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ABSTRACT 

Ammonia is an important gas that plays significant role in many processes. Consequently, knowledge of the 
thermodynamic properties of Ammonia is necessary for the interpretation of physical and chemical processes. A new 
method based on Artificial Neural Networks (ANN) for prediction of thermodynamic properties has been proposed for 
both superheated and saturated region of Ammonia. For this development, the data sets that collected from Ammonia 
thermodynamic table [Perry’s Chemical Engineering Handbook] were used. After training the networks, the models were 
tested by unseen data to evaluate their accuracy and trend stability. Among this training the back-propagation learning 
algorithm with various training such as Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and Resilient Back 
propagation (RP) methods were used.  The best suitable algorithm with appropriate number of seven neurons in the hidden 
layer which provides the minimum Mean Square Error (MSE), 0.0000900135, is found to be the SCG algorithm. Then 
ANN's results were compared with results of some equations of state such as Lee Kesler, NRTL, Soave-Redlich-Kwong 
and Peng Robinson. Comparisons showed the ANN capability for prediction of the thermodynamic properties of 
Ammonia.  
 
Keywords: model, ammonia, artificial neural network, thermodynamic, equation of state. 
 
1. INTRODUCTION 

Ammonia (NH3) is normally encountered as a gas 
with a characteristic pungent odor. Ammonia contributes 
significantly to the nutritional needs of terrestrial 
organisms by serving as a precursor to foodstuffs and 
fertilizers. Ammonia, either directly or indirectly, also is a 
building block for the synthesis of many pharmaceuticals. 
Consequently, knowledge of the thermodynamic 
properties of Ammonia is important for the interpretation 
of physical and chemical processes. In physics and 
thermodynamics, an equation of state is a relation between 
state variables such as its temperature, pressure, volume, 
or internal energy. Equations of state are useful in 
describing the properties of fluids, mixtures of fluids, 
solids, and even the interior of stars [1]. A number of 
much more accurate equations of state such as Vander 
Waals, Soave-Redlich-Kwong, Peng Robinson, Lee-
Kesler and NRTL have been developed for gases and 
liquids. However, this equation becomes increasingly 
inaccurate at higher pressures and lower temperatures, and 
fails to predict condensation from a gas to a liquid.  The 
most prominent use of an equation of state is to predict the 
state of gases and liquids. Besides the high costs of the 
experimental work it is difficult if not impossible, to get a 
clear picture of the condition and possible problems of the 
work. Therefore a model based on some experimental 
results is proposed to predict the required data instead of 
doing more experiments. The major processes in the 
chemical engineering are unfortunately nonlinear. ANN is 
a model that attempts to mimic simple biological learning 
processes and simulate specific functions of human 
nervous system. This model creates a connection between 
input and output variables and keeps the underlying 
complexity of the process inside the system. The ability to 

learn the behavior of the data generated by a system is the 
neural network's versatility and privilege [3]. Fast 
response, simplicity, and capacity to learn are the 
advantages of ANN compared to classical methods. This 
model has been widely applied to predict the physical and 
thermodynamic properties of chemical compounds. ANN 
has recently been used to predict some pure substances 
and petroleum fraction’s properties [4], activity 
coefficients of isobaric binary systems [5], thermodynamic 
properties of refrigerants [6,7,8] and activity coefficient 
ratio of electrolytes in amino acid's solutions [9] etc. To 
the best of our knowledge no attempt has been made to 
model the thermodynamic properties of water by artificial 
neural network. Defining the ANN and selecting the best 
ANN predictor to predict the thermodynamic properties of 
saturated and superheated water instead of approximate 
and complex analytical equations are the main focus of 
this work. In the following sections after ANN 
introduction, the best ANN predictor is chosen. Finally 
results of the ANN model is evaluated against with the 
unseen data and then compared with the experimental 
work.  
  
2. ARTIFICIAL NEURAL NETWORKS  

In order to find relationship between the input 
and output data derived from experimental work, a more 
powerful method than the traditional ones are necessary. 
ANN is an especially efficient algorithm to approximate 
any function with finite number of discontinuities by 
learning the relationships between input and output vectors 
[4, 10]. These algorithms can learn from the experiments, 
and also are fault tolerant in the sense that they are able to 
handle noisy and incomplete data. The ANNs are able to 
deal with non-linear problems, and once trained can 

   18 



                                   VOL. 3, NO. 6, DECEMBER 2008                                                                                                                    ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

perform prediction and generalization rapidly [11]. They 
have been used to solve complex problems that are 
difficult to be solved if not impossible by the conventional 
approaches, such as control, optimization, pattern 
recognition, classification, and so on. Especially it is 
desired to have the minimum difference between the 
predicted and observed (actual) outputs [12]. Artificial 
neural networks are biological inspirations based on the 
various brain functionality characteristics. They are 
composed of many simple elements called neurons that are 
interconnected by links and act like axons to determine an 
empirical relationship between the inputs and outputs of a 
given system. Multiple layers arrangement of a typical 
interconnected neural network is shown in Figure-1. It 
consists of an input layer, an output layer, and one hidden 
layer with different roles. Each connecting line has an 
associated weight. Artificial neural networks are trained 
by adjusting these input weights (connection weights), so 
that the calculated outputs may be approximated by the 
desired values. The output from a given neuron is 
calculated by applying a transfer function to a weighted 
summation of its input to give an output, which can serve 
as input to other neurons, as follows [13]: 
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Where αjk is neuron j’s output from k’s layer βjk is 

the bias weight for neuron j in layer k. The model fitting 
parameters wijk are the connection weights. The nonlinear 
activation transfer functions Fk may have many different 
forms. 

The classical ones are threshold, sigmoid, 
Gaussian and linear function, etc… [8], for more details of 
various activation functions see Bulsari [13]. The training 
process requires a proper set of data i.e. input (Ii) and 
target output (ti). During training the weights and biases of 
the network are iteratively adjusted to minimize the 
network performance function [16]. The typical 
performance function that is used for training feed forward 
neural networks is the network Mean Squares Errors 
(MSE) Eq. (2). 
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There are many different types of neural 

networks, differing by their network topology and/or 
learning algorithm.  
 In this paper the back propagation learning 
algorithm, which is one of the most commonly used 
algorithms is designed to predict the thermodynamic 
properties of water. Back propagation is 
 

 

Figure-1. Schematic of typical multi-layer 
neural network model. 

 

a multilayer feed-forward network with hidden layers 
between the input and output [6]. The simplest 
implementation of back propagation learning is the 
network weights and biases updates in the direction of the 
negative gradient that the performance function decreases 
most rapidly. An iteration of this algorithm can be written 
as follows [13]: 
 

kkkk glxx −=+1  (3) 
 

Where xk is vector of weights, gk is gradient and 
lk is learning rate. There are various back propagation 
algorithms Such as Scaled Conjugate Gradient (SCG), 
Levenberg-Marquardt (LM), Gradient Descent with 
Momentum (GDM), variable learning rate Back 
propagation (GDA) and Resilient back Propagation (RP). 
LM is the fastest training algorithm for networks of 
moderate size and it has the memory reduction feature to 
be used when the training set is large. One of the most 
important general purpose back propagation training 
algorithms is SCG [10, 11]. 

The neural nets learn to recognize the patterns of 
the data sets during the training process. Neural nets teach 
themselves the patterns of the data set letting the analyst to 
perform more interesting flexible work in a changing 
environment .Although neural network may take some 
time to learn a sudden drastic change, but it is excellent to 
adapt constantly changing information. However the 
programmed systems are constrained by the designed 
situation and they are not valid otherwise. Neural networks 
build informative models whereas the more conventional 
models fail to do so. Because of handling very complex 
interactions, the neural networks can easily model data, 
which are too difficult to model traditionally (inferential 
statistics or programming logic). Performance of neural 
networks is at least as good as classical statistical 
modeling, and even better in most cases [16]. The neural 
networks built models are more reflective of the data 
structure and are significantly faster. 

Neural networks now operate well with modest 
computer hardware. Although neural networks are 

   19 



                                   VOL. 3, NO. 6, DECEMBER 2008                                                                                                                    ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2008 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

computationally intensive, the routines have been 
optimized to the point that they can now run in reasonable 
time on personal computers. They do not require 
supercomputers as they did in the early days of neural 
network research. 
 
3. THERMODYNAMIC MODELS 
 
3.1. Soave-Redlich-Kwong (SRK) equation of state 

Introduced in 1949 the Redlich-Kwong equation of 
state was a considerable improvement over other equations 
of the time. It is still of interest primarily due to its 
relatively simple form. While superior to the Van der 
Waals equation of state, it performs poorly with respect to 
the liquid phase and thus cannot be used for accurately 
calculating vapor-liquid equilibria. However, it can be 
used in conjunction with separate liquid-phase correlations 
for this purpose [14]. 
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The Redlich-Kwong equation is adequate for calculation 
of gas phase properties when the ratio of the pressure to 
the critical pressure (reduced pressure) is less than about 
one-half of the ratio of the temperature to the critical 
temperature (reduced temperature): 
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In 1972 Soave replaced the a/√ (T) term of the Redlich-
Kwong equation with a function α (T,ω) involving the 
temperature and the acentric factor. The function was 
devised to fit the vapor pressure data of hydrocarbons and 
the equation does fairly well for these materials. 
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Ω is the acentric factor for the species. Note especially that 
this replacement changes the definition of a slightly, as the 
Tc is now to the second power. 
 
 
 

3.2. Peng-Robinson (PR) equation of state 
 The Peng-Robinson equation was developed in 
1976 in order to satisfy the following goals: 
 

 The parameters should be expressible in terms of the 
critical properties and the acentric factor;  

 The model should provide reasonable accuracy near 
the critical point, particularly for calculations of the 
compressibility factor and liquid density;  

 The mixing rules should not employ more than a 
single binary interaction parameter, which should be 
independent of temperature pressure and composition; 
and  

 The equation should be applicable to all calculations 
of all fluid properties in natural gas processes.  
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In polynomial form: 
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Where, ω is the acentric factor of the species and R is the 
universal gas constant. For the most part the Peng-
Robinson equation exhibits performance similar to the 
Soave equation, although it is generally superior in 
predicting the liquid densities of many materials, 
especially nonpolar ones [14].  
 
3.3. NRTL equation of state 

The NRTL (Non-Random-Two-Liquid) equation, 
proposed by Renon and Prausnitz in 1968, is an extension 
of the original Wilson equation. It uses statistical 
mechanics and the liquid cell theory to represent the liquid 
structure. These concepts, combined with Wilson’s local 
composition model, produce an equation capable of 
representing VLE, LLE, and VLLE phase behavior. Like 
the Wilson equation, the NRTL model is 
thermodynamically consistent and can be applied to 
ternary and higher order systems using parameters 
regressed from binary equilibrium data. The NRTL model 
has accuracy comparable to the Wilson equation for VLE 
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systems. The NRTL combines the advantages of the 
Wilson and van Laar equations. Also it is an activity 
coefficient model that correlates the activity coefficients γ 
with the composition of a mixture of chemical compounds, 
expressed by mole fractions x. For a binary mixture the 
following equations are used [14]: 
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with 
 

121212ln τα−=G  (21) 
 

and 
 

211221ln τα−=G  (22) 
 
τ12 and τ21 as well as α12 are suitable parameters. In most 
cases the parameters τ 
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Are scaled with the gas constant and the 

temperature and then the parameters ∆g12 and ∆g21 are 
fitted. The NRTL parameters are fitted to activity 
coefficients that have been derived from experimentally 
determined phase equilibrium data (vapor-liquid, liquid-
liquid, and solid-liquid) as well as from heats of mixing. 
 
3.4. Lee Kesler (LK) equation of state 

The Lee-Kesler correlation is a three parameter 
corresponding state method for estimating thermodynamic 
properties of pure, nonpolar fluids. For the compressibility 
factor Z, it takes the form  
 

10 ZZZ ω+=  (25) 
 
Where Z0 is the compressibility factor for fluids of nearly 
spherical molecules ω is Pitzer’s Acentric factor and Z1 
corrects for nonspherical intermolecular forces. Table and 
charts provide values of Z0 and Z1, from which Z and, 
hence, the molar volume can compute. At subcritical 
temperatures, Z1 is typically negative (Z1<0), indicating 
that attractive forces dominate the nonspherical 
contribution to Z. At supercritical temperature, Z1 is 
typically positive (Z1>0), indicating the dominance of 

repulsive forces that arise when molecules collide. Note 
that simple fluids have 0=ω  [14].  
 
4. EXPERIMENTAL DATA 

Knowledge of the pressure/volume/temperature 
(PVT) behavior of natural gases is necessary to solve 
many petroleum engineering problems. Gas reserves, gas 
metering, gas pressure gradients, pipeline flow and 
compression of gases are some of the problems requiring 
precise calculation of gas density [15]. 
 A set of data containing pressure, temperature 
and molar volume was collected from Chemical engineers’ 
Handbook [14]. Table-1 lists samples of these data which 
were used for training and testing the neural network. 
 

Table-1.  Minimum and maximum of data used to train 
the Neural Network [14]. 

 

Properties Min Max 
Pressure  (kPa) 50 10000 
Temperature (°C) -30 440 
Volume (m3) 0.20351 78.605 

 
5. NEURAL NETWORK MODEL DEVELOPMENT 
 Developing the neural network model to 
accurately predict the PVT properties of different gases 
requires its exposure to a large its exposure to a large data 
set during the training phase. 

The back propagation method with SCG, LM and 
RP learning algorithm has been used in feed forward, 
single hidden layer network. Input layer neurons have no 
transfer functions. Similarly, inputs are the reduced 
temperature and reduced pressure while output is the 
compressibility factor. The neurons in the hidden layer 
perform two tasks:  summing the weighted inputs 
connected to them and passing the result through a non 
linear activation function to the output or adjacent neurons 
of the corresponding hidden layer. The computer program 
has been developed under MATLAB [13]. Two thirds of 
data set is used to train each ANN and the rest have been 
used to evaluate their accuracy and trend stability. The 
number of the hidden layer neurons is systematically 
varied to obtain a good estimate of the trained data [12]. 
The selection criterion is the net output MSE. The MSE of 
various hidden layer neurons are shown in Figure-2. As it 
can be seen the optimum number of hidden layer neurons 
is determined to be 60 for minimum MSE. 
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Figure-2. Determining the optimum number of neurons 
for the training some algorithms. 
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Figure-3. The relative errors between predicted data by 
ANN and experimental data. 

 
 Similarly the MSE of various training algorithms 
are calculated and listed in Table-2 for the obtained 
nineteen hidden layer neurons. As Table-2 shows the 
Levenberg-Marquardt (LM) and Scaled Conjugate 
Gradient (SCG) algorithms have the minimum MSE. 
 
Table-2. MSE Comparison between different algorithms 

to train ANN. 
 

Algorithm MSE of network training 
Trainscg 0.0000900135 
Trainlm 0.0002428 
Trainrp 0.0005799 

 
Now the trained ANN models are ready to be 

tested and evaluated against the new data. Table-3 lists the 
various MSE of the network testing. According to these 

tables the Scaled Conjugate Gradient (SCG) algorithm is 
the most suitable algorithm with the minimum MSE. 
 
Table-3. MSE Comparison between different algorithms 

to test ANN. 
 

Algorithm MSE of network training 
Trainscg 0.000083526 
Trainlm 0.00257 
Trainrp 0.00318 

 
Consequently, SCG provides the best minimum error 
average for both training and testing of the network.  
Figure-4 shows the SCG algorithm relative error 
fluctuations. 
 
6. RESULTS AND DISCUSSIONS 

The results have been exhibited that the ANN 
predictions are very close to the measurements. Figure-4 
shows the scatter diagrams that compare the experimental 
data versus the neural network computed data. As seen, a 
tight cloud of points about the 45o line was obtained for 
these additional data points. This indicates an excellent 
agreement between the experimental and the calculated 
data. 

 
 

Figure-4.  A typical comparison between experimental 
data and ANN model. 

 
Also the amounts of volume were calculated by some 
equations of state such as Lee Kesler, NRTL, Soave-
Redlich-Kwong and Peng Robinson and the comparisons 
between results of ANN and equations of state are shown 
in Figures (5-20).  
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Figure-5. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 100 kPa). 
 

Figure-6. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 50 kPa). 
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Figure-7. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 200 kPa). 
 

Figure-8. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 150 kPa). 
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Figure-9. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 400 kPa). 
 

Figure-10. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 300 kPa). 
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Figure-11. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 600 kPa). 

 

Figure-12. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 500 kPa). 
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Figure-13. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 1000 kPa). 
 

Figure-14. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 800 kPa). 
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Figure-15. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 1400 kPa). 
 

Figure-16. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 1200 kPa). 
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Figure-17. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 2000 kPa). 
 

Figure-18. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 1600 kPa). 
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Figure-19. Comparison between ANN, Exp. data and 

EOS results for volume of NH3 (P = 10000 kPa). 
 

Figure-20. Comparison between ANN, Exp. data and 
EOS results for volume of NH3 (P = 5000 kPa). 

The results show that NRTL equation of state in high 
pressure has variation than experimental data. The relative 
errors are calculated by the following equation: 
 

Relative Error
.

..
Exp

ExpCal −
=  (26) 

 
Table-4. listed the average relative errors of ANN 
simulations and EoS calculations. The results show the 

best estimation performance of ANN for prediction the 
thermodynamic properties of ammonia. Artificial neural 
network is a new method instead of applying the equations 
of state. As shown in Figure-21 artificial neural network 
has the best performance with minimum error that can be 
used for prediction of the thermodynamic properties of 
material. Also this figure shows the LK and PR equations 
of state have a good performance with comparison with 
SRK and NRTL. 
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Table-4. Comparison between average relative errors of different equations of state 
and neural network for different pressures. 

 

 Methods 

Pressure PR 
(EOS) 

LK 
(EOS) 

SRK 
(EOS) 

NRTL 
(EOS) ANN 

50 0.001216 0.00083 0.001382 0.004755 4.11438E-06 
100 0.002301 0.001574 0.002624 0.00925 1.1385E-05 
150 0.002639 0.001823 0.003079 0.012017 1.0777E-05 
200 0.002801 0.001971 0.003366 0.014554 3.04134E-05 
300 0.004979 0.002228 0.003795 0.018283 6.46712E-06 
400 0.004274 0.003077 0.005238 0.024854 3.28618E-06 
500 0.00427 0.003327 0.005406 0.028393 2.53874E-06 
600 0.005351 0.00396 0.006731 0.034702 3.76738E-06 
800 0.005301 0.004046 0.006877 0.039027 6.0686E-06 

1000 0.005353 0.004245 0.007206 0.044926 8.85729E-06 
1200 0.004879 0.004055 0.006865 0.04711 7.05511E-06 
1400 0.006058 0.005027 0.008447 0.05642 3.33179E-06 
1600 0.004863 0.004415 0.007374 0.0533 5.25758E-06 
2000 0.006832 0.006104 0.010112 0.069954 1.66692E-05 
5000 0.005793 0.007266 0.012312 0.099682 6.72505E-06 

10000 0.005771 0.010098 0.022193 0.176897 4.89748E-05 
 

 
 

Figure-21. A comparison between thermodynamic models and ANN performance 
by using average relative error. 

 
7. CONCLUSIONS 

The ability of ANN with MLP neural network for 
modeling and prediction of Ammonia properties have been 
investigated. The MSE analysis based results are used for 
verification of the suggested approach. Results show, a 
good agreement between experimental data and the 

predicted by ANN. An important feature of the model is it 
doesn't require any theoretical knowledge or human 
experience during the training process. This work clearly 
shows the ability of ANN for the calculation of the 
thermodynamic properties of Ammonia only based on the 
experimental data, instead of using equations of state.  
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