flow 
of a Walters liquid  B′ model  in  the presence of constant 
heat flux between the  fluid and the plate and  taking  into  
account  the   influence  of  the memory fluid on  the  
energy  equation. (Sarangi  and  Sharma, 2002) studied   
unsteady   laminar  flow of  an electrically  conducting  
incompressible  fluid between  two  non-conducting  wavy  

walls  in the presence of transverse magnetic  field. Veena 
et. al, 2006 studied  the  heat  transfer   in  a  viscoelastic   
fluid    past a stretching   sheet   with   viscous dissipation 
and heat generation.(Sharma et. al, 2004) studied unsteady 
MHD flow and  heat transfer  over a continuous  porous  
moving horizontal surface in  the presence of  an 
oscillating free stream and heat  source. Noushima et. al, 
2008 had  extended  the  above  problem   to  viscoelastic 
fluid. The aim of the present study was to extend the work 
of (Noushima et. al) with variable suction. 
The constitutive equation for the rheological equation of 
state for a memory fluid liquid B′ model given by (Walter, 
1960 and 1962). The mixture of polymethyl mehacrylate 
and pyridine at 25oC containing 30.5g of polymer per litre 
behaves very nearly as the (Walter liquid B′). 
 
FORMULATION OF THE PROBLEM 

Consider unsteady flow and heat transfer of an 
incompressible electrically conducting memory fluid over 
a continuous moving horizontal non-conducting surface in 
the presence of an oscillating free stream, ohmic 
dissipation and volumetric rate of heat generation (or 
absorption). The x-axis is taken along surface in flow 
direction and y-axis is normal to the surface. Transverse 
magnetic field B0 (const) is applied and induced magnetic 
field in comparison to the applied magnetic field is 
neglected. 

 
 
 
 
 
 
 
 
 
 

   17 



                                   VOL. 3, NO. 3, JUNE 2008                                                                                                                             ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
B0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          
         The governing equations of continuity, motion and energy are:  
 
           ∂ v /  ∂ y  =  0  ⇒        v  =  - v0  ( 1+ ε e i ω t )              
   
          ρ ( ∂ u / ∂ t  +v  ∂ u / ∂ y  ) = ρ ∂ U (t) / ∂ t  + µ ∂ 2 u /  ∂ y2 – B1  (∂ 3 u /∂ t ∂ y

            
           σ   B0 

2 (  u - U(t)  )      
 
         ρ Cp (∂ T / ∂ t  + v  ∂ T / ∂ y ) =  κ ∂ 2 T / ∂ y2  +  µ ( ∂  u / ∂ y)2 + Q ( T-T∞ ) +
 
        where u  is   the   fluid  velocity  component  along  x - axis, T  the fluid temp
        cross-flow velocity,ρ the density, µ the coefficient of viscosity, Cp the specifi
        κ  the thermal   conductivity,  B0   the   applied   magnetic   field, B1  kinemati
        volumetric rate of   heat   generation ( or absorption), σ  the electrical conduc
        U( t)  the  uniform free stream. 
  
       The boundary conditions are:  

                                        y = 0    :      u = U w , T = T w  
         
                     y → ∞   :     u = U(t)  ,  T→T∞       
 
        where U w  is   the   surface   velocity, T w  the  surface  temperature, T ∞  the 
        and ω  the  frequency.  
              
       Introducing the following non-dimensional quantities: 
 
     ⎯y = y v0 / ν,  ⎯t = t v0

2 / 4 ν, ⎯u = u / U,  θ = (T-T ∞ ) / ( T w  - T∞ ), β = U w  / U
 
       Pr = µ Cp / κ , α = ν2  Q /  κ v0 

2 , R m = B1v0
2 / ρ ν2 ,  M = σ B0

2  ν / ρ  v0
2,⎯U(t

    
      Ec = U 2 / Cp ( Tw -T∞ )                                 

      into the equations (2) and (3) , we  get  
 

B0y 

U(t) = U(

U(t) 

Figure-1. Physical Model. 

V0

  
T∞
 

   (1) 

2   + v  ∂ 3 u / ∂ y 3 ) –  

   (2) 

 σ B0 
2 ( u - U(t)  ) 2  (3) 

erature, t the time, v0  the 
c heat at constant pressure, 
c viscoelasticity, Q  the   
tivity of  the medium  and  

           (4) 

free  stream temperature   

,⎯ω = ω 4 ν / v0 
2,    

) = U(t) /  U, 

   (5) 

1+ε e i ω t) 

Tw Uw

x 
V0
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     (∂ u / ∂ t ) / 4 -( 1+ ε e iω t ) ∂ u /∂ y   = (∂ U/ ∂ t ) / 4 + ∂ 2 u / ∂ y2 –  R m ( (∂ 3 u / ∂ t ∂ y2 ) / 4  - 
 
                                                                 ( 1+ ε e iω t )  ∂ 3 u / ∂ y3 ) –  M ( u – U(t) )                          (6) 
 
               Pr ( ( ∂ θ / ∂ t ) /4 - ( 1+ ε e iω t ) ∂ θ / ∂ y) = ∂ 2θ / ∂ y 2   + Pr Ec ( ∂ u / ∂ y  ) 2  + α θ  + 
 

             M Pr Ec ( u - U(t) ) 2          (7) 
 
              where M is the Hartmann Number,α the heat generation  (or absorption) parameter, Pr  the Prandtl number, 
              Ec the Eckert number, and R m   is Magnetic Reynolds number.   

                                
              The corresponding boundary conditions in non – dimensional form are:  

                                           y = 0  :     u =  β  ,    θ = 1 
                                                                      
                  (8) 
                                           y→ ∞ :    u→ U(t) , θ → 0                      
 
             Assuming,  
             u ( y, t )  =  u0 ( y )  + ε ei ω t  u1 ( y ) , 
             θ ( y, t )  =  θ0 ( y )  + ε ei ω t  θ1 ( y )  
             
             and for free stream velocity  U( t ) = 1 + ε e i ω t                 (9) 
 
             Now, using (9) into the equations (6) and (7) and equating the coefficients of O(ε), we get : 
 
            Zero-Order Equations 
 
            R m u 0 

111  +  u 011  +  u 01 – M u 0  =  - M         (10) 
    
            θ 011  + Pr θ 01 + α θ = - Pr Ec ( u 01 )2  –  M Pr Ec ( u 0 - 1)               (11) 
 
            First-Order Equations 
 
            R m u 1111  -( R m i ω /4 -1 ) u 111  +  u 11-  ( iω / 4 + M) u1 = - u 01 - R m u 0111 – ( iω / 4 + M )           (12) 
 
           θ 1 

11  + Pr θ 11 + (- Pr iω / 4+ α ) θ 1 = - Pr θ 01 –  2 Pr Ec u 01 u 11 – 2 M Pr Ec ( u 0- 1 )( u 1 -1 )     (13) 
 
         Here, the prime denotes differentiation w.r.t  ‘y’. 
         The corresponding boundary conditions are reduced to  
  
                         y = 0 :  u0 = β,  u1 = 0,  θ0 = 1, θ1 = 0 
                                                   
             (14) 
                       y→∞ :   u0 → 1,u1 → 1,θ0 → 0, θ1 → 0                         
 
        The zero -order and first-order equations correspond to steady flow and unsteady flow, respectively. Since 
        (10) and (12)are coupled nonlinear third order differentiation equation due to presence of elasticity of the fluids. 
        Since the magnetic  Reynolds  number R m  is  very  small, therefore  u 0,u 1, θ 0 and θ 1can  be expanded using 
       (Beard and Walter rule 1964) in the equations (10), (11), (12) and (13) ,we get : 
 
      Zero-Order of  R m : 
  
      u 00 11 + u 0 0 

1 – M u 0 0  =  - M                                 (15) 
 
      θ 00 

11 + Pr θ 0 0 
1 +  α θ 00  = - Pr Ec ( u 00

1  ) 2 –  M Pr Ec ( u 00 - 1 ) 2         (16) 
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      u 10 
11 + u 10

1- u 10 ( iω / 4 + M ) = - u 00
1 - ( iω / 4 + M)             (17) 

 
      θ 10 

11 +  Pr θ 10
1 + (- iωPr / 4 + α ) θ 10 = - Pr θ 00 1- 2 Pr Ec u 00 

1u10
1  – 2 M Pr Ec ( u 00 -1 )(u 10 – 1 )                     (18) 

 
    First-Order of R m : 
 
    u 01

11 + u 01
1 – M u 01 =  - u 0 0 111                                     (19) 

 
   θ 01

11  + Pr θ 01
1 + α θ 01 = -2 Pr Ec u 0 0

1 u 01
1-  2 M Pr Ec u 01( u 00-1 )                   (20) 

 
   u 11

11  + u 11
1- u 11 ( iω / 4 + M ) = - u 10

111 -u 01
1  + iω u 10

11 / 4 - u 00
111               (21) 

 
   θ 11

11 + Pr θ 11
1 + (- iω Pr / 4 + α) θ11 = - Pr θ 01

1 – 2 Pr Ec ( u 00
1 u11

1 + u 01
1 u 10

1 ) – 2 M Pr Ec [u11( u 00-1) 
 

       +  u 01 ( u10-1) ]                                   (22) 
        
The corresponding boundary conditions are: 
 
 y = 0  : u0 0 = β,u 01 = u10 = u11 = 0,θ 00 = 1,θ 10 = θ 01 = θ 11 = 0 
                       
                                 (23) 
 y → ∞ :u 00 = u10 = 1, u 01 = u11 = 0 , θ 0 0 = θ 01 = θ10 = θ11 = 0                             
  
SOLUTION OF THE PROBLEM 
 
The equations (15) to (22) are ordinary linear second-order differential equations with the boundary conditions (23). 
Through straight forward Algebra the solution of u 00(y), u 01(y), u 10(y), u 11(y), θ 00(y), θ 01(y), θ10(y) and θ11(y) are 
known. The expression of velocity distribution is:    
  
 u ( y , t )  =  (β-1) exp(-a2 y) + R m y a2 0 exp(-a2 y) + ε ( cos (ωt) Mr – sin (ω t) M i ) 
 
   M r = -exp (a3  y) ( cos a 4 y + a5  sin a 4 y ) + 1 +R m [ exp(-a3 y) ( a 23  cos(a 4 y)  + a 24 sin(a 4 y) ) + 
 
            exp(-a 2 y)a 25-exp (-a3 y) (a27 cos (a4 y) + a28 sin (a4 y) )] 
 
  M i = -exp(a3  y)( a 5 cos a4 y - sin a 4 y) + a5 exp (-a2 y) + R m [ exp (-a3 y) (a 2 4 cos (a 4 y) - a 23 sin(a 4 y)) + 
 
           exp(-a2 y) ( a21 m2 y- a2 6) – exp (-a3 y) (a28 cos (a4 y)-  a27 sin (a4 y))]                           (24) 
 
  and   temperature   distribution   is 
 
   θ = A5 exp (-a 2 9 y) + A4  exp (-2 a2 y)  +  R m [-K6 exp (-a2 9 y) + K6 exp (-2 a2 y)- K5 y exp (-2 a2 y)] + 
 
      ε (cos (ωt)  M r - sin (ωt) M i ) 
 
  M r = exp (-K7  y) ( a 48 cos K8 y + a 49 sin K 8 y) - a 50  exp(-2  a 2  y)+ exp(-(a 2+ a 3 )  y) ( a 52 cos a 4 y + 
 
        a 53 sin a 4 y)+ R m [ -exp (-K7 y) (N 55 cos (K 8 y) + N 56 sin (K 8 y)) + exp (-a2 y)a5 7 – exp (-2 a2  y) N57 + 
 
        exp (-2 a2  y)N59 y + exp(-(a 2+ a 3 ) y)(N 61 cos(a 4 y)+  N62 sin(a 4 y))-exp(-(a 2+ a 3 ) y) y (N 63 cos(a4 y)+ 
  
       N64 sin(a4 y))] 
 
  M i = exp(-K7  y)( a 49 cos K8 y - a 48 sin K 8 y)- a 51 exp(-2  a 2  y) + exp (-(a 2+ a 3 )   y) ( a 53 cos a 4 y - a 52 sin a 4 y)+ 
 
        R m [ -exp(-K7 y)(N 56 cos (K 8 y) -N 55 sin (K 8 y))+ exp (-a2 y) a5 8 – exp (-2  a2 y) N58 + exp (-2 a2  y)N60 y + 
 
      exp(-(a 2+ a 3 ) y)(N 62 cos(a4 y)-N61 sin(a4 y))- exp(-(a 2+ a 3 ) y) y (N 64 cos(a4 y)-N63 sin(a4 y))]                             (25) 

   20 
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  SKIN-FRICTION AND NUSSELT NUMBER 
 
    The coefficient of skin -friction at the surface is given by: 
 
    Cf   = τ x y / ρ U v0 |  y = 0  =  ( ∂ u / ∂ y ) y = 0,  
    
   where τ x y = µ ( ∂ u / ∂ y) y = 0                                                           (26) 
 
   C f  = a 2 + R m (a 2 0 – a 2 ) + ε  (cos ωt Nr – sin ωt Ni ) 
 
   Nr = a 3 - a5 a 4-R m [ a 3 a 2 3 – a 4 a 2 4 + a 2 a 25 – a 3a 27 + a 4 a 2 8] 
 
  Ni = a3 a 5 + a 4 - a5 a 2-R m [ a 3 a 2 4 + a 4 a 2 3  -  a 2 a 2 6 – a 2a 21 –   a 3 a 2 8 - a4 a 27]                   (27) 
 
The  rate of  heat  transfer  in   terms  of  Nusselt  number  at  the surface  is  given by : 
 Nu = q ν / v0 κ ( T w -T∞ ) |  y = 0    =  - ∂ θ / ∂ y | y = 0   , 
 
 where  q  = - κ ( ∂ T / ∂ y )  y = 0                                                           (28) 
 
 Nu  = - A5 a 2 9  -2 a2 A4 + R m (K6 a 2 9 – 2 a 2 K6 – K5 ) +  ε  (cos ωt Nr – sin ωt Ni ) 
 
 Nr  = - K 7 a  48  + K 8 a  49  +  2 a 2 a 50 – (a 2 +a 3) a52  + a 4 a 53  + R m [K7 N 55 – N 56  K 8 – a 2 a  57 + 2 a 2 N 57  +N 59   -  
          
            ( a 2 + a 3 ) N 61 + N 62 a  4 - N63] 
 
 Ni  = - K 7 a  49  - K 8 a 4 8  +  2 a 2 a 5 1 – (a 2 +a 3) a5 3  - a 4 a 5 2  + R m [K7 N 5 6 + N 55  K 8 – a 2 a  58 + 2 a 2 N 58  +N 60   - 
 
          ( a 2 +  a 3 ) N 62 + N 61 a  4 - N6 4]                                                                                (29) 
 
where   a1…are constants and their expressions are not presented here  for the sake of brevity. 
 
DISCUSSIONS AND CONCLUSIONS   

Table-1 shows that the skin-friction coefficient at the surface decreases due to increase in the Hartmann number, 
velocity of surface, frequency, phase angle and magnetic Reynolds number. 
 

Table-1. Values of skin-friction coefficient at the surface when ε = 0.05 
 

ω M ω t β R m Cf

5.0 1.0 π/6 2.0 0.4 -2.3758 
5.0 2.0 π/6 2.0 0.4 -3.0666 
5.0 2.0 π/6 4.0 0.4 -9.2000 
5.0 2.0 π/3 2.0 0.4 -3.0667 

10.0 2.0 π/6 2.0 0.4 -2.7537 
5.0 2.0 π/6 2.0 0.5 -3.3333 
5.0 2.0 π/6 2.0 0.0 -2.0002 
5.0 2.0 π/6 0.0 0.4 3.0606 

 
It is seen from Table-2 that the Nusselt number at the surface increases with the increase in the Prandtl number, 

while it decrease due to increase in the Hartmann number the Eckert number, frequency, heat generation parameter, phase 
angle or magnetic Reynolds number. 
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Table-2. Values of Nusselt Number at the surface when ε = 0.05 

 

ω M ω t β R m Pr Ec α Nu 
5.0 1.0 π/6 2.0 0.4 5.0 0.01 1 4.7248 
5.0 2.0 π/6 2.0 0.4 5.0 0.01 1 4.6503 
5.0 3.0 π/6 2.0 0.4 5.0 0.01 1 4.2275 
5.0 2.0 π/6 4.0 0.4 5.0 0.01 1 3.8945 
5.0 2.0 π/3 2.0 0.4 5.0 0.01 1 4.6506 

10.0 2.0 π/6 2.0 0.4 5.0 0.01 1 4.6600 
5.0 2.0 π/6 2.0 0.4 5.0 0.02 1 3.4024 
5.0 2.0 π/6 2.0 0.4 5.0 0.01 2 4.3720 
5.0 2.0 π/6 2.0 0.4 7.0 0.01 1 6.7421 
5.0 2.0 π/6 2.0 0.5 5.0 0.01 1 4.6352 
5.0 2.0 π/6 2.0 0.0 5.0 0.01 1 4.7121 
5.0 2.0 π/6 0.0 0.4 5.0 0.01 1 4.7736 

 
It is observed from Figure-2 that the fluid velocity decreases due to increase in the Hartmann number, frequency, 

phase angle, magnetic Reynolds number and it become asymptotic in y-direction when the surface is in motion. It is also 
observed that fluid velocity is more for viscous case than the viscoelastic one. The fluid velocity increase with the increase 
of y and it tends to asymptotic when the surface is at rest. 
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Figure-2. Variation of velocity distribution ver
 

  
     ω       M       ωt       β      Rm 

I      5. 0         1. 0           π / 6          2. 0        0. 4 

II     5. 0         2. 0           π / 6          2. 0        0. 4

III    5. 0         2. 0           π / 6          4. 0         0. 4 

IV    5. 0         2. 0           π / 3          2. 0          0. 4 

V    10. 0         2. 0           π / 6          2. 0         0. 4 

VI    5. 0         2. 0           π / 6          2. 0          0. 5 

VII   5. 0         2. 0           π / 6          2. 0          0. 0 

VIII  5. 0         2. 0           π / 6          0. 0          0. 4
  
 

0.3 0.35 0.4

 
sus y. 
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It is seen from Figure-3 that the fluid temperature increases with the increase in heat generation parameter, the 

Eckert number, frequency, phase angle, magnetic Reynolds number, velocity of the surface or the Hartmann number, while 
it decreases due to increase in the Prandtl number. Here, also fluid temperature is more for viscous case than viscoelastic 
one. 
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