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ABSTRACT 

This note presents a study of the effect of time-moments and Markov-parameters on reduced order modeling and 
to identify suitable combination of time-moments and Markov-parameters to highlight the significance of retaining or near 
retaining a few terms (time-moments/Markov-parameters) in excess of r terms in arriving at a good overall time response 
approximation, where r denotes the order of the reduced-order model. To identify appropriate combination of time-
moments and Markov-parameters of the system to be retained in the reduced-order model for obtaining good overall time 
response approximation, system under consideration are of  nature: Critically-damped system, under-damped system with 
small settling time  and under-damped system with large settling time. 
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INTRODUCTION  

In general, various reduced-order modeling 
procedures do not indicate any set of criterion for 
determining the optimum order of the model which can 
approximate the system adequately. Reducing the order of 
high-order linear systems has been studied by several 
authors. Some of the reported methods require the 
computation of eigen-values and some others use certain 
optimization procedures. An attractive simplification 
procedure which requires neither optimization nor eigen-
values calculation, involving simple algebraic calculations 
of finite number of steps is frequency-domain method, 
Padé approximation. In this method, the approximants are 
so selected that some consecutive coefficients of model 
power-series expansion and those of the system coincide. 
Consider a single-input-single-output system described by 
the transfer function: 
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The problem is to determine its stable reduced-order (rth-
order) approximant: 
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The usefulness of techniques for deriving low-

order approximations of high-order systems has already 

been accepted due to the advantages of reduced 
computational effort and increased understanding of the 
original system. Consequently, a large number of time-
domain and frequency-domain system simplification 
techniques have been developed to suit different 
requirement. Amongst them, a frequency domain method 
is Padé approximation in which 2r terms of the power 
series expansion (time moments) of the high-order (nth-
order) transfer function  are fully retained in low-
order (rth-order) model . The Padé approximation 
does not guarantee the stability of the reduced-order 
model. To overcome the problem of stability, several 
stable reduction methods such as Routh approximation [1-
3], the Hurwitz polynomial approximation [4], the stability 
equation method [5] and the method using Michailov 
stability criterion [6] have been proposed. The Routh 
approximation [1-3] has the drawback of matching only 
the first r time moments ( ) of to the 

respective time moments ( ) of (in recent 
years the extension of Routh approximation techniques [1-
3] to interval systems has attracted the attention of many 
researchers [7-11]. Later Shamash [12] considered the 
effect of including some Markov parameters ( ) 
along with time moments, which is generally essential to 
ensure both initial and steady state response 
approximation. However, the technique of [12] is again 
confined to matching of only r terms (
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α  time moments 
and β  Markov parameters, where r=+ βα ). Several 
variants of Routh approximation were subsequently 
reported [13-16]; however, they again remain confined to 
only r terms matching for the purpose of preserving 
stability, a task which can be achieved arbitrarily [17,18]. 
Note that infinite numbers of stable models can be 
constructed if the objective is to match only r terms [18]. 
Thus, the basic problem is to match or near match a few 
terms in excess of r terms while preserving stability [19, 
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20]. Some attempt was made previously [21-23] to 
partially solve this problem. Singh [22] suggested a 
technique based on the successive variances of the model. 
The method [22] requires the determination of the stability 
region in terms of the free parameters. A modification of 
above technique was given by Lepeschy and Viaro [23]. 
Other closely related problems have also received 
attention [24-36]. Recently, geometric programming based 
(computer-oriented) methods [37, 38] for the solution of 
the Routh-Padé approximation problem are presented. In 
these methods [37, 38], first r time moments/Markov 
parameters are fully retained and the sum of the weighted 
squares of errors between a set of subsequent time 
moments/Markov parameters of the system and those of 
the model are minimized while preserving stability. These 
methods [37, 38] have the drawback that the question of 
finding some means (free of hit and trial) of deciding the 
values of the number of time moments/Markov parameters 
(say m) to be matched or near-matched and the weights to 
correspond to assured substantial improvement in system 
approximation as well as the question of establishing the 
existence of such values are left unresolved. 

The reasons as to why, in certain cases, model 
obtained by considering only time-moments (i.e. not 
considering Markov-parameters) may turn out to be a 
good approximant are explained presently. Thus the basic 
problem is to match or near match a few terms in excess of 
r terms while preserving stability and to identify 
appropriate combination of time-moments and Markov-
parameters of the system to be retained in the reduced-
order model for obtaining good overall time response 
approximation. It is felt that the observations presented in 
this note will be helpful in formulating the optimization 
problem [37, 38]. 
 
EXAMPLES 
 
Example l 

Consider a fourth-order Critically-damped system 
given by Younseok Choo and Kim D. [43] with transfer 
function: 
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Routh approximants according to the technique of Pal J. 
[42] takes the form: 
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(Expansion around =s ∞ ) 
The Padé approximants for third-order models can be 
obtained by considering α  time-moments and β  
Markov-parameters:  r2=+ βα  
Third-order model by taking 3=α  and 3=β  (equal 
number of time-moments and Markov-parameters) turns 
out to be:  
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The Padé approximants for third-order model by 
considering only time-moments takes the form: 
(With  6=α and 0=β ) 
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Which is clearly unstable as the coefficients of the 
denominator are not of the same sign? The Padé 
approximants  
(More Markov-parameters than time-moments with 1=α  
and 5=β ), third-order model turns out to be: 
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Comparison in terms of step and impulse 
responses of (10), (13), (17) and (20) with that of original 
system (7) has been shown in Figure-1 and Figure-2. It can 
be observed that step and impulse responses of (13) almost 
match with that of (7), while other models show deviation 
from (7). Model (10) is a poor approximant to the system 
(7) as it retains r  time-moments only. Models (20) and 
(17) retain

 
r2  terms, but these are not good approximants 

as the choice of number of time-moments and Markov-
parameters to be retained in the model are not appropriate. 
It is to be noted that model (20) retains 5 time-moments 
and one Markov-parameter ( 1 5, == βα ), while model 

(17) retains 1 time-moment and 5 Markov-parameters 
( 5) ,1 == βα . The Padé approximants for third-order 
model by considering only time-moments is clearly 
unstable as the coefficients of the numerator and 
denominator are not of the same sign (16). 

Table-1 lists errors of matching of time-moments 
and Markov-parameters of the system with those of the 
models. Here, system under consideration is critically-
damped. Model (13) which retains equal number of time-
moment and Markov-parameters ( 3 3, == βα ) is an 
improved approximant in comparison to models (10), (17) 
and (20). 

Thus, better reduced-order model for this class of 
system (critically-damped) would be one in which not 
only first r  terms are fully matched and the errors of 
matching of thr )1( +  and subsequent terms (Markov-
parameters) are minimal but also priority is given to the 
matching or near-matching of equal  number of Markov-
parameters and  time-moments. 

 
Table-1. 

 

 Eqn. (10) Eqn. (13) Eqn. (17) Eqn. (20) 
2

11 )ˆ1( tt−  0.0000 0.0000 0.0000 0.0438 
2

22 )ˆ1( tt−  0.0000 5.9049 0.0000 3.5933 
2

33 )ˆ1( tt−  0.0000 1.03477 0.0000 0.4980 
2

44 )ˆ1( tt−  0.008782 0.66788 0.0000 2.7194 
2

55 )ˆ1( tt−  6.2216 2.7635 0.0000 2.7194 
2

66 )ˆ1( tt−  0.03124 0.3480 0.0137 0.9810 
2

77 )ˆ1( tt−  1.7848 1.11289 3.1766 2.03675 
2

11 )ˆ1( MM−  0.04950 0.0000 0.03697 0.0000 
2

33 )ˆ1( MM−  0.49925 0.065823 3.6854 0.0000 
2

44 )ˆ1( MM−  0.82518 0.07922 8.0402 19.360 
2

55 )ˆ1( MM−  1.03499 0.2000 6.44749 0.015625 
2

66 )ˆ1( MM−  1.03299 0.18378 42.0574 0.7946 
2

77 )ˆ1( MM−  1.0039 0.4158 51.396 1.09456 
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Figure-1. Step responses of original system (7) and its 
models. 

 

 
 

Figure-2. Impulse responses of original system (7) and its 
models. 

 
Example 2 

Consider the following eighth-order Under-
damped system with small settling time system by 
Manigandan, Devarajan and Sivanandam [44] with 
transfer function: 
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The Padé approximants (more Markov-parameters than 
time-moments with  1=α and 5=β   third order model 
turn out to be: 
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Routh approximants according to the technique of J. Pal 
[42] takes the form: 
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The Padé approximants (more Markov-parameters than 
time-moments with 1=α and 5=β  third order model 
turn out to be: 
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Table-2. 
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Eqn.(29) 0.0000 0.0000 0.0000 1.0987 0.0000 1.9213 1.2010 1.0006 
Eqn.(32) 0.0054 1.3142 1.0508 0.9999 0.0000 0.0000 0.0000 0.0000 

 
Comparison in terms of step and impulse 

responses with that of original system (23) has been 
examined. Thus better reduced-order model for this class 
of system (under-damped with small settling time) would 
be one in which not only first r  terms are fully matched 
and the errors of matching of ( 1+r ) and subsequent terms 
(Markov-parameters) are minimal but also priority is given 
to the matching or near-matching of more number of 
Markov-parameters over time-moments. 
 
CONCLUSIONS 
 It is observed that appropriate number of time-
moments and/or Markov-parameters must be considered to 
ensure a good overall time response approximation. The 
main observations in this regard are as follows: 
 

• In case of critically-damped systems, equal number of 
time-moments and Markov-parameters are to be 
retained. 

• In case of under-damped systems with small settling 
time, more number of Markov-parameters is to be 
retained in the model than the time-moments. 

• In case of under-damped systems with large settling-
time, more number of time-moments is to be retained 
in the model than the Markov-parameters.   

 It is amply demonstrated that a stable reduced-
order approximant based on fully retaining the first r  
terms (time-moments/Markov-parameters), some sort of 
optimization with regard to the (time-moments and/or 
Markov-parameters minimization of errors of matching of 

th and subsequent terms) of the model with 
corresponding terms of the system must be inherently 
built-in the method and this feature will certainly produce 
better approximants. 

)1( +r
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