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ABSTRACT 

In this study, a linear analysis is developed to evaluate the critical speed for a rail vehicle when wheels with 
controlled creep forces are used. We show the effect of varying the primary and secondary suspension parameters and 
varying a few others such as the effective conicity, the masses and the torsional-damping coefficient between wheels. We 
show that critical speeds at which the instability occurs can be increased beyond the actual operating speed by proper 
selection of design parameters. We show in particular the interest of a yaw stiffness provided between the car body and 
each bogie frame in conjunction with a primary suspension system having springs with relatively lower longitudinal 
stiffness a feature that allows good curving performance. The behaviour of the vehicle is considered in comparison with 
that of a conventional one having, rigid wheel sets or free wheels turning on the same axle independently of each other.   
 
Keywords: lateral stability, primary and secondary suspension, critical speed, torsional damping coefficients. 
 
1. Foreword 

A progress without cease and more and more 
rapidly in the range of speeds by offering improved 
performance is a permanent objective of the rail 
administrations. The growth in speed is not without asking 
traction engineers to search for the difficult compromise 
between good stability performance and good curving 
performance in low radius curved tract minimising wear of 
tread, flanges and rail [1]. Indeed, with a conventional 
vehicle, it is necessary to rein the wheel set in the bogie 
for a stable rolling at high speeds. However, the almost 
total longitudinal rigidity of the suspension between the 
wheel sets and the bogies is in contradiction with an easy 
inclusion in curves: it is an interference with regard for the 
wheel sets, to take up radial alignments, so that the vehicle 
is steered round curves. In addition, this vehicle with rigid 
bogies and rigid wheel sets is sensitive to changes in the 
wheel effective conicity resulting from surfaces wear. The 
speed limit from the bogie can only maintained by 
monitoring the wear treads wheels (profile 1/40 refreshed 
every 200000km) and the narrow adjustment of the yaw 
elastic reaction torque bogie / body, which tends to worsen 
a good behaviour on curves. Its effect is limited to a 
maximum, beyond which the increase of this secondary 
yaw restraint does no more benefit [2]. Moreover, such 
increases in speed could lead to an inevitable downgrading 
of the dynamic comfort of passengers [3]. The classical 
vehicle has a number of shortcomings and this impels the 
designers developing rail vehicle to seek for solutions new 
in principle. There is therefore, a sufficiently well 
grounded reason for the more complicated and costly 
systems. 

There is then a trend in the development, which is 
analogue to the following "if you are using prefabricated 
elements, you have fewer opportunities than using bricks” 
 
1.1 Flexible bogie 

The conventional guidance flange contact being 
an unacceptable solution, let us split the bogie: a current 
interest has grown in the world in favour of flexible bogie 

(Scheffel design). That is the designation given to the 
bogie allowing the shear stiffness increase without 
increasing, by the way, the bending stiffness of which, as a 
result, led to a good entry in the curves. Another important 
aspect of the device in question is that for a given bending 
stiffness there is no additional benefit to gain beyond a 
certain shear stiffness value. On the other hand, there is 
also a minimum bending stiffness to exceed in order to 
obtain a permissible critical speed [4]. 

Moreover, as with the classic vehicle, we can 
effectively improve the stability by retaining the bogie by 
an anti-yaw device to the body. Again, there is an inability 
to solve effectively this unavoidable problem of bogie yaw 
[5]. 
 
1.2 Classic wheel set 

The wheel set is a classic rigid axle with two 
wheels firmly fixed to it. It blames this wheel set as a 
source of wheels and rail working surface wear.  As 
presented, it is not an ideal solution. Another problem 
inherent in this principle is the back-and-forth movement 
of wheels within the clearance between the wheel set and 
the track. These disadvantages have leaded repeatedly 
ideas and experiences to turn the wheels on the same axle 
independently of each other. The merit of the rigid wheel 
set is simplicity in design. The utmost simplicity of design 
have gained it wide acceptance nowadays.  
 
1.3 Free wheels 

The rigid wheel set is not an acceptable solution, 
let us split the axle. In the past, many projects have 
considered vehicles having free wheels. Many experiments 
were made and they have failed. Tests showed that the 
wheel rolls in permanent contact with the rail edge. There 
is no trend for such mechanism to take off from the path 
[6]. Only other variants of assembling these wheels are 
likely to lead to the elimination or reduction of the 
disadvantage cited above. The free wheels may not take 
rail direction spontaneously. There is a need of an outside 
influence or guidance (bilateral contact) or angular 
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direction. An author has presented a number of possible 
variants [7]. It also appears that the fitting of free wheels 
on an axle, according to the results presented in this study, 
is not likely to improve the behaviour of rail vehicles with 
a soft longitudinal stiffness of the primary suspension. It 
shows that we can get good results with both an anti-yaw 
damper connecting the body to the bogies and a mean 
value of the primary suspension longitudinal stiffness. 
 
1.4 Wheel set with controlled creep forces 

It consists of two wheels rigidly linked to two 
semi hollow shafts turning around an inner common axle. 
A torsional damper connects the two half-hollow shafts. 
The action of the coupled wheels on one another is a 
viscous friction type. The relative rotation between wheels 
will be more or less constrained depending on the 
coefficient of resistance value or damping coefficient Cφ 
of the torsional damper. This consolidation provides an 
opportunity to the mechanism to return to its equilibrium 
position: the wheel that climbs up the flange taking the 
advance on the other wheel causes a rotation of the axle, 
which tends to bring it to the central position in the track 
[8]. This constructive feature gives us, in fact, the ability 
to control the creep forces magnitude generated at the 
wheels. It reveals new opportunities and at the same time 
justifies an old necessity: New opportunities in the sense it 
achieves increase in traffic speed on conventional lines to 
the point that the yaw elastic reaction torque between body 
and the bogies is rendered superfluous. We realise that 
operational speeds of 400 or 500km.h-1 are possible with a 
soft primary suspension allowing the wheel sets to take up 
approximately radial alignments in curved track. A former 
necessity, in the sense that the classical wheel set cannot 
be evicted when it comes to steer the vehicle around the 
track with a great curvature. There is therefore a need to 
lock up during motion the link between the wheels under a 

certain value of radius of the track achieving a correct 
alignment of the wheel sets, an adequate sizing of the 
damper and a reliability objective. 
 
2. INTRODUCTION 

In this study, we examine the possibility for a rail 
vehicle having wheel sets with controlled creep forces to 
satisfy the contradictory requirements between good 
stability performance and good curving performance. The 
behaviour of a vehicle equipped with such wheel sets is 
considered in comparison with that of a conventional 
vehicle having rigid wheel sets or free wheels. There is a 
problem of assessing the stability in the small. We will 
determine the critical speed of a vehicle as a whole 
moving at a constant speed along track alignment and 
without defects, according to different construction 
parameters. The critical speed is the limit of safety motion 
where instability is either unsustainable or frankly 
destructive. The complexity arising from the number of 
degrees of freedom confines this study to a numerical 
analysis and discussion. 

In strictly speaking, such a study is very difficult 
because the vehicle as a dynamic system has a large 
number of degrees of freedom and several non-linearity 
whose main comes from the wheels tread profile, the 
contact actions laws rail/wheel and the damping of the 
suspension. However, the linearization can address this 
problem to obtain guidance, at least qualitatively, 
assessing the degree of quality of the dynamic system 
configuring the vehicle subject to review.     
 
3. VEHICLE ARCHITECTURE 

The vehicle used consists of a body, two identical 
bogies and four wheel-axles sets. Figure-1 depicts a 
scheme of one bogie surrounded by the provision of 
suspension. 

 

 
 

The primary suspension between the bogies and 
the wheel sets is made by weightless springs in series with 
rubber pads to cut the transmission of noise. Four dampers 

in parallel with springs complement the suspension. The 
same goes for the secondary suspension. The body/bogie 
coupling link allows to the body to perform an oscillatory 
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motion around a cylindrical and longitudinal hinge placed 
underneath. The lowest end of this coupling link slides in a 
ball-and socket joint judiciously located in the bogie 
frame. To control the movement of the bogie under the 
body, we introduce an anti-yaw damper "KONI" type 
whose nonlinear operation was apprehended by the first 
harmonic method [2]. It is also shown that the angular 
rigidity of the system for hanging these anti-yaw dampers 
determines the maximum critical speed that can be 
obtained for given bogie characteristics. Therefore, these 
dampers will be regarded as passive in this study. The 
expression of anti-yaw elastic torque being: C ( ) = kα

2
0 0 kK b α2 [2].                                                                     (1)  

 
3.1 Key assumptions 

The solids of the vehicle, as well as the tracks are 
supposed rigid absolutely. The rail alignment supposedly 
perfect with constant gauge, is located in a horizontal 
plane. All the displacements are assumed small. The 
vehicle is supposed to move at a constant speed.  We 
believe that the rubbing body/bogie coupling link is zero 
and can be disregarded. The rubbing against the yaw 
brings some damping. The system is characterized by 
elastic rigidities in three directions. The springs and 
viscous dampers are supposed to have linear 
characteristics. 

For purpose of comparison vehicles, the 
specifications of the wheel sets are not changed. 
Therefore, we assume the same masse distribution. 

The centres of gravity of the body and the bogies 
are located in a median and longitudinal plane. The bogies 
have a dual transverse and longitudinal symmetry. The 
longitudinal symmetry of inertia, elasticity and sensitive 
linear phenomena can decouple the vertical actions from 
the transverse ones.  
 
4. MATHEMATICAL FORMULATION 

In this study, a mathematical model is developed 
to calculate the complex eigenvalues of a characteristic 
equation as a function of vehicle speed. The characteristic 
equation is derived from linear equations of motion of the 
vehicle. A computer program has been written to assess 
the influence of primary and secondary suspension, 
masses and damping in rotation between the wheels on the 
lateral stability of the vehicle. The lateral stability 
characteristics of the rail vehicle are assessed from 
maximum (critical) speeds of motion in the straight line. 
The successive steps that allow for the construction of the 
differential equations are as follows: writing of potential, 
kinetic and dissipative energy put into play during the 
movement. Finally, writing the differential system. 
 
4.1 Bases definition  

The description of the movement is made in a 
right-handed coordinate Oo o o o;x ,y ,z  system moving with 
a uniform rectilinear speed (advance speed of the vehicle) 
toward the o oO x - axis relative to Galilean benchmark 

g g g gO ;x ,y ,z  tied to the track and direct  of which the 

g gO x -axe points along the rail. The reference coordinate 

system Oo o o o;x ,y ,z  will be considered Galilean as well.  
In the absence of parasitic movements the g gO x -axis 
coincides with the vehicle roll axis. The plane containing 
the axis of the roll is called plane of suspension. It is 
located halfway up strings. 
We define the mobile frame Oc ;x,y,z  linked to the body. 
Its origin Oc is located at the intersection of transverse and 
longitudinal plane of suspension and the vertical passing 
through the geometric centre base body. It is the elastic 
forces centre. At a state of rest, the centre Oc coincides 
with the origin Oo . The mobile frames kO ; , ,x y z  are 
attached to the bogies centres located at the intersection 
of the common horizontal plane passing halfway up 
strings of the primary suspension and the vertical lines 
passing through the geometric centre of each base bogie.  

kO

 
4.2   Vehicle configuration (coordinates) 
 
4.2.1 Body configuration 

We will denote G the inertia centre of the body 
that we consider as a solid. The angles defining the 
orientation of the mobile system axis with respect to the 
fixed ones are the yawα , the roll (rocking) θ  and the 
pitch (galloping)ϕ . Moreover, the mobile base is 
identified to the solid itself. It should be added three 
degrees of freedom of translational motion: the swing y , 
the rebounding (jumping) z  and the advance x .      
 
4.2.2   Bogies configuration  

We will denote the bogies centre of inertia 
that we consider being a solid designated by (C

kG
k). The 

angles defining the orientation of axes of mobile system in 
relation to fixed axes are the yaw kα , the roll kθ and the 
pitch kϕ . Moreover, the mobile base k k k, ,x y z is 
identified to the solid itself. It should be added three 
degrees of freedom of translational motion: the swing yk, 
the rebounding zk   and the advance zk. 
 
4.2.3   Wheel sets configuration 

We will denote  the centre of inertia for each 
wheel set that we consider being a solid designated by 
(S

kiG

ki). 
The yaw kiα  and the roll kiψ  characterize the angular 
position of the mobile frame with respect to a fixed one. 
The wheels angular rotational motions are around 

11s kiG y -

axis of the mobile frame ki ki ki kiG ; x , y ,z attached to the 
solid Ski.
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Kinematics relations bind the roll angle kiψ  to the 
swing . The motion is studied from geometric 
standpoint in [9]: 

kiy

ki kiΓyψ = With 0

0 0 0

γ
Γ=

e -r γ
                                      (2a, b) 

In addition, the vertical position of the wheel set inertia 
centre is given by the geometry study:  
 

ki ki kiz = f y ,α( )Or 
2 2
ki ki

ki 0 0
y α

z = - ε γ
2 2

ξ                              (3) 

With   
1 0 0

'
0 0 0

e - Rγ
ξ=

e - r γR- R
⎧ ⎫
⎨ ⎬
⎩ ⎭

; ( )20 0 0ε = e - R - r γ0                    (4a, b) 

 It should be added three degrees of freedom of 
translational motion: the swing yki, the rebounding zki the 
advance xki and the increment angle in rotation φ kij.
 
4.3 Equations of motion 

The system of 38 differential equations 
simulating the dynamic behaviour of the vehicle is divided 
into two complementary independent groups: the first, not 
related to this study comprises 13 equations. It 
characterizes the vertical and longitudinal dynamics. It 
concerns the following variables: x: advance, z: rebound, 
φ: pitching. 
The second comprises 25 equations and characterizes the 
transverse dynamic with the following variables: 
y: swing, θ: rolling, α: yaw. 
This decoupling of great importance for theoretical studies 
and experimental testing is a consequence of the 
significant linear phenomena and the symmetry of the 
various solids of the vehicle. 
Relative displacements between the body and the bogies 
are 

{ } { } { }cU = T U - T Uk c b s
⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

b                                               (5) 

The displacement vectors with respect to fixed axes for the 
body and bogies are respectively                                                                                                                                    

{ } TcU y θ α⎡ ⎤= ⎣ ⎦ ;{ }             ( 6a, b)         
TbU yk k k kθ α⎡= ⎣
⎤
⎦                                              

In witch [ ] T indicates transposed matrix 

{ }kU are vectors representing the relative displacements in 

the x, y and z direction springs between the body and the 
bogies. 
In equations (5) [Tc] and [Tbs] are the transfer matrices: 

( )

( ) ( )

( )

10 0 1
11 11

10 1 0

jd
k iT h A ac

jd

+⎡ ⎤− −⎢ ⎥
+⎢ ⎥⎡ ⎤= − − + −⎣ ⎦ ⎢ ⎥

⎢ ⎥+−⎢ ⎥⎣ ⎦

11 +                      (7) 

 

( )
( )

( )

10 0 1
11

10 1 0

jd
iT H abs jd

+

1

⎡ ⎤− −⎢ ⎥+⎡ ⎤ = − −⎢ ⎥⎣ ⎦ +⎢ ⎥−⎢ ⎥⎣ ⎦

                        (8) 

Similarly, relative displacement vector between the bogies 
and wheel sets is 

{ } { } { }bU = T U - T Ukk i b p e
⎡ ⎤ ⎡ ⎤

⎣ ⎦⎢ ⎥⎣ ⎦
e
ki                                                  (9) 

{Uki} the vector representing the relative displacements in 
the x, y and z direction springs between the bogies and the 
wheel sets. 
The displacement vector with respect to fixed axes of the 
wheel sets is: 

{ } T
 k i k i k i j

eU = yki α ϕ⎡ ⎤
⎣ ⎦                                              (10) 

[Tbp] and [Te] transfer matrices between the bogies and the 
wheel sets: 
 

( )
( )

( )

10 0 1
11 11

10 1 0

bp

jd
iT h a

jd

+⎡ ⎤− −⎢ ⎥
⎢ ⎥+⎡ ⎤ = − −⎢ ⎥⎣ ⎦
⎢ ⎥+−⎢ ⎥⎣ ⎦

                         (11)  

( ) 1

1

0 1
1 0

( 1) 0 0

j

j

d
T lΓe

d Γ

+

+

0
0

⎡ ⎤− −⎢ ⎥
⎡ ⎤ ⎢ ⎥= −⎣ ⎦ ⎢ ⎥

⎢ ⎥−⎣ ⎦

                                          (12) 

Denoting the potential energy by V, we have: 
 

{ } { }
{ } { }

2 2 21
2 1 1 1

T
U K Uk s kV

Tk i j U K Uki p ki

⎡ ⎤⎡ ⎤ +⎢ ⎥⎣ ⎦
= ∑ ∑ ∑ ⎢ ⎥

⎡ ⎤= = = ⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

                               (13) 

 

Where [Ks] and [Kp] are the spring stiffness matrices for 
the secondary and primary suspension systems: 
 

;
KxkK Ks yk

Kzk

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

=
KxkK Kp yk

Kzk

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

                         (14a, b) =

 

Similarly, the kinetic energy E of the entire system is: 
 

{ } { } { } { }21 1
2 2 1

T Tc c b bE  U M U U M U= + k kc b
k=

⎡ ⎤ ⎡ ⎤ +∑⎣ ⎦ ⎣ ⎦
& & & &  

 

{ } [ ]{ }
{ } [ ] { }

2 2 21
2 1 1 1

Te eU M Uek i k i
Te ek i j + U C Uek i k i

⎧ ⎫
⎪ ⎪+ ∑ ∑ ∑ ⎨ ⎬

= = ⎪ ⎪=
⎩ ⎭

& &

&

              (15) 

Where 

( )
( )

2 2

2 2

0 0

0 00 0

0 0 00

M Mh Ms
M Mh M h Ms h Fc x

Ms M s h F M sz

Ω

Ω

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎡ ⎤ = − + − −⎢ ⎥⎣ ⎦
⎢ ⎥− − +⎢ ⎥⎣ ⎦

 ;           (16) 

 

   16 



                                           VOL. 4, NO. 3, MAY 2009                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

( )
0

2 2 0
20 0

0

0 0

M M hk k
M M h M hb k k x

Mk z

Ω

Ω

⎡ −⎢
⎡ ⎤ ⎢= − +⎣ ⎦ ⎢

⎢ ⎥
⎣ ⎦

⎤
⎥
⎥
⎥

 ;             (17) 

2 2 2
2 2

2

ˆ
ˆ( ' )

ˆ '

ki ki

ki

2

m m
m mdki x

M m m de ki z mki
y

ρ Γ
ρ

ρ

+ +⎡ ⎤
⎢ ⎥+⎢

⎡ ⎤ = +⎢⎣ ⎦
⎢ ⎥
⎢
⎢⎣

⎥
⎥

⎥
⎥⎦

 ;             (18) 

2

2

10 0
2

1 0
2 0 0

0

0

V Γmki yrVC Γmkie yr

ρ

ρ= −

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

0
0

                            (19) 

 

Relative velocity vector of displacement between body 
and bogies 
 

{ } { } { }' ' ' bcU T U T Uk c bs k
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

& & &                                  (20) 
 

Where (·) is the usual time derivative 
With 
 

( )
( ) ( )

( )

10 0 1
' 11 12

10 1 0

jd
k iT h A ac

jd

+⎡ ⎤− −
⎢ +⎡ ⎤ = − − + −⎢⎢ ⎥⎣ ⎦ ⎢ ⎥+−⎣ ⎦

11
⎥+
⎥             (21) 

And  
 

( )
( )

( )

10 0 1
1' 1 1

10 1 0

id
iT H abs

jd

+⎡ − −⎢ +⎡ ⎤ ⎢ ⎥= − −⎢ ⎥⎣ ⎦ ⎢ ⎥+−⎢ ⎥
⎣ ⎦

1

⎤
⎥

}e
ki

&

                        (22) 

 

Relative velocity vector of displacement between bogies 
and wheel sets: 
 

{ } { } {' ' 'bU T U T Ukki bp e
⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

& &                              (23) 

With 

( )

( )

10 0 1
' 1 0 0

10 1 0

jd
Tbp jd

+⎡ ⎤− −⎢ ⎥⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ +−⎢ ⎥⎣ ⎦

                             (24) 

And  

( ) 10 1 0
' 1 ( ) ( 1) 0

1( 1) 0 0

jd
iT h l Γ ae jd Γ

+⎡ ⎤− −⎢ ⎥
+⎡ ⎤ ⎢= − + − −⎣ ⎦ ⎢ ⎥+−⎢ ⎥⎣ ⎦

1 ⎥                                  (25)  

 

Finally, the dissipative energy of the system is given as:  
 

{ } { }
{ } { }

2 2 21
2 1 1 1

T
U C Uk s k

D
Tk i j U C Uki p ki

⎡ ⎤
⎡ ⎤′ ′ +⎢ ⎣ ⎦⎢= ∑ ∑ ∑

⎢ ⎥= = = ⎡ ⎤′ ′⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

& &
%

& &

⎥
⎥                         (26) 

Where 

[Cs] is the damping matrix for the secondary suspension, 
[Cp] is the damping matrix for the primary suspension. 
They are given as:  
 

S

Cx
C Cy

Cz

⎡ ⎤
⎢ ⎥

⎡ ⎤=⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

   ;   CxC Cp y
Cz

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

                     (27a, b) 

In which , yxC C and zC  denote the constants of the 
damper units located between the bogies and body 
respectively in the x, y and z direction. 
  Cx, Cy   and Cz are constants of the damper units located 
between the bogies and wheel sets respectively in the x, y 
and z direction. 
Now, using the generalized displacement vector for the 
system 

{ } { } { } { } TTTT ec bX , , UU Uk ki
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

=
                                                (28)                  

And applying Lagrange’s equation for each generalised 
coordinates, the equations of motion for the system can be 
written as: 

 [ ]{ } { } { }
1

2

3

' '
Q

M X D X K X Q

Q

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎢ ⎥+ + =⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

&& &                          (29) 

Where [M], [D’] and [K’] are respectively the inertia 
matrix, the damping matrix and stiffness matrix 

where{ } { }1
c

cgQ K U⎡ ⎤= ⎣ ⎦ ; { }        (30a, b)  { }2
b

bgQ K U⎡ ⎤= ⎣ ⎦

cgK⎡ ⎤⎣ ⎦  And bgK⎡ ⎤
⎣ ⎦  matrices being below on the gravity 

effect, respectively, for the body and the bogies 
0 0
0 0 0
0 0 0

0
cg

M g h
K

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎣ ⎦

 ;                  (31a, b) 
0 02
0 0 0
0 0 01

0k
bg

M g h
K

k

⎡
⎢⎡ ⎤= ∑⎣ ⎦ ⎢ ⎥= ⎣ ⎦

⎤
⎥

{Q3} is a vector with twelve components representing the 
generalised forces acting between wheels and rails and in 
the torsional damper. 

{ } { } { }3 = +e' e'
eg ki kiU C UQ K⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

&                                        (32) 

Where{ } { }'eU y kikiki kiϕα= and 1ki ki ki2ϕ ϕ ϕ= − (33a, b) 

Where egK⎡ ⎤⎣ ⎦ and [C] are matrices including the effect of 
gravity and the creep forces  

kg
kgKeg kg

kg

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 ; [ ]
c

c
C c

c

′⎡ ⎤
′⎢ ⎥′= ⎢ ⎥′⎣ ⎦

                   (34a, b) 

With 

[ ]

12

12 2

2 2 2 0

0 0
23 22

0 0 0

e 0
33 33 0 0

0 0 0
2

e 33 0
33 23 0

0 0 0

g

C Wg C
r r R

k C C Wg
r r R

V CC C C
r r R rϕ

γ γχ χξ
γ

γ γ ε γ
γ

γ γ γ

2 0

0

⎡ ⎤⎛ ⎞− − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥= − − − +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎛ ⎞⎢ ⎥− − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                 (35) 
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[ ]

2

22 33 23

23 33 11 33

2 2

23 33 11 33

2 2 1

1' 2 2 1

2 4 2 1 2

0 0 0

0

0 0 0 0 0

0

0 0 0 0 0 0 0

0 0

e
C C C

V V r V

e e r
C C C C C

V V r V

e e r
C C C C C C

V V r Vϕ ϕ

γ γχ χ χ

γχ
V

V

γ

γ γ γ γχ
γ

⎡ ⎛ ⎞
− − +⎢ ⎜ ⎟

⎢ ⎝ ⎠
⎢ ⎛ ⎞⎢= − + − +⎜ ⎟⎢ ⎝ ⎠⎢
⎢ ⎛ ⎞
− + + − − +⎢ ⎜ ⎟
⎢ ⎝ ⎠⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

     (36)        

 
In which 
C11, C22 and C23, C33 are the creep and spin coefficients. 
They are functions of the elastic properties (Young’s 
modulus E=2.10 1011 N.m-2, Poisson’s ratio 0.25) of the 
wheels and rail and of the area of contact. The creep 
theory was analysed by Kalker [10, 11] who was defining 
a digital process for the evaluation of the contact forces 
acting on the wheels. 
 

ˆ
4 2
M MW = + + +m m                                                         (37)  

 

0

0 0 0

eχ=
e - r γ

                                                                  (38) 

 

0 0 0
e

0 0 0

R γ R γe +R' γ
e -r γ

0

R-R' R-R'
γ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
≈                                       (39)    

 

The gained experience testifies to the fact that the change 
of R’ is smaller as compared with the change or R during 
the wear adaptation period. Therefore, the effective 
conicity can be viewed as a measure of the wear of the 
wheels.                                                                                                                                                                
 
Remarks on the transverse dynamic  
It is also natural to describe the behaviour of the vehicle 
by the lateral movement of the body ends 1y  and 2y . These 
points belonging to the body are in the vertical passing 
through the gravity centres of solid C1 and C2. On the 
other hand, this identification is available to the measure. 
It is easy to write the relations of liaison:  

 et   
2 2

1 2 1 2y + y y y
y = α=

A
−

                                      (40a, b) 

The development of calculations that we do not reproduce 
shows that the variables 1y  and 2y  are decoupled and the 
system simplified provided to affect to each solid C1 and 
C2 the suspended half mass of the body. Finally, the model 
consists of two wheel sets, a bogie and a half body. 
Therefore, the vehicle has 13 degrees of freedom. The 
notation adopted (33b) reduce the differential system to 11 
equations given in [12] with two springs instead of four in 
the secondary suspension. 
 
4.4 Resolution   

Substituting equations (1), (30a, b) and (32) into 
equation (29), we obtain the linear differential equations 
with constant coefficients of the form: 
[ ] { } [ ] { } [ ] { } { }i i iM q + D q + K q =&& & 0                                   (41) 
Where  
[M] Is the matrix of inertia 

[D] is damping matrix function of: the speed of 
movement, the suspension parameters and the parameters 
relative to the geometry of contact.   
 [K] is the matrix stiffness depending on:  the speed of 
movement because of the torsional damper, the suspension 
parameters and the parameters relative to the geometry of 
contact.   
{ }iq&& is the accelerations vector ;   

{ }iq& is the velocity vector ; 

{ }iq is the displacements vector . 
Equation (41) represents a set of 11-second order 
homogeneous equations with non-proportional damping. 
Each component of eigenvector is distinguished not only 
by amplitude but also by phase angle. Thus, 22 equations 
are required to determine all components of the system 
with 11degree of freedom. Therefore, in addition to the 11 
equations of motion, another 11 equations are needed to 
obtain a system of 22 equations. We use a method 
suggested by Duncan-Frazer. These 11 additional 
equations are given by the following matrix identity: 
[ ]{ } [ ] { } { }M q M qi i& &- = 0                                                  (42) 
Equations (40) and (41) can be combined to give the 
following matrix equation:  

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

{ }0
0

0 0
M D Iq q

I q I q
⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦

&& &
&

=                               (43) 

 

Where [I] is the identity matrix 
Equation (42) can be written as: 
 

{ }* * 0
q q

M K
q q
⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤+ =⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

&& &
&

                                            (44) 

Let 

( ){ } ( )
( )

q t
x t

q t
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

&
                                                            (45) 

Then 
( ){ } ( ){ } { }* * 0M x t K x t⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦& =                                      (46) 

Let 
( ){ } { }ptx t e x=                                                             (47) 

Then   
{ } { } { }* * 0p M x K x⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦                                          (48) 

Of such form:  
[ ]{ } { }A x p x=                                                                (49) 
With  

[ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

1 1
1* *

0

M D M K
A M K

I

− −−−
= − =

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎣ ⎦

             (50) 

Equation (49) is the standard form of the eigenvalue 
problem and leads to a set of 22 eigenvalues. For a stable 
system, each of these eigenvalues p = jα ω+  will be 
either real and negative or complex with a negative real 
part: α < 0. If the eigenvalues are complex, they will 
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occur in conjugate complex pairs. The transition from the 
case α < 0 to the case α > 0 corresponds to the modes: 
-α = 0; ω ≠ 0: zero damped, steady oscillations i.e., those 
continually repeated (self-excited) which are especially 
dangerous. 
-α = 0; ω =0: so called rigid-mode, constant momentum.  
 The eigenvalues were computed by the Q-R double step 
method. 
 

5. RESULTS AND DISCUSSIONS  
 
5.1 Effect of primary suspension 

Figure-2 shows the critical speed beyond which 
the vehicle is unstable for different effective conicities 
begining with eγ =0.1 until 0.3. The curve is obtained for 
damping coefficient value Cφ = .5 MN.m.s.rad-1.  

 

Figure-2. Critical speed Vc versus effective conicity
  γe and a particular value of  Kx, Ky, Cx and Cy. 

 
 
The same curve was obtained in [2] for a classic vehicle 
with the same characteristics of construction given in the 
nomenclature. We can see that a great effective conicity 
has a destabilizing effect.  The value of Cφ imposes a 
highest constraint on the wheels, that is, each wheel set 
seems to be a single piece. The longitudinal stiffness is too 

high. It is practically impossible to change it during 
motion.  
Figure-3 gives the critical speed depending on the 
effective conicity for two values of damping Cφ1 between 
the wheels of the leading wheel set.  

 

Figure-3. Variation of a critical speed versus γe 
          for 2 values of Cφ1; Cφ2=0 N.m.s.rad-1

 
 

The wheels of the trailing wheel set remain free, 
that is, the coefficient Cφ2 is nil. It can be seen that the 
critical speed is becoming higher with the decrease in Cφ1.  
A remarkable fact, the curve 1 is increasing with the 
decrease in Cφ1. In contrast, the curve 2 and the previous 
curve in Figure-2 show a decrease in critical speed. The 
possibility of constructing a vehicle running faster on an 
increasingly worn path is open. However, we cannot avoid 
flange contact and wear of the trailing wheel set, 

particularly in the rail-curved tract. Such a vehicle is less 
expedient in that it does not preclude the flange contact. 
Let us not negate the risk of climbing. The high speed 
augments the skidding hazard. 

Here after, we will meet one of the points raised 
in the foreword. What happens to the area of stability for a 
softer longitudinal stiffness? The answer to this question is 
shown in Figure-4.  
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Figure-4. Dependence of the critical speed on Cφ for
           3 values of eγ  and a particular value of 
           Kx, Ky, Cx and Cy.  

 
Three curves define the limits stability for Kx = 

5.0 MN.m-1. It provides the critical speed depending on 
the coefficient Cφ the same for both wheel sets. The curves 
circumscribe an area as representation of vehicle stability 
for three values of the effective conicity. Strong effective 
conicity and greater damping in rotation between the 
wheels have the effect of reducing the area of stability. 
This fact result from the increase of the first critical speed 
(CB branch; unspecified in the previous figures, because 
this first critical speed is small Vc ≈ 0.5m.s-1). Below that 
speed, the vehicle is unstable; its temporal evolution is 
divergent, that is, the mode motion is: Statically unstable 
nonoscillatory, exponential growth.  Above that speed, we 
cross a zone of stability until the ultimate speed or second 
critical speed (branch AB) is reached where the vehicle is 
unstable once more. The temporal evolution is divergent 
with oscillations, that is, the mode motion is: Negatively 

damped, sinusoidal, exponential growth. It notes that the 
increased guidance that we could expect with the increase 
in the effective conicity reduces the second critical speed. 
Despite this deterioration, even with a strong effective 
conicity (curve 3) where the intersection of the two 
branches arrive sooner, the critical speed is 178m.s-1 for Cφ 
=.0015 MN.m.s.rad-1. This value is well above the current 
traffic speeds allowed with Kx=39 MN.m-1. All thing 
being equal, it is well above the conventional vehicle 
speed limit. From this Figure, the pre-assigned value of Cφ 
=.0015 MN.m.s.rad-1 preserves the stability motion even 
with the wheel tread completely worn out. Moreover, high 
conicity improves curving performance [1]. 
For this stiffness Kx=39MN.m-1, 3 values of eγ  and 
different values of Cφ, we obtain the results of Figure-5. 

 

Figure-5. Dependence of the critical speed on Cφ for
3 values of eγ  and a particular value of 

Kx, Ky, Cx and Cy.  
 

We deduce from these performances curves that 
the first critical speed becomes embarrassing for Cφ ≤103 
N.m.s.rad-1. Cφ =.005 MN.m.s.rad-1 and Vc =130m.s-1 are 
the ordinate of a common point relative to the three 

branches of the second critical movement. The critical 
speed is independent from the value of eγ .The effective 
conicity has an adverse effect beyond this common point. 
The critical speed diminishes as eγ is increased for Cφ 
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>.005 MN.m.s.rad-1. If Cφ is lower, the reverse 
dependence is observed, i.e. the critical speed will increase 
as eγ increases: 
-Once more, the wheel tread wear does not impair the 
stability; besides, the vehicle is more stable.  
-The high value of rigidity illustrated in the figure may 
allow the designer to dispense with elastic element in the 
primary suspension. 
-The critical speeds are frankly too high. There is no mind 
to reduce the high margin of safety against the onset of 
vibration by using a smaller wheelbase, which promotes 
good curving performance [1]. 

These results demonstrate that the wheels with 
controlled creep forces give an opportunity to design a 
stable vehicle at high speeds. There is no need for a high 
value of Kx. The critical speed required can be obtained 
with a soft stiffness Kx. The calculation shows that it is 
appropriate to impose a stiffness Kx ≥ 5.0 MN.m-1 and Ky 
= 7.85 MN.m-1 to obtain a satisfactory dynamic behaviour 
of the vehicle. The rigidity being low, it should be 
interesting to use the pneumatic elastic elements. The 
rigidity of a pneumatic suspension can be changed easily 
within wide limits. 

This stiffness Kx=5.0 MN.m-1 led to a satisfactory 
behaviour in the curved tract. We must enslave the 
damping effect between wheels at the desired speed of the 
vehicle so to exceed the speed practiced today. The key is 
to increase the resistance coefficient according the stability 
results as curvature increases. The main purpose of 
adjustable coupling in rotation between wheels is to make 
the vehicle travelling as fast as possible round a curve of a 
definite radius and a defined cant without skidding. The 
torsional damper allows us to suit the conditions of motion 
and avoids us to drop the speed drastically as for a 
conventional vehicle [12]. 

We deduce from these results, that the free 
wheels system is unacceptable. The vehicle is inherently 
unstable for Cφ equal to zero. The torsional damper 
appears as a security organ. In addition, with the free 
wheels, no wheel prevents the other from rotation; as a 
result, we lose the guidance inherent in conical wheels. 
 
 
 

5.1.1 Longitudinal damping effect Cx 
 Calculations show that the first critical speed is 
not affected by the parameter Cx. For stiffness Kx= 50.0 
MN.m-1, the action in the longitudinal direction plays no 
role. For Kx values ranging from .1 to 1.0 MN.m-1, we see 
that it is interesting to complete the stiffness with a 
damper and particularly for Cφ< 104 N.m.s.rad-1.  For 
stiffness of interest from Kx=5.0 MN.m-1 to Kx=10.0 
MN.m-1 and for Cφ <1600 N.m.s.rad-1 there is an 
appreciable increase in the second critical speed.   
 
5.1.2 Transverse damping effect Cy 

The stabilizing effect appears only for Ky≤ 1.0 
MN.m-1 and Kx>10.0 MN.m-1. For lowest values of Kx the 
transverse damping help to obtain more stability for 
Cφ<103 N.m.s.rad-1. The first critical speed is unchanged. 
 
5.1.3 Transverse stiffness effect Ky 

There are no changes in the first critical speed 
related to the Ky stiffness. With high Ky stiffness, the 
instability on the second critical movement appears at 
higher speeds. However, the transverse stiffness must be 
chosen according to the stiffness Kx.        
 
5.1. Longitudinal stiffness effect   Kx 

The fist critical speed is somewhat influenced by 
the Kx stiffness. Instability moves at slightly speeds with 
the increase of the latter. There is a substantial increase in 
the critical speed in the second critical movement for 
Cφ<1600 N.m.s.rad-1. Thus, we produce a large area of 
stability with large values of Kx stiffness. 
 
5 2 Influence of the secondary suspension  

The parameters relating to the secondary 
suspension should be low to prevent the bogies movement 
transmission to the body.    
 
5.2.1 Influence of stiffness 0K  

Figure-6 shows speed variations beyond which 
the vehicle undertakes instability for different effective 
conicities and two 0K values. These results were obtained 
for Cφ =.5 MN.m.rad-1. 
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Figure-6. Variation of the critical speed with eγ  for
2 values of 0K and a particular value of 

Kx, Ky, Cx and Cy. 
 
The same results were obtained in [2] for a classic vehicle. 
The secondary anti-yaw constraint leads to a substantial 
increase of the second critical speed. The first critical 
speed referring to a static instability unrepresented is about 
0.5m.s-1. 

The curve on Figures-7 and 8 for 0K =0 can be compared 
with the corresponding curve for 0K =3.6 MN.m-1 of the 
Figures respectively 9 and 10.  

 

 
 

Figure-7. Variation of the critical speed with Cφ for
0 0K = N.m-1, eγ  = 0.1and a particular value 

            of Kx, Ky, Cx and Cy. 

 
 

Figure-8. Variation of the critical speed with Cφ for
0K = 0 N.m-1;  eγ  = 0.2 and a particular value 

of Kx, Ky, Cx and Cy. 
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Figure-9. Variation of the critical speed on Cφ for 
      0K ≠ 0 N.m-1; eγ  = 0.1and a particular value 
        Kx, Ky, Cx d Cy (to compare with Figure

 
 

 
We show the positive effect of the anti-yaw 

constrain

 of an -7).

Figure-10. Variation of the critical speed with Cφ for

 

0K ≠ 0 N.m-1; eγ  = 0.2and a particular value of 
         Kx, Ky, Cx and Cy (to compare with Figure-9). 

 

t C (α) = 2
0 0K b α2 on the limits of stability for two 

values of the effect icity.  The parameter Cx has no 
effect on these limits. It can be gathered from the curves a 
remarkable result for Kx=10 MN.m

ive con

y unstable 

-1: the vehicle is stable 
even when Cφ falls to zero. The choice of suitable 
parameter Cφ can largely offset the decline in the critical 
speed resulting from wear of treads, flanges and rail. The 
torsional damper is no longer a security organ.  

A vehicle with free wheels inherentl
becomes seemingly stable through stiffness, which exerts 
a constraint against the yaw bogie. However, as for a 
classic vehicle, failure of the anti-yaw damper becomes 
troublesome for the security. At the crossing of the curve, 
it is necessary to incorporate a torsional damper to 
maintain the wheels guidance by the creep forces. 
Moreover, interference from the effect of the 0K stiffness 

disadvantage and a limitation. The first critical speed 
(branch CB) is widely disparaged (Vc ≈ 0.5m.s

with the good traversing in curves has often been cited as a 

-1)    
 
5.2.2 Transverse stiffness effect yK     

For low values of C  calculation shows an φ,
d rise ofincrease in the second critical spee due to . The yK

effect of this stiffness on the first critical speed is 
negligible. 
 
5.2.3 Transverse damping effect Cy  

A high Cy  value leads to an increase of the 
ter does not affect the 

first critical speed. 

ry vertical stiffness and the secondary 
nes must be chosen adequately: the desirable coupled low 

second critical speed. This parame

 
5.2.4 Stiffness influence in vertical direction 

The prima
o
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frequency within recommended limits (1-1.3 Hz) and so 
that the 

the masses takes interest on the 
ynamics when you try to alleviate the structures either by 

r by using lighter materials.     
 

 The 
mallest mass has a stabilizing effect in spite of the gravity 

n. This effect is more pronounced with 
highest 

y the radius of inertia 
bout the vertical axis has a great importance, and only for 

 achieve a bogie with a given 
wheelba

el sets have an adverse effect on the 
ibration behaviour for all kind of railway vehicles. On the 

tion shows that we must minimize 
the radii

calculation shows that overvaluation of the 
ravitational rigidity by 10 times leads to a considerable 

e first critical speed. The maximum is about 
0.5 m .s

ts become noticeable in 
contact t

comes 
rst is that the technological innovation relating to the 

he possibility of going faster. The 
stability,

For a relatively lower 
stiffness 

high coupled frequency as far as possible from the 
body natural frequency.    
 
5.3 Masses influence 

The influence of 
d
reducing sections eithe

5.3.1 Body mass 
This mass varies with the load conditions.

s
constraint reductio

values of Kx. It should be noted that the creep 
coefficients decreases with both the reduced mass and the 
reduction in the effective conicity.   
 
5.3.2 Bogie mass                 

The solution shows that onl
a
the second critical speed. To

se stable at high speeds, it is important to reduce 
and concentrate the mass as much as possible in order to 
reduce the radius of inertia about the vertical axis. For this 
reason, the rail vehicle has the engines mounted on the 
under body frame.  
 
5.3.3 Wheel set mass 

Heavy whe
v
other hand, the calcula

 of inertia. It is expedient to decrease the mass of 
this part not suspended. This reduces the load on the 
dampers and improves the conditions wheel sets 
oscillations. 
 
6. Remarks  

The 
g
reduction of th

-1 .There is a positive effect on the second critical 
speed, which is slightly affected.  

The critical speeds beyond 500km.h-1 are only 
indicative values: the quasi-static theory of Kalker being 
no longer valid. The inertial effec

heory for train speeds of over 500km.h-1.    
 
7. CONCLUSIONS 

What can we learn from this study? What 
fi
wheel set gives us t

 which limits the maximum safe speed of the 
vehicle, is heavily dependant on the longitudinal stiffness 
of the primary suspension and the damping coefficient in 
rotation between wheels. In the new line, the so-called 
"TGV" can be displaced by another one, which has in 
everything the same characteristics unless the peculiar 
wheel set in design. It is possible to shorten the wheelbase 
for good curving performances. Therefore, the damper has 

an appreciable effect on the performance of the rail 
vehicle, all other conditions being equal, in the straight 
line as well as on the curved tracks. The revamping of the 
other rail vehicles is relevant too. 

We can achieve good stability with a relatively 
soft stiffness Kx, a parameter that affects the ability of 
self-steering round the curves. 

Kx, a moderate stiffness Ky and a small damping 
between wheels, the second critical speed is already sent 
outside the range of speeds routinely practised, that is, 
even with a worn area of contact. The damping coefficient 
in rotation is an important design parameter, making it to 
vary the critical speed. The torsional damper requires 
adjustment or servicing to insure the maximum possible 
speed in the curved tracks. This means that the vehicle 
accommodates existing channels. It is within the reach of 
networks that cannot consider the construction of a new 
high-speed line. The importance of the connections 
between body and bogies is less crucial. The vehicle 
behaviour remains satisfactory with a soft secondary 
suspension. Only the 0K  stiffness has a significant 
influence on the two critical speeds with this beneficial 
fact: the failure of the torsional damper no more 
compromising the security for a moderate stiffness Kx = 
10.0 MN.m-1.  

We note also that large wheel set masse have a 
destabilising effect as for a classic vehicle, but unlike the 
latter higher speeds are possible through an appropriate 
damping
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Notations and parameters for example vehicle 
2A  distance betwee 18.135 m n bogies centres 

a2  longitudinal distance of the springs and dampers 2 m 
a2  wheelbase of bogie 3 m 

0b  distance between the anti-yaw body/bogie device levers  1  .3 m
4Cx  longitudinal damping coefficient of the primary suspension v  ariable
4Cy  transversal damping coefficient of the primary suspension variable 
4Cx  longitudinal damping coefficient of the secondary suspension 0 N.s.m-1

4Cy  lateral damping coefficient of the secondary suspension 4x. m-1035 MN.s.

Cz  vertical damping coefficient of the secondary suspension .015 MN.s.m-1

Cφ heel set  coefficient of resistance or damping between wheels of a w variable 

2d transverse distance of the springs and dampers for the primary 
suspension 2 m 

2 d  
transverse distance of the springs and dampers for the secondary 2 m suspension 

2d’ istance between inertia centres of wheels bearings box    transverse d
(~ 2 d) 

2 e  0 semi-track of wheel set 1.5 m 
g n 9.gravitational  acceleratio 81 m.s-2

0h  position of secondary plane of suspension relative to G  0.880 m 

1h  half height of the secondary suspension 0.210 m 

2h  
transverse damper position in the secondary suspension relative to 0 m secondary plan of suspension 

0h  position of primary plane of suspension relative to G k .1  20 m
h1 half height of the primary suspension 0 m 

H vertical distance between springs points attachments of secondary 0,  suspension relative to the primary  plane of suspension 467 m

H1
ry suspension 0.670 m vertical distance between transverse dampers of seconda

relative to the primary plane of suspension 

H p
nt in bogie frame of the  distance between the lower operative poi

training device with the primary transverse plane of suspension 
4Kx  longitudinal stiffness of the primary suspension variable 
4Ky  transversal stiffness of the primary suspension variable 
4Kz  vertical stiffness of the primary suspension 4 x. -1975 MN.m
Kx4  longitudinal stiffness of the secondary suspension 4 x .175 MN.m-1

4Ky  transversal stiffness of the secondary suspension 4 x.173 MN.m-1

4Kz  vertical stiffness of the secondary suspension 4 x .53 MN.m-1

oK  levers stiffness of anti -yaw device between body and bogie 3.6 MN.m-1

2l wheel- axle set diameter 0.165 m 
m mass of a wheel set 1500 kg 
m)  mass of a wheel set box or journal bearing 250 kg 
M  mass of a body 4  3200 kg
M mass of a bogie 3020 kg 
R’ curvature radius of a rail profile 0,30 m 
R curvature radius of wheel profiles fun γection of 
or  mean radius of wheel 0.45 m 
os  longitudinal eccentricity of G  0.1 m 

V vehicle speed m.s-1

Vc critical speed m.s-1

γ0
angle of the tangential plane to the common points of contact 
wheel/rail  with the horizontal plane when the wheel set is centred in 0.025 
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the midline of the rail 
γ  e effective conicity 

xρ   the wheel set around  axis 0.7  radius of inertia of ki kiG x 3 m

zρ  radius of inertia of the wheel set around  axis ki kiG z 0.73 m 

yρ  radius of inertia of the wheel set around axis ki kiG y 0.25 m 

ϕ  kij

of the wheel Skij  
 

increment in the angle of  rotation around the axis 
relatively to an imaginary wheel coinciding with the latter and rolling 
without slipping 

yΩ  radius of inertia of the body about Gy axis 7.50 m 

xΩ  radius of inertia of the body about Gx  axis 1.27 m 

zΩ  radius of inertia of the body about Gz axis 7.50 m 

xΩ  radius of inertia of the bogie about kx axkG is 0.84 m 

yΩ  radius of inertia of the bogie about axis k kG y 1.16 m 

zΩ  radius of inertia of the bogie about axis k kG z 1.16 m 

The inertia mat of dinates system inrix  the body (C) attached to (x, y, z) coor  G is: 
 

( )
2 0

20 0
20

MΩ - Fx
I G,C = MΩy

- F MΩz x,y,z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
ubscripts 

he leading truck and k = 2 for the trailing truck).  
ling wheel set of a truck). 

S
 

 (k = 1 for tk
i (i = 1 for the leading wheel set of a truck and i = 2 for the trai
j (j = 1 for the left hand side and j = 2 for the right hand side).  
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