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ABSTRACT 

Unsteady flow of a Bingham fluid in contact with a Newtonian fluid between two permeable beds of different 
permeabilities is studied. We used the Brinkman model for this problem. Expressions for the interface velocity, velocity 
distributions in the porous and non-porous regions and mass flow rate are obtained. These expressions are evaluated 
numerically for different values of the parameters. 
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INTRODUCTION 

The problems of fluid flow through channels or 
tubes consisting of two different fluids with different 
viscosities are of growing interest because of its diverse 
applications particularly with respect to biofluids. 

In physiological flows, the boundary is typically 
coated with a fluid different property from those of the 
fluid flows. As a first step, towards understanding the 
effect of a fluid coating on the flow, it is of interest to 
extend the single fluid analysis to two fluid analyses by 
including a peripheral layer of different viscosity. Several 
researchers studied the physiological applications of two 
fluid analyses. Srivastava et al., [1] studied the peristaltic 
motion of two fluids in non- uniform axisymmetric tubes. 
They have shown the applicability of their model to the 
flow in small intestine and ductus efferentus of the 
reproductive tract. 

The fluid mechanical description of the 
esophageal peristaltic transport with the help of two-fluid 
model has been explained by Brasseur [2]. Srivastava and 
Srivastava [3] have investigated the problem of peristaltic 
transport of blood in a uniform and non-uniform 
geometries by considering blood as a two layered fluid 
model consisting of a central layer of suspension of all 
erythrocytes, etc assumed to be a Casson fluid, which is a 
yield stress fluid and a peripheral layer of plasma as a 
Newtonian fluid. Comparini and Mannucci [4] studied the 
flow of a Bingham fluid in contact with a Newtonian fluid, 
playing the role of a lubricant. 

Flows of non-Newtonian fluids with permeable 
boundaries have been the subject of research for many 
years because of their important role in engineering and 
medicine. Vajravelu et al., [5] investigated hydromagnetic 
unsteady flow of two immiscible fluids between two 

permeable beds. Beavers and Joseph [6] studied the flow 
of a viscous flow in a channel bounded below by a 
naturally permeable wall. However, in several applications 
involving one dimensional flow of immiscible fluids 
through a porous channel, the permeability of the bonding 
medium need not be small. Further, the viscous stresses in 
the porous medium may be of comparable magnitude, thus 
requiring the consideration of Brinkman model. In view of 
this Sacheti [7] discussed the flow of immiscible fluids 
through a porous channel using Brinkman model. Further 
Bugliarello and Sevilla [8] reported that blood through 
small vessels consists of two layers; one is a peripheral 
layer of plasma and the other, a core layer containing a 
suspension of erythrocytes. Hence it is interesting to study 
the flow of a Bingham fluid in contact with a Newtonian 
fluid in a porous channel using Brinkman model. 

In this paper the unsteady flow of two immiscible 
fluids in a porous channel is studied. The core contains 
Bingham fluid whereas the peripheral layer contains a 
Newtonian fluid. The effects of the permeability and the 
viscosity ratio on the flow characteristics are discussed. 
 
MATHEMATICAL FORMULATION OF THE 
PROBLEM 

We consider the flow of a Bingham fluid in 
contact with a Newtonian fluid between two permeable 
beds. The flow between permeable beds consists of three 
layers. The core layer consists of a Bingham fluid which is 
surrounded by a Newtonian fluid forming two layers. The 
peripheral layer is bounded above by a permeable bed. 
The flow in the permeable bed is governed by Brinkman 
model. For simplicity we consider half of the channel. X- 
axis is taken in the mid way in the plug flow region. 
A line perpendicular to it is taken as y-axis. 
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Figure-1. Physical model. 

 
The following assumptions are made in the analysis of the 
problem: 
 

 The porous beds are homogeneous and isotropic; 
 The flow in the x-direction is driven by an 
exponentially time dependent pressure gradient; 

 The flow is unsteady and fully developed so that all 
physical characteristics except pressure are functions 
of y and t only; and 

 The velocity field, the pressure distribution and the 
yield stress vary exponentially with time.  

 
In view of these assumptions, the basic equations reduced 
to 
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Where i = 1 corresponds to flow in zone1, 
i = 2 corresponds to flow in zone 2 
The flow in the porous region is governed by 
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The boundary conditions are given by    
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After non dimensionalisation the basic equations (1) and 
(2) and the boundary conditions (3)-(8) can be expressed 
as    
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SOLUTION OF THE PROBLEM 

In view of assumption (d), it follows that     
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S3 = 0      at y = 1 + ε                                     (25) 
 
Solving (18) and (19) subject to the boundary conditions 
(20)-(25) we get the velocities in the porous and 
nonporous regions as given below 
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By putting y = y0 in (26), we get the plug flow velocity as  
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DETERMINATION OF INTERFACE VELOCITY 

The continuity of shear stress gives the condition 
(in non dimensional form) 
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Using (30), the interface velocity is obtained as 
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MASS FLOW 

The dimensional mass flow rate per unit width of 
the channel is 
Q = Q0 ECT where Q0 = F1 + F2   (32) 
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SHEAR STRESS 

The dimensionless shear stress in the channel is 
given by 

00 0 yyxy ≤<= ττ
=a1 A1 sinhay + a1 B1 coshay- 0τ , y0 < y <h1 

=a2A2 sinha2y + a2 B2 cosha2y ,h1 < y <1   (33) 
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DISCUSSIONS 
The variation of interface velocity with the 

permeability parameter σ is calculated from the equation 
(31) for different viscosity ratios and is shown in Figure-3 
for fixed values of R1 = 3, R2 = 7, α = 0.7, ε = 0.5, τ0 = 
0.5, µ = 3. We observe that the interface velocity 
decreases with increasing permeability parameterσ. For a 
given, S0 decreases with increasing viscosity ratio µ i.e. 
the interface velocity decreases with the increase in the 
peripheral layer viscosity. 

The variation of velocity with y is calculated 
numerically for different values of the viscosity ratios and 
is shown in Figure-2 for fixed values of R1 = 3, R2 = 7, τ = 
0.2, µ = 0.3, ε = 0.3. It is observed that the velocity is 
constant in the plug flow region of the core layer. This is 
due to the presence of yield stress in the Bingham fluid. 
Also the velocity increases to a maximum value in the non 
plug flow region of the core layer for µ< 1. After attaining 
the maximum value the velocity decreases in the 
peripheral layer and porous regions with the increment in 
y.  

In the non plug flow region the velocity profile is 
a parabola for µ = 1. When µ >1, the velocity curves are 
parabolas in the non plug flow region of the core layer and 
in the peripheral layer. When the ratio of viscosities of the 
peripheral and core layers decreases, the velocity increases 
in all the three regions. 
The variation of the interface velocity for different values 
of porosity ε  is shown in the Figure-3. It is observed that 
the interface velocity decreases with an increase inε . 
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Figure-2. The velocity profiles in different regions for varying y. 
 

 
 

Figure-3. The Interface velocity (S0) for varying σ for different µ. 
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Figure-4. The interface velocity (S0) for varyingε . 
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