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ABSTRACT 

The calculation of critical properties of the petroleum fluids is important for practical and theoretical reasons. 
Experimental measurements of critical properties are time consuming, costly and very difficult. Therefore, they are often 
predicted using empirical correlations or thermodynamic models that can be calculated with moderate accuracy only up to 
pressures and temperatures near the critical region of the mixtures. In this model an Artificial Neural Networks (ANN) 
approach for the estimation of the critical properties of hydrocarbon mixtures is used. The typically collected experimental 
data after pre-scaling were used for the training and testing of the Artificial Neural Network. The results show very good 
capability of ANN to predict the data. Among the ANN's training, the Radial Basis Function (RBF) method gave the best 
prediction performance. The ANN model was also compared with the experimental data, and the data which was calculated 
based on the Peng-Robinson equation of state. The comparison confirmed the superiority of the ANN model.  
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INTRODUCTION 

Critical properties are essential in estimating 
thermodynamic and volumetric properties by the theorem 
of corresponding states. For example, in refinery, and 
chemical synthesis processes, involving the pressurized 
hydrocarbons gases, knowledge of the phase diagram is 
essential. Hydrocarbon mixtures are often supposed as 
systems which their phase behavior is easy to correlate and 
predict if their critical points are available. However, some 
questions, remains difficult to answer, especially about 
their high-pressure phase equilibria and critical point 
calculations. Experimental measurements of critical 
properties are time consuming, costly, and very difficult. 
Therefore, they are often predicted using empirical 
correlations and thermodynamic based models. The P-T 
diagram can be calculated with moderate accuracy only up 
to pressures and temperatures near the critical region of 
the mixture using equations of state. Some authors 
suggested methods for critical point calculations. Etter and 
Webster (Etter and Kay, 1961; Castier and Sandler, 1977; 
Jiang, and Prausnitz, 2000; Hoteit et al., 2006) calculated 
the critical properties of normal paraffin mixtures. Castier 
and Sandler (Etter and Kay, 1961) calculated the critical 
properties with a modified Peng-Robinson equation of 
state and Wong-Sandler mixing rules. Jiang and Prausnitz 
(Castier and Sandler, 1977) performed the calculations of 
critical temperatures and pressures for hydrocarbon 
mixtures from an equation of state with renormalization-
group theory corrections. Hoteit et al. (Shariati et al., 
2008; Jiang, and Prausnitz, 2000) presented an efficient 
and robust algorithm for the calculation of gas-liquid 
critical point of multi-component petroleum fluids. 
Chaikunchuensakun and Tanthapanichakoon (Hoteit et al., 
2006) presented analytical partial derivative equations 
required for multi-component critical point calculation. In 
this work an Artificial Neural Networks (ANN) approach 
for the prediction of the critical properties of hydrocarbon 

mixtures has been proposed. Adoption of a black box 
approach, where models are obtained exclusively from 
experimental data, can provide other practical methods for 
modeling. These models provide a dynamic relationship 
between input and output variables and bypass underlying 
complexity inside the system. Statistical models based on 
the regression analysis are an example of such black box 
modeling (Zahedi et al., 2008; Zahedi et al., 2005; Valles, 
2006; Osman and Al-Marhoun, 2002). Most of these 
common approaches rely on linear system identification 
models. The major processes found in the chemical 
engineering are unfortunately nonlinear processes, and 
previously mentioned approaches fail to respond regarding 
process nonlinearity. Recently, ANN has undergone 
numerous applications in chemical engineering ((Zahedi et 
al., 2008; Zahedi et al., 2005). ANN could perform better 
than regression models and is tolerant to the noise in data. 
ANNs can learn nonlinearities in the systems very well. 
Artificial neural networks are biological inspirations based 
on various characteristics of the brain functionality. They 
are composed of many simple elements called neurons that 
are interconnected by links that act like axons and 
dendrites of their biological counterparts and determine an 
empirical relationship between the inputs and outputs of a 
given system. Where the inputs of the system are the 
independent variables and the outputs are the dependent 
variables. A typical interconnected neural network is 
shown in Figure-1. 
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Figure-1. A typical interconnected neural network. 
 

 In this Figure an input layer, a central or hidden 
layer and an output layer can be seen. In a network each 
connecting line has an associated weight. Two important 
abilities of neural network (NN) are supplying fast 
answers to a problem and capability of generalizing 
answers, providing acceptable results for unknown 
samples. In this way, they should learn about the problem 
under study and this step is commonly named training 
process. One of the well-known topologies of neural 
networks for learning is the Multi-Layer Perceptron 
(MLP), which is used for classification and estimation 
problems. These Artificial neural networks are trained by 
adjusting the input weights (connection weights) by some 
algorithm so that the calculated outputs approximate the 
desired outputs (Zahedi et al., 2008; Zahedi et al., 2005). 
The output from a given neuron is calculated by applying 
a transfer function to a weighted summation of its input to 
give an output, which can serve as input to other neurons 
as follows: 
 

pj = f ( ∑ wij aj )    (i = 0,…, L)                                         (1) 
 

In this topology, there are L inputs, m hidden 
unit, and n output units. Where wij is weight going from 
input i to hidden unit j. using activation function f, and the 
output of neuron j is pj. 

Sigmoid activation functions are of common 
interest. Sigmoid tangential and other functions could be 
applied in ANN modeling (Zahedi et al., 2008; Zahedi et 
al., 2005 and Valles, 2006). ANN training is an 
optimization process in which an error function is 
minimized by adjusting the ANN weights. When an input 
training pattern is introduced to the ANN, it calculates an 
output. Output is compared with the real output provided 
by the user. This difference is used by the optimization 
technique to train the network. The typical performance 
function that is used for training neural networks is the 
Mean sum of Squares of the network Errors (MSE) which 
is given by Eq. (2) 
 

MSE = (1/n) ∑ (ti − hi) 2         (I = 1, n)                           (2) 
 

Where hi is the ith real target and ti is the network output 
corresponding to the jth input. Thus, the training process is 
a path from input layer to output layer to calculate an 
output, obtaining error and a backward path to update the 
weights. The procedure goes on until MSE is minimized. 
During the training process, the train set error decreases 
since the ANN weights are adjusted according to the 
predicted errors from this set. The training process should 
stop when the tasking error reaches its minimum value. 
Besides MLP another class of networks has been known in 
recent years called Radial Basis Function (RBF) network. 
Like most feed forward networks, RBF networks have 
three layers, namely an input layer, the hidden layer with 
Gaussian activation function and output layer. The role of 
input layer is to distribute the inputs to each of hidden 
layer nodes. The weights on the links between the input 
layer and the hidden layer are set to unit and remain 
constant during training. Second layer or hidden layer 
performs a fixed nonlinear transformation which maps the 
input space onto a new space, the output layer then 
implements a linear combination on this new space. The 
network is solved by initially clustering the monitored 
process data, calculating the predictive error between 
experimental and network output. This continues until 
prediction error for all the data in which are used for 
training became minimum (Zahedi et al., 2005 and 2008). 
Figure-2 shows a radial basis network with R inputs.  
 

 
 

Figure-2. Radial basis network with R inputs. 
 
 Notice that the expression for the net work input 
of a radial basis (radbas) neuron is different from that of 
neurons in previous (i.e. MLP). Here the net work input to 
the radbas transfer function is the vector distance between 
its weight vector w and the input vector p, multiplied by 
the bias b. (The box in this case accepts the input vector p 
and the single row input weight matrix, and produces the 
dot product of the two.) 
The transfer function for a radbas neuron is: 
 

Radbas (n) = exp (-n2)                                                     (3) 
 
Figure-3 shows a plot of the radbas transfer function. 
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Figure-3. Plot of radbas transfer function. 
 

The radbas function has a maximum of 1 when its 
input is 0. As the distance between w and p decreases, the 
output increases. Thus, a radbas neuron acts as a detector 

that produces 1 whenever the input p is identical to its 
weight vector p. The bias b allows the sensitivity of the 
radbas neuron to be adjusted (Matlab software's toolbox).  
 
THE EXPERIMENTAL DATA SET 

To build an ANN for predicting of the Critical 
properties of Hydrocarbon Mixtures, the experimental data 
provided. The data sets were collected from seventeen 
samples typically Hydrocarbon Mixtures. The 
specifications of Hydrocarbon Mixture samples are shown 
in Table-1 (Shariati et al., 2008; Etter and Kay, 1961; 
Castier and Sandler, 1977; Jiang and Prausnitz, 2000; 
Hoteit et al., 2006). 

 
Table-1. Compositions of multi component mixtures. 

 

C7H16C6H14 C5H12 C4H10 C3H8 C2H6CH4 N2 Mixture 
No. 

0.135 0 0.064 0 0 0.801 0 0 Sample1 
0.117 0 0.271 0 0 0.612 0 0 Sample 2 
0.089 0 0.296 0 0 0.615 0 0 Sample 3 
0.103 0 0 0.171 0 0.726 0 0 Sample 4 
0.074 0 0 0.412 0 0.514 0 0 Sample 5 

0 0 0 0 0.542 0 0.415 0.043 Sample 6 
0 0 0 0 0.545 0 0.36 0.095 Sample 7 
0 0 0 0 0.5005 0 0.453 0.046 Sample 8 
0 0 0 0 0.035 0.130 0.833 0 Sample 9 
0 0 0 0 0.161 0.039 0.800 0 Sample 10 
0 0 0 0 0.4330 0.0835 0.4345 0 Sample 11 
0 0 0 0.337 0 0.470 0.193 0 Sample 12 
0 0 0 0.255 0 0.354 0.391 0 Sample 13 
0 0 0 0.114 0 0.879 0.007 0 Sample 14 
0 0 0.095 0 0 0.443 0.461 0 Sample 15 
0 0 0.045 0 0 0.758 0.196 0 Sample 16 
0 0 0 0.004 0.016 0.980 0 0 Sample 17 

 
ANN applied for predicting the critical properties of 
hydrocarbon mixtures  

Inputs of a network should be selected carefully 
if the best results are expected to be obtained. The input 
variables should reflect the underlying physics of the 
process to be analyzed. 

Inputs for the network are compositions of multi 
component mixtures, acentric factor, critical properties for 
pure components, molecular weight of each component 
average molecular weight and binary interaction 
parameters between components; outputs are the critical 
temperature, pressure and volume. Various architectures 
of MLP and RBF are used to predict amount of Critical 

properties of Hydrocarbon Mixtures. Each type of input 
and output data were scaled by dividing to maximum 
amount of that variable for scaling purpose. Each ANN 
has been trained with (2/3) of data set and (1/3) of samples 
have been used for testing the predictions of ANN. In the 
first step, MLP architecture has been developed. The task 
was finding the optimum number of nodes in the hidden 
layer which provide good estimates of the outputs. The 
criterion for selection was MSE between net work output 
and training data. In the second step, RBF architecture was 
adopted. 

Table-2 shows a comparison between the 
Performance of the RBF and the optimum MLP. As the 
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network trained with RBF architecture gives much better 
results for training sets than the optimal MLP, it was used 
for prediction of the critical Points of Hydrocarbon 
Mixtures. 
 

Table-2. Comparison of performance of optimum MLP 
and RBF for testing the ANN.  

 

Network type MSE 
Optimal MLP 1.042 
RBF 4.73e-2 

 
RESULTS OF MODELING WITH ANN 

Figure-4 represents a sample comparison between 
predicted data by the ANN model and the experimental 
data which have not been used in training of the ANN (the 
test data). As shown in this figure, RBF method is more 
accurate than the other ANN structures. This is may cause 
of clustering in RBF that eliminates uncorrelated data 
from training process. 
 

 
 

Figure-4. Comparison of the measured data and ANN 
results for RBF network class for critical point's 

hydrocarbon mixtures. 
 

It is obvious from this Figure that the ANN 
provides results very close to process measurements. A 
scatter plot of measured experimental data against the 
ANN model predictions is shown in Figure-5. The 
predictions which match measured values should fall on 
the diagonal line. Almost all data lay on this line, which 
confirms the accuracy of the ANN model. 

 
 

Figure-5. Plot of experimental data vs. predicted values 
by ANN model. 

 
Thermodynamic model applied to predicting the 
critical properties of hydrocarbon mixtures 
(Shariati et al., 2008)  

The formation of a new phase is generally 
preceded by some degree of super saturation. The bubble 
nucleation in a liquid at a pressure below its bubble point 
value can be inhibited to a large extent by expanding the 
liquid gradually, avoiding fluid agitation, and ensuring the 
lack of minute gas pockets in the liquid prior to the 
expansion. Such systems are Meta stable with an energy 
level which will be reduced by forming a new phase. The 
calculation is performed base on Peng-Robinson equation 
of state. This equation of state can be written as (Shariati 
et al., 2008; Etter and Kay, 1961; Castier and Sandler, 
1977; Jiang and Prausnitz, 2000; Hoteit et al., 2006).  
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Where P (bar) is pressure , R is Universal gas constant, T 
(°K) is temperature , V (cm3/mol) is Molar volume, Tc is 
Critical temperature, Pc is  Critical pressure, Tr is Reduced 
temperature, ω is acentric factor, yi  is Mole fraction of 

   14 



                                   VOL. 3, NO. 6, DECEMBER 2008                                                                                                                   ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

component i, bi  is Co volume of component i and kij is 
Binary interaction parameter. 
 Critical volume 
 For each mixture, first the metastable points are 
calculated using PR EOS. For this purpose, at each certain 
temperature, the volumes vmin, and vmax are obtained by 
solving the derivative  0)/( =∂∂ TVP
At vmin the pressure has its minimum value in which the 
single liquid phase exist (at metastable condition) and at 
vmax the pressure has its maximum value in which the 
single vapor phase exist (at metastable condition). Then by 
extrapolating of the metastable volumes and solution of 
the following equations, the critical volume can be 
calculated (Shariati et al., 2008; Etter and Kay, 1961; 
Castier and Sandler, 1977; Jiang, and Prausnitz, 2000; 
Hoteit et al., 2006):  
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Critical temperature 

For prediction of critical temperature, the 
metastable concepts, is used. For this method, the best 
equation for prediction of critical temperature as a 
function of metastable maximum volume is (Shariati et al., 
2008; Etter and Kay, 1961; Castier and Sandler, 1977; 
Jiang and Prausnitz, 2000; Hoteit et al., 2006):  

)13(          ln)( max33max VV baTfT cc +==
By using of critical volume that calculated in the previous 
step, the critical temperature can be calculated. 
 
Critical pressure 

The critical pressure of a multi component 
mixture of hydrocarbons is calculated by the following 

equation (Shariati et al., 2008; Etter and Kay, 1961; 
Castier and Sandler, 1977; Jiang and Prausnitz, 2000; 
Hoteit et al., 2006): 
 

(14)                                  )(, ∑+= iicalcmixc yPP φ  
 
Where Pc,cal is the critical pressure of the mixture that was 
calculated from extrapolating the Pmin and Pmax of the 
metastable points obtained for each isotherm till they cross 
each other. Also ∑ )( ii yφ  is the total excess critical 
pressure and is equal to the sum of the contributions of the 
excess critical pressure of the components, except the 
heaviest. 
 
Comparison of experimental data with ANN and 
thermodynamic model results 

Good performance of ANN is obvious when it is 
compared to other prediction models and experimental 
data. To check the performance of the ANN model, its 
estimations are compared with thermodynamic model base 
on PR EOS. Results carried out with the thermodynamic 
model were compared with ANN and also the 
experimental data which were not used in training of the 
ANN. Tables 3 and 4 also compares the error of both 
ANN and thermodynamic model. The prepared ANN 
model can be updated where new data are available. This 
task is applicable by retraining ANN using old ANN 
weights as initial weights for the new ANN. The ANN can 
be used to plan and control the operation of industrial oil. 
Optimization tasks can be carried out easily by the ANN 
model. The network will provide the outputs which 
represent the optimum condition for the prediction of 
critical properties of hydrocarbon mixtures. 

 
Table-3. Comparison between the sample values of critical properties obtained from ANN models 

and thermodynamic model and the experimental data. 
 

A sample of critical properties of hydrocarbon mixtures 

EXP ANN Model Thermodynamic 
model 

% Error for  
ANN model 

% Error for  
Thermodynamic 

model 
Tc (°K) = 394.71 394.64 393.4617 0.0177 0.316 
Vc (cm3/mol) = 139.36 139.30 142.06 0.0430 2.36 

 
Table-4. Comparison's performance of the ANN and 
thermodynamic model by the minimum square error. 

 

Model Type MSE 
ANN model 0.0473 
Thermodynamic model 3.8324 

 
CONCLUSIONS 

In this model, the ability of ANN in the modeling 
and prediction of the critical properties of hydrocarbon 

mixtures has been investigated. Specifically, the critical 
properties of hydrocarbon mixtures in the specific sample 
were modeled with RBF and MLP neural network 
architectures. By using RBF topology good agreement 
with experimental data was obtained. An important feature 
of the model is that, doesn't require any theoretical 
knowledge or human experience during the training 
process. So prior knowledge hasn’t been used and the 
model has been trained based on the experimental data 
only. All unknown relationships have been represented 
with ANN, which can approximate instead of traditional 
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relationships. ANN models could be used instead of 
correlations in thermodynamic modeling by noting their 
application ranges. The ability of network could be 
extended to generate data in longer periods. In spite of this  
Limitation, ability of ANN in generation of data is 
excellent. In our approach minimum experimentation is 
necessary and this is a way to produce data with minimum 
time and cost.  
 
Nomenclature 
 

a Attractive parameter of cubic EOS 
ai Attractive parameter of component i 
b Co volume  
bi Co volume of component i 
calc Calculated 
EoS Equation of state 
Exp Experimental 
kij Binary interaction parameter 
P Pressure 
Pc Critical pressure 
PR Peng-Robinson 
R Universal gas constant 
T Temperature 
Tc Critical temperature 
Tr Reduced temperature 
V Molar volume 
Vc Critical molar volume 
Vmax Maximum metastable molar volume 
Vmin Minimum metastable molar volume 
yi Mole fraction of component i 
ω Acentric factor 

α Temperature-dependent parameter in Eos 
ANN Artificial neural network 
MSE Mean square error 
RBF Radial basis function 
Wij Weight 
MLP  Multi layer percpetron 
f Activation function 
t Target value 
h Real value 
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