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ABSTRACT 

A computational model was developed to simulate and predict failure response of fibrous composite panels 
subjected to drop-weight impact on un-partitioned fibrous composite panels using finite element analysis.  

The mathematical formulation consisting of constitutive, equilibrium, and strain-displacement relations; finite 
element formulation with contact and external forces; failure criteria proposed by Hashin. Finite Element Method (FEM) 
was chosen to perform simulation in commercially available software ABAQUS incorporating dynamic load in time-
domain instead of using conventional analysis procedures of quasi-static indentation or drop weight model. To improve 
convergence, adaptive meshing techniques were employed to mesh the regions of high stress gradient with fine meshes and 
coarse meshes for the rest.  

Results were compared with the results from the available literature and found to be in good agreement. However, 
some values of acceleration parameters were very large. That was due to being computed from second order derivates, 
divided by very small time step size produced such larger values. Therefore, a four-point moving average filter was applied 
to remove ‘noise’ from the results. Some of the results from failure threshold loads were selected and included in the form 
of tables, contour plots and graphs.  
 
Keywords: finite element analysis, composite plates, failure criteria, delamination. 
 
INTRODUCTION 

Advanced fibrous composites are being used in 
many advanced structural applications. Many of these 
structures are situated such that they are susceptible to 
foreign object impacts and in-plane loadings which cause 
invisible extensive damage. The damage can significantly 
reduce load bearing capability or cause catastrophic 
failures. Thus there exists the need to investigate the 
incurred damage to be able to improve tolerance of 
structures.  

Due to the complicated interaction of different 
global, local and torsional buckling; damage mechanisms 
of fibre-matrix de-bonding, matrix cracking, fibre 
cracking, and de-lamination etc., no generally applicable 
methods for the analysis could have been established. 
Most of the available literature is experimental with little 
discussion on local buckling. Some of the relevant studies 
are given below.  

The dynamic response of composite structures 
subjected to transient dynamic loading has been studied in 
terms of analytical, numerical (Aslan, 2006) and 
experimental works (Krishnamurthy, 2003). Pierson and 
Vaziri (1995) presented an analytical model based on the 
combined effects of shear deformation, rotary inertia and 
nonlinear Hertzian contact law with an aim of studying the 
low-velocity impact response of simply supported 
laminated composite plates. Sun in (1977) applied a 
modified Hertzian contact law to study low-velocity 
impact response analysis of composite laminates. 

Yang and Sun (1981) presented the experimental 
indentation law through static indentation tests on 
composite laminates. Tam and Sun (1982) developed their 

own finite element program to analyze impact response of 
composite laminates and they performed impact tests 
using a pendulum type low-velocity impact test system. Ik 
Hyeon Choi and Cheol Ho Lim (2002) proposed a 
linearized contact law in studying low-velocity impact 
analysis of composite laminates and compared it to the 
modified Hertizan contact law (1983). sun and 
Chattopadhyay, Dobyns (1981) and Ramkumar and Chen 
(1983) employed the first-order shear deformation theory 
developed by Whitney and Pagano (1970) in conjunction 
with the Hertzian contact law to study the impact of 
laminated composite plates. Sankar (1982) presented a 
semi-empirical formula in predicting impact 
characteristics such as the peak force, the contact duration, 
and the peak strain on the back surface of laminates. 
Ganapathy and Rao (2001) predict the damage in 
laminated composite plates and in cylindrical/spherical 
shell panels subjected to low velocity impact. The 
continuity of the work conducted by the authors Tiberkak 
et al. (2005).  

Gaussian points via our numerical model, and 
then the failure criterion suggested by Choi and Chang 
(2002) is used to predict matrix cracking and 
delamination. Impact Damage Resistance and Damage 
Tolerance of Fibre Reinforced Laminate Composites were 
investigated by Ritz in his PhD thesis (James, 2006). Tita, 
V., et al., reported experimental and numerical approaches 
in their paper (Tita, 2008); however the numerical 
approach uses fracture mechanics for failure mechanism 
and prediction.     

In the past most of the research on the topic has 
been experimental. Most of the work was focusing on 
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developing the phenomenological and the semi-analytical 
models by making appropriate assumptions based on the 
experimental observations. Therefore, a suitable 
computational model is essential to exploit the full 
benefits of the advanced composites.   

Hence, the problem was transformed into 
numerical model to obtain adequate, consistent and 
reliable results. Moreover, an incidental or drop tool may 
not always impact the panel with a conventional 
hemisphere impactor, blunt-nozed object are also very 
common. Therefore, results from blunt/flat noze shape 
impactor were selected.  
 
Governing equations for laminates  

From classical laminate plate theory, the 
extensional stiffness matrix [A] relates the in-plane forces 

{N} to the mid-plane strains {ε 
o} and the bending 

stiffness matrix [D] relates the moments {M} to the 
curvatures {κ}. The coupling stiffness matrix [B] couples 
the in-plane forces {N} with the curvatures {κ} and the 
moments {M} with the mid-plane strains {ε 

o}. Where 
(Qij) h is the reduced stiffness for layer h, which is a 
function of the layer angle, θh, and the layer in-plane 
orthotropic engineering constants, E’s and ν’s. Zh and Zh-1 
are the Z co-ordinates of the top and bottom surfaces of the 
h layer respectively. Considering a laminate made of "N" 
layers (lamina) of thickness “t” arranged as shown below. 
The integral can be replaced by a summation over all N 
layers. 
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Figure-1: Laminate and plies lay-up through-the-thickness stacking. 
 

Where k is the layer number counting from the 
bottom up, N is the number of layers in the laminate, and 
zk is the coordinate of the top surface of the kth layer. Both 
the mid-surface strains {εxo, εyo, εxy0} and curvatures {K) 
are independent of z for the laminated plate, i.e., the mid-
surface strains are at the laminated plate mid-surface (z = 
0) and the curvature of each lamina is the same. For 
laminates the stresses can be written as: 
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The following laminate stiffness equations are obtained:   
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Where the A, B and D coefficients are given by 
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Figure-2: In-plane, out-of-plane, and uniformly distributed loads. 
 

 
 

Figure-3: Moments and uniformly applied external load. 
 
The summation of moments and forces in the z direction becomes: 
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When the load is not uniformly distributed and shape of 
the impactor is point load applied at centre (x0, y0) then 
dirac delta function is 
 

( ) ( )0000 ),( yyxxPyxq −−= δδ                      (5) 
 

And for line and patch loads the Heaveside function will 
be used as follows. 
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These equations represent equilibrium for a 

laminate subjected to transverse uniformly distributed, 
point and patch loading. The equations are valid for 
isotropic as well as anisotropic or composite panels for 
plies at various rotations.  
 
 
 

The principal of virtual work 
The principal of virtual work for the model system can be 
written as  
 

 (7) 
 

The dynamic equation is given by: 
 

                                  (8) 

Where [M] and [K] is, respectively, the mass matrix and 
stiffness matrix of the composites, given by 

                                  (9) 

Where 
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Where, 

                          (10) 
 
Hashin’s failure criteria 

Interlaminar shear is one of the sources of failure 
in laminated plates. Since the interlaminar strength data 
are not usually available, some of the researchers have 
suggested using τxz, = τy  =  τLt and τtz = τt.  With the use of 
the present theory, these stresses were calculated as 
follows: 

( ) ( dz
h

z
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1 ττσττσ )               (11) 

 

The interlaminar shear stresses are then determined 
From the following equilibrium equations: 
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Once the ply local stresses are known, it will be used in 
the following interaction equation of Hashin: 
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Where Fsu13 and Fsu23 are the ultimate shear stresses, 
 
Numerical results and analysis 

The drop-weight model to predict the composites 
behaviour was implemented into ABAQUS™. 
 

 

     
 

Figure-4: Schematic diagram of specimen and impactor. 
 

Composite laminates of diameter 0.02394 m, 
with stacking sequences [45/0/-45/90] S, [45/0/-45/90] 2S, 
and [45/0/-45/90] 3S the effect of impact duration, length 
and position on the impact loads were studied with 
0.00288 m thickness of quasi-isotropic configuration 
under centrally  

Located load of 16 KN impact at circle of 0.0063 
m diameter and length was 0.002 of aluminium was 
studied for various data input and stacking sequences and 
clamped boundary conditions. The properties of a 
unidirectional lamina of specimens with geometries and 
data are given in Table-1. 

 
Table-1: Material properties used to develop specimen. 

 

Material Properties GPa Ultimate strengths MPa Stacking 
sequences 

E1 = 150; E2 = E3 = 15  ( )
ult

Tσ 1
= ( )

ult

Cσ 1
= 1500 

 
[45/0/-45/90] S,
[45/0/-45/90] 2S,

 
G12 = 5.7 G13 = 5.7; G23 =7.26  ( )

ult

Tσ 2
=  40 ( )

ult

Cσ 2
= 20 

Poisson's Ratios 
ν12 = 0.33; ν23 = 0.03; ν13 = 0.01 ( )

ultτ 12
= ( )

ultτ 12
= 53 [45/0/-45/90] 3S 
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Table-2 and Figure-5: Input data and stack of 24 un-symmetric plies. 
 
The circular disk and impactor were used in a clamped set-up under a load applied at the centre, shown in the Figure-6 
below.  
 

 
 

Figure-6: Model after applying load and boundary conditions. 
 

Meshing using finite elements: (a) shell element S4 and (b) solid element C3D8 for impactor were created see Figure-7 
below.  

 

   
 

 

Figure-7: Meshed specimen, impactor, and the model. 
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Given the fixed ply thickness for the material 
results for acceleration, velocity, displacements, stresses 
and strains were computed. The time duration was 
considered 1.1 µsec for which amplitudes of velocities 
were used to impact the models. The predicted results 
were used in Hishon criteria and FPF was achieved with 
degradation of properties by the weight-drop.  

Computed values for accelerations were very 
large and confusing as values were obtained from second-
order derivative, in such cases even rounding off numbers 
in the intermediate steps can lead to considerable errors in 
the final results. Therefore a four-point moving average 
filter was applied to remove and reduce the noise of 
computation errors.  

 
Table-3: Time versus amplitudes of velocities. 

 

Time Sec x 10-3 Velocity -5 m/sec 
0 Amp 1 Amp2 Amp 3 Amp 4 Amp 5 

0.055 0.05 0.05 0.02 0.05 0.05 
0.11 0.08 0.05 0.02 0.1 0.1 
0.165 0.15 0.06 0.03 0.2 0.1 
0.22 0.3 0.1 0.04 0.3 0.1 
0.275 0.4 0.2 0.05 0.4 0.1 
0.33 0.5 0.3 0.1 0.5 0.2 
0.385 0.6 0.4 0.2 0.6 0.2 
0.44 0.7 0.5 0.3 0.7 0.2 
0.495 0.8 0.6 0.4 0.8 0.3 
0.55 0.9 0.8 0.5 0.9 0.8 
0.605 1 0.9 0.6 1 0.9 
0.66 0.9 1 0.7 0.9 1 
0.715 0.8 0.9 0.8 0.8 0.9 
0.77 0.6 0.8 0.9 0.7 0.8 
0.825 0.5 0.7 1 0.6 0.3 
0.88 0.4 0.6 0.9 0.5 0.3 
0.935 0.3 0.5 0.8 0.4 0.2 
0.99 0.3 0.4 0.7 0.4 0.2 

01.045 0.2 0.2 0.6 0.3 0.2 
1.1 0.2 0.3 0.5 0.3 0.2 

 
Table-4: Runs for each amplitude versus computed results. 

 

Runs Acceleration 
X 103 m/sec2

Displacement 
X 10-3 m 

Velocity 
m/sec Strain X 10-2 Stresses GPa 

1 -5.0 -2.50 5 1.60 6.42 
2 11 -1.50 5 1.80 6.18 
3 6. -1.70 5 1.40 6.37 
4 6. 1.40 5 1.40 6.89 
5 10 1.12 5 1.40 4.79 
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Figure-8: Images of principal stresses in S11 directions. 
 
The images comparison demonstrates that the computation of the inter-laminar shear stresses and peel stress in the links 
were realistic. 
 

 
 

Figure-9: Images of out-of-plane displacements. 
 
The images comparison demonstrates that the displacement values are within limits, according to the expectation and were 
realistic.  
 

 
 

Figure-10: Images of principal strains in X11 directions. 
 
The images comparison demonstrates that the computation of the strain values were within the expected range and were 
realistic. 
 
 
 
 
 
 

   30 



                                                           VOL. 4, NO. 2, APRIL 2009                                                                                                          ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

3 Graphs 
 

 
 

Graph-1: Graphics of displacements. 
 

The graphs comparison demonstrates that the computation of displacement values were realistic. 
 

 
 

Graph-2: Velocities graphs. 
 

The graphs comparison demonstrates that the computation of the velocities were realistic. 
 

 
 

Graph-3: Graph of acceleration values. 
 

The graphs comparison demonstrates that the computation of the acceleration were realistic. 
 
CONCLUSIONS 

The laminate stress and strength analysis under 
drop-weight model has been illustrated successfully. The 
model is capable to simulation impact phenomena of 
various noze shapes of impactors. However, simulations 
from flat noze shape impactors were selected. Numerical 
predictions gave consistently good results, which means 
that FE code and the panel models are adequate and 
reliable.  

Computed values of the principal stresses were 
compared with the allowable stresses against the given 
values and Hashin’s failure criterion to predict FPF. The 
results matched and agreed well against the criteria as 

expected. If the load further increased the damaged areas 
further increase as well that may lead to de-lamination 
growth and failure.  

In some cases, even rounding off numbers in the 
intermediate steps can lead to considerable errors in the 
final results. Therefore, great care was exercised in such 
calculations for accurate results. 

In general terms, the present study has 
demonstrated the important contribution of blunt shape 
object/impactor resulting damage and response of 
composite panels. The predicted results can be used in 
design development as they have also validated the 
strategies of experimental models. 
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