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ABSTRACT 

We proposed an inverse method, using a simply supported circular plate under lateral concentrated load, for the 
simultaneous determination of two elastic constants E and υ from strain data of two-element strain-gage rectangular 
rosette. Several series and different position of strain-gauges provided full field information about strain field of the plate. 
An overdeterministic approach using least-square method is implemented to fit the experimentally determined strain field 
to the theoretical solution. Accuracy of the proposed method is verified experimentally. 
 
INTRODUCTION  

Determining the elastic constants of material by 
analyzing their strain field is a known technique. Its non 
destructive and economics character, accuracy of the result 
provided, simplicity, and ease of implementation make it 
attractive for research as well as industrial environments.  

A simply supported circular plate with lateral 
concentrated load is an experimental configuration that is 
easy to realize.  With a well established theoretical strain 
field [1-3], a classical coefficient inverse approach can be 
implemented to determine elastic constants of material 
from the experimentally strain field. 

Full field strain information is obtained from two-
element strain-gage rectangular rosette, which is bonded 
point to point to the specimen in different and series radius 
position. Error during strain measurement caused by non 
linearity of the strain field and caused by transfer 
sensitivity of the strain-gauge can be easily corrected by 
well established strain measurement theory [1, 4]. 

In the previous paper the feasibility of using a 
simply supported circular plate was investigated [5]. 
However, only non linearity of the strain field was 
considered with only one radius position of the strain-
gage. 

In this paper, an inverse approach is proposed to 
determine two elastic constants from the strain field 
information provided by two-element strain-gage 
rectangular rosette. Correction of error during 
measurement, both caused by non linearity of strain field 
and transfer sensitivity of the strain-gauge is considered. 
The strain information is obtained at every point in 
different radius, which allows the use of an over 
deterministic analysis by the least-square method. The 
young modulus and poison ratio are determined 

simultaneously from the strain measured. To verify the 
proposed method, we implemented an experiment to 
determine the elastic constants of aluminum. 
 
BACKGROUND 
 
Strain field in simply supported circular plate 

Consider simply supported circular plate shown 
in Figure-1. Concentrated load P is applied on its center of 
the plates and R is radius of the support. The governing 
differential equation of plate (in bending) in polar 
coordinate is given as [1, 3]: 
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Where h is the thickness of the plate, p(r,θ) is the function 
of stress, P is the acting external force and A is surface 
area 

The boundary condition associated with equation 
(1) and equation (2) for simply supported circular plate is 
[1, 3]:  
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Figure-1. Simply supported circular plate with applied concentrated load P on its center. 
 
Solving equations (1), (2) and (3), obtains the function of 
deflection in the following form: 
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Strain field of the plate in tangential direction (εt) and in 
radial direction (εr) is given by the equation of [1, 3]: 
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The corresponding analytical form of strain field on the 
surface of the plate (z = h/2) are: 
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Graph of εt and εr are plotted in Figure-2. The support 
radius R = 105 mm and plate thickness h = 8.5 mm, the 
applied load was 200 N and the elastic constants for 
aluminum  
(E = 70 GPa and υ = 0.30) were used for the assumption. 
 

 
Figure-2. Graph of εt and εr as a function of radius r. 

Two-element strain-gage rectangular rosette  
Strain-gage is probably the most common method 

of strain measurement on experimental analysis utilized by 
many industrial and Scientifics applications [1]. In this 
method, strain-gage is deform together with the specimen, 
strain to be measured is the strain at the center of the gage, 
but the obtained measurement is the average strain of all 
gage’s wire. Equation (6) and (7) show non-linearity of the 
strain field in the form of logarithmic function of radius r, 
error will be detected during strain measurement. This 
error should be corrected by a correction factor. Consider 
two-element strain-gage rectangular rosette in Figure-3, 
theoretical strain at the center of the gage (εt and εr) are 
given by equation (6) and (7), while the measured strain is 
εt,m and εr,m. Due to non linearity of the strain field, the 
average strain in all wire are : 
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Where a = gauge length, b = gauge width, ζ distance 
between wire and N = number of wires. 
The measured strain should be corrected by correction 
factor Ct and Cr. 
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Figure-3. Two-element strain-gauge rosette 90°. 
 

This formula is obtained the using correction 
factor Cr and Ct that are closed to unity. For simply 
supported circular plate with support radius R = 220mm, 
gauge position r = 45mm, gauge length a = 29mm, 
distance between wire ζ = 0.346mm, N = 14 and υ = 0.3 
these value are Cr = 0.99 and Ct = 1.04 [5]   

Additional second correction is required to 
compensate error caused by the influence of transfer 
sensitivity kt on gage factor Sg. These corrections are in 
the following form [1, 4]: 
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Over deterministic Inverse Approach Y 
 
Sensitivity of the strain field 

Equations (6) and (7) show that the elastic 
constants E and υ are coupled non-linearly. Therefore E 
and υ can be determined simultaneously using both 
equation. This approach requires accurate and sufficient 
data of the strain in radial and tangential direction from 
some two-element strain-gages rectangular rosettes. These 
gages should be placed in proper places and in different 
radius position.  

ζ 

B X

R 
The first consideration is sensitivity of εt and εr 

for combination of elastic constants E and υ as shown in 
graph of Figure-4. These graphs used the assumption of R 
= 105mm, P = 300 N, h = 8.5mm E = 70 GPa and υ = 
0.30. It can be inferred from this graph that strain εt and εr 
will loose their sensitivity for r greater than 60 mm. 

A 

The second consideration is the sensitivity of εt 
and εr due to error caused by inaccurate position of the 
strain-gage; this is shown in graph of Figure-4b.  In this 
graph, the strain-gage are placed at radius of r = r + 1 mm. 
It is shown, that εt and εr will loose their sensitivity for 
radius of r greater than 55 mm. This means that the error 
during the strain measurement in this radius will not be 
detected.  

All graph show that strain εt and εr will increase 
excessively for r close to the plate’s center. If the load is 
Increase, this zone may reads to the plastic zone, so that 
huge error will be detected on the strain measurement. It is 
clear that for simply supported circular plate being 
considered, the strain-gage should be placed at the radius 
of less than 55 mm but not closed to the plate’s center 
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Figure-4.a. Sensitivity of strain field to       Figure-4.b. Sensitivity of strain field to 
elastics constant e and ν.                                               r = r + 1. 

 
Least-square analysis 

The least-square method has been used in a 
regression analysis. The basic assumption underlying this 
approach is that there are always differences between 
experimental result and theoretical value [6]. Base on least-
square algorithm by Sanford [5] and noting equation 6 and 
7, the relation between experimental results and theoretical 
value can be expressed as: 
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Where ,28
5.1

h

P
C

π
=  h = plate’s thickness and k 

= 1, 2, M, are the points corresponding with the location of 
the strain-gages.  
Taylor series expansion of equation 14 and 15 yield: 
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Where i am refer to the ith step of iteration. It is evident 
from equation 16 and 17 that correction should be made 
given ft,k (E, υ) = 0 and fr,k (E,υ) = 0. This fact leads to the 
iterative equation:   
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This yield: 
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The value of E and υ can be determined simultaneously by 
solving equation 6 and 7, and optimized by equation 20. 
 
 
 

0

1

2

3

4

5

6

St
ra

7  (E
-

8

9

0 10 20 30 40 50 60 70 80 
Radius (mm) 

in
5)

 

εt(r) 
εt(r+1) 
εr(r) 
εr(r+1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

St
ra

in
 (E

-5
) 

εt (0.9E, ν)
ε (E,1.1 ν)t
εr (E,ν)
εr (0.9E, ν) 
εr (E, 1.1 ν) 

0 10 20 30 40 50 60 70 80

Radius (mm)

   29 



                                                         VOL. 4, NO. 4, JUNE 2009                                                                                                             ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2009 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 

EXPERIMENTAL SET UP 
An experimental for strain measurement with two-

element strain-gage rectangular rosette was conducted to 
verify the proposed method. The specimen was a circular 
plate made from aluminum alloy shown in Figure-5b. It’s 
diameter was 215 mm and the thickness was 8.5 mm. Strain 

gages were placed at the radius of 25mm to 50 mm with 
interval of 5 mm and placed on both side of the plate, i e. at 
the compression side and at the tension side. Strain-gage 
was two-element rectangular rosette with dimension of 
length a=11mm, b=5mm, and the number of wire N=7, the 
transfer sensitivity was Kt= 0.001 and gage factor Sg=2.14 

 

 
 

Figure-5a. Experimental set up.                     Figure-5b. Specimen. 
 

A general purpose tension and compression 
machine was utilized for the experiment as shown in 
Figure-5a. The specimen was supported at radius of R = 
105 mm. To ensure the proper position for the 
measurement, a pair of fixture was used to hold the 
specimen during setting and it will be removed before 
loading. The loading was achieved by turning the lead 
screw clockwise were produced linear movement of the 
load bar. This movement was transferred through a 
spherical indenter with radius of 1 mm and assumed to be a 
point. The load was measured with an accuracy of 0.1 N by 
an electrical load cell. All strain data produced by strain-
gauges were recorded simultaneously by a precision data 
logger. 
 
RESULTS AND DISCUSSIONS  

The Load of 200 N and 300 N are applied to the 
specimen. All strain data recorded by precision data logger 
would be corrected. First correction is made by applying 

factor of correction Ct and Cr in equation 10 and the 
secondly corrected by a sensitivity factor Kt in equation 12 
and 13; material constants E and ν  were calculated by 
equation 6 and 7, the results are optimized using the least-
square algorithm in equation 20. A set of data before and 
after correction is displayed in Table-1 along with the data 
after least-square. 

Table-1 shows that the values of optimized data 
are closed to the value of corrected data. These indicate that 
the data during strain measurement were accurate.  

It was seen that in higher radius the differences 
between measured strain and corrected strain became 
lower. At R = 50 mm measured and corrected strain are 
same. This is match with the over deterministic approach 
that εt and εr will loose their sensitivity for radius greater 
than 55 mm. 

The elastic constants were evaluated are 
summarized in Table-2. 
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Table-1. Experimental data. 
 

Load Strain  Radius (strain gauge position) mm 
   25 30 35 40 45 50 

200 N Strain measured εt 38.15 35.77 33.10 30.73 28.74 26.58 
 (x 10-6) εr 21.05 18.05 15.41 12.94 10.78 8.88 
 Strain corrected εr 38.27 35.81 33.11 30.70 28.70 26.58 
 (x 10-6) εt 20.83 17.92 15.37 12.90 10.72 8.88 
 Optimized data εt 38.80 35.65 32.87 30.52 28.45 26.60 
 (x 10-6) εr 21.20 17.99 15.28 12.93 10.86 9.00 

300 N Strain measured εt 57.51 52.88 48.82 46.74 42.90 38.96 
 (x 10-6) εr 31.65 26.90 22.60 19.67 16.29 13.92 

 Strain corrected εr 57.69 52.94 48.82 46.70 42.84 38.96 
 (x 10-6) εt 31.32 26.66 22.58 19.66 16.74 14.14 
 Optimized data εt 58.05 53.26 49.21 45.70 42.61 39.84 
 (x 10-6) εr 31.78 26.99 22.94 19.43 16.34 13.57 

 
Table-2. Experimental result. 

 

Load E (GPa) υ 
200 N 70.05 ± 0.015 0.30 ± 0.005 
300 N 69.9 ± 0.03 0.290 ± 0.005 
Hand book  [7] 70-79 0.33 

 
The comparison with the hand book data for 

aluminum alloy (E = 70-79 GPa and υ = 0.33) show that 
the value of E is satisfactory but the value of υ is slightly 
smaller for load of 300 N, which confirm the validity of 
the proposed method. 
 
CONCLUSIONS 

An inverse method has been proposed to 
determine the elastic constants E andυ. The method is base 
on the theoretical strain field of simply supported circular 
plate under lateral concentrated load and strain-gage. The 
overdeterministic approach using the least-squares method 
was implemented to fit the experimentally strain data to 
the theoretical solution. A computer simulation was 
conducted to investigate the effect of variation of E and υ 
to the sensitivity of the strain field. It was found that the 
result were sensitivity of the strain field of plate being 
considered is less for radius greater than 55 mm.  

An experimental with two-element strain-gage 
rectangular rosette was conducted to verify the proposed 
method experimentally. With two strain field εt and εr, two 
elastic constants E and υ were determined simultaneously 
with enough accuracy.     
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