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ABSTRACT 

Monitoring of surface roughness is an essential component in planning of machining processes as it affects the 
surface quality and dimensional accuracy of machined components. In this study, the development and application of a 
machine vision system suitable for on-line measurement of surface roughness of machined components using artificial 
neural network (ANN) is described. The system, which was based on digital image processing of the machined surface, 
consisted of a CCD camera, PC, Microsoft Windows Video Maker, frame grabber, Video to USB cable, digital image 
processing software (Photoshop, and MATLAB digital image processing toolbox), and two light sources. The images of 
the machined surface were captured; analyzed and optical roughness features were estimated using the 2-D fast Fourier 
transform (FFT) algorithm. A multilayer perceptron (MLP) neural network was used to model and predict the optical 
roughness values. Tool wear index and five features extracted from the surface images were used as input dataset in 
training and testing the ANN model. The results showed that the ANN predicted optical roughness values were found to be 
in close agreement with the calculated values (R P

2
P-value = 0.9529). Thus, indicating that the proposed machine vision 

system and ANN model are adequate for online monitoring and control of surface roughness in machining environment. 
 
Keywords: measurement, surface roughness, machining, image processing, machine vision system, artificial neural network. 
 
1. INTRODUCTION 

The demand for improved flexibility, 
productivity, and product quality in modern machining 
industry has necessitated the need for high-speed, non-
contact and on-line monitoring and measurement of 
surface roughness of machine components. The quality of 
components produced is of main concern in planning of 
machining processes as it affects the surface quality and 
dimensional accuracy of the products [1]. Therefore, 
critical examination of surface roughness of the 
components is required as a quality control measure. The 
conventional method for assessing surface roughness is 
normally by using stylus type devices, which correlate the 
vertical displacement of a diamond-tipped stylus to the 
roughness of the surface under investigation. This method 
is widely accepted and has been used for many decades in 
the manufacturing industry [2]. However, this method 
requires direct physical contact with the surface of the 
workpiece, which necessitated halting of the machining 
operations in order to measure the roughness. Hence, this 
method is time consuming and cumbersome and therefore, 
not suitable for high-speed and high volume production 
systems. Another disadvantage of this method is the 
resolution and the accuracy of the instrument, which 
depends mainly on the diameter of the tip of the probe of 
the stylus device. 

As a solution to these limitations, other non-
contact methods such as atomic force microscopy, phase 
shifting interferometry, stereo scanning electron 
microscopy, and laser scanning microscopy has been 
developed with reasonable success and commercial 
application of these methods is becoming increasingly 
popular in manufacturing industry [3-5]. However, all 
these developed non-contact methods are off-line-based. 
Hence, they can not be used for on-line and real-time 

monitoring and control surface roughness in machining 
environment. 

The application of machine vision system offers 
better solution in on-line and real-time monitoring surface 
roughness. Machine vision involves the use of camera, 
frame grabber, computer system and image processing 
software to acquire, analyses, monitor, and assess surface 
roughness parameters. Machine vision systems play an 
important role in the monitoring and control of automated 
machining systems. It has generated a great deal of interest 
in the manufacturing industry [6]. Researchers have shown 
that the application machine vision has the advantage of 
being non-contact and has well faster than the contact 
methods [7]. Using machine vision, it is possible to 
characterize, evaluate, and analyze the area of the surfaces 
of machined components.  

Several investigations have been carried out using 
the non-contact optical methods for the assessment surface 
roughness. These methods are based on statistical analyses 
of the gray-scale images in the spatial domain [6]. The 
intensity histograms of the surface image have been 
utilized to characterize surface roughness and quality [8]. 
They utilized statistical parameters, derived from the grey 
level intensity histogram such as the range and the mean 
value of the distribution and correlated them with the 
centre line average (R BaB) value measured with a stylus 
instrument. Statistical methods such as co-occurrence 
matrix approach, the amplitude varying rate statistical 
approach and run length matrix approach have also been 
used to monitor the texture features of machined surfaces 
[9]. A 2-D fast Fourier transform (FFT) of the digitized 
surface image in which the magnitude and frequency 
information obtained from the FFT are used as 
measurement parameters of the surface finish has 
developed by Hoy and Yu [10].  Hisayoshi et al. [11] has 
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reported the estimation of surface roughness using a 
scanning electron microscope. They showed that the 
profile of a surface could be obtained by processing back 
scattered electron signals. Bradley et al. [12] employed a 
fiber optics sensor for surface roughness measurement. In 
their work, changes in the surface topography are 
manifested as phase changes of the incident and reflected 
light on the surface. Kiran et al. [13] has reported the 
application of machine vision system for assessing surface 
roughness. Priya et al. [14] worked on effect of component 
inclination on the surface roughness using digital image 
processing. The optical surface finish values (GBaB) 
estimated in all such cases using machine vision approach 
are compared with that obtained using conventional stylus 
method (RBa B). An artificial neural network (ANN) was 
trained and tested to predict the RBaB values using the input 
obtained from the digital images of inclined surfaces 
which include optical roughness parameters estimated and 
angle of inclination of test parts. The results indicated that 
the surface roughness could be estimated or predicted with 
a reasonable accuracy using machine vision and ANN 
model. 

Application of ANN in modeling of complex 
system variables is becoming more popular in many fields 
of engineering [15]. ANN is essentially an operation 
linking input data to output data using a particular set of 
non- linear basic functions. Since ANN modeling is a 
nonlinear statistical technique, it can be used to solve 
problems that are not amenable to conventional statistical 
methods. ANN consists of simple synchronous processing 
elements which are inspired by biological nervous system. 
The basic unit in the ANN is the neuron. A neuron is a 
simple processor, which takes one or more inputs and 
produces the desired outputs. Each input into the neuron 
has an associated weight that determines the ‘‘intensity’’ 
of the input. The processes that a neuron performs are: 
multiplication of each of the inputs by its respective 
weight, adding up the resulting numbers for all the inputs 

and determination of the output according to the result of 
this summation and an activation function. Usually neural 
networks are trained either by either supervised or 
unsupervised learning algorithms so that a particular set of 
input produces, as close as possible, a specific set of target 
outputs [16].  

The essence of this work was to develop a 
machine vision system suitable for on-line, non-contact 
measurement of surface roughness of machined 
component using feed-forward multilayer perceptron 
(MLP) artificial neural network. 
 
2. MATERIALS AND METHODS 
 
2.1 Description of the machine vision system 

The basic components of the machine vision 
system comprised of a CCD camera (Canon ZR 320 model 
with a 4.8M pixels resolution) connected with a video to 
USB cable to a Dell inspiron-6000 PC with 1.5GHz 
processor and 1.2M bites RAM. Microsoft Windows 
Video Maker version 5.1 having a 640 by 480 pixels 
resolution was used for the recording of the digital images 
and two incandescent spot light bulbs inclined at 45P

0
P to the 

horizontal were used for the illumination of the surface of 
workpiece material. The frame grabbing function available 
on the Microsoft Windows Video Maker software was 
used for capturing different frames (static images) from 
the recorded video. The captured image of the surface was 
saved in jpeg format for further analysis. Image processing 
software which includes: CorelDRAW and digital image 
processing toolbox for MATLAB were used for the 
analysis of the captured images. The machined workpiece 
was clamped using a feature to ensure that the surface was 
held perpendicularly to the view of the camera. In order to 
avoid background noise and interference the system was 
set up in a darkroom. The schematic diagram of the vision 
system is shown in Figure-1. 

 

 
 

Figure-1.  Schematic diagram of the setup of the machine vision system. 
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2.2. Estimation of surface roughness parameters 
The most important requirement in roughness 

assessment using machine vision is to extract the 
roughness features from the image of the machined 
surface. In this work, surface roughness features are 
extracted based on spatial frequency domain using the 2-D 
fast Fourier transform (FFT) algorithm. Liu and Jernigan 
[17] and Priya and Ramamoorthy [14] have reported the 
use of FFT texture features in the spatial frequency 
domain for characterization surface roughness. In this 
study, five frequency features, as proposed by Priya and 
Ramamoorthy [14] and tool wear index (TWI) [6] were 
used to characterise the surface roughness of the machined 
workpiece.  
 
2.3 The fast Fourier Transform (FFT) analysis 

Let ),( nmf be the grey level of a pixel at 
),( nm  in the original image of size N by N pixels 

centered on the origin. The discrete 2D Fourier transform 
of ),( nmf  is given as [14] 

F  ( vu, ) = ∑
∞

−∞=m
  ∑

∞

−∞=n
 ( )nmf ,

m
e 1-jω n

e 2j- ω
 (1) 

Where ω 1  and ω 2  are frequency variables and F ( vu, ) is 
the frequency domains representation of ),( nmf .  

),( vuF  Is a complex-valued function that is periodic 
both in u and v , with period 2π? Because of the 
periodicity, usually only the range –π ≤u , v ≤ π is 
displaced. The Fourier transform is generally complex, i.e. 

),(),(),( vujIvuRvuF +=        (2) 
Where ),( vuR and ),( vuI are the real and imaginary 
components of ),( vuF , respectively. The power 
spectrum ),( vuP of ),( vuf is defined by 

),( vuP  = | ),( vuF | 2 = ),(),( 22 vuIvuR +     (3) 
The normalized power spectrum, which has the 
characteristics of a probability distribution, is defined as 

∑ ≠
=

)0,0(),( ),(
),(),(

vu vuP
vuPvup      (4) 

 

Where ),( vuP  is the power spectrum of the 
image ),( nmI ? 
 
2.3.1 Major peak frequency (F1) 

The major peak frequency is defined as [14] 

F1= 2
122 )( vu +            (5) 

 

Where u and v are the frequency coordinates of the 
maximum peak of the power spectrum, i.e. 

)]0,0(),(),(max[),( ≠∀= vuvupvup      (6) 

Feature F1  is the distance of the major peak ),( 11 vu from 
the origin (0, 0) in the frequency plane. 

2.3.2 Principal component magnitude squared (F2) 
The principal component magnitude squared is 

defined as [14] 
F2= 1λ          (7) 

Where 1λ  is the maximum eigenvalue of the covariance 
matrix of ),( vup .The covariance matrix M is given by 

M = ⎥
⎦

⎤
⎢
⎣

⎡
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)var()var(

2

2
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      (8) 
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Feature F 2  indicates the variance of components along the 
principal axis in the frequency plane. 
 
2.3.3 Average power spectrum (F3) 

The average value of power spectrum is defined 
as [14] 

3F  = SvuP /),(∑      (12) 

and )0,0(),( ≠vu             
 

Where 12 −= NS  for a surface image of size N×N. 
 
2.3.4 Central power spectrum percentage (F4) 
The central power spectrum percentage is defined as [14] 

4F = %100
),(

)0,0(
×

∑∑
u v

vuP
P

        (13) 

The frequency component at the origin of the frequency 
plane has the maximum power spectrum. 
 
2.3.5 Ratio of major axis to minor axis (F5) 

The ratio of major axis to minor axis is defined as 
[14] 

5F = 2
1

21 )/( λλ      (14) 
 

Where 1λ  and 2λ  are the maximum and minimum 
eigenvalues of the covariance matrix of ),( vuP . 
 
2.3.6 Tool wear index (TWI)  

A tool wear index extracted from digital image 
processing of tool wear images is defined as [6] 

[ [ ] ]
[ ]22

5.022

)()(
)(()((
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+

+
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  (15) 
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Where fAw  is the wear area on the flank, nAw  is wear 

area on the nose, fEm is the equivalent diameter of flank 

wear, and nEm is the equivalent diameter of nose wear. 
 
2.3.7 Optical roughness  

The optical roughness value (GBaB) defined as the 
arithmetic average of grey level intensity values [14]. It 
was estimated as 

GBaB = ∑
=

n

in 1

1
|g i |        (16) 

 

Where g i  is the difference between the grey level 
intensity of individual pixels in the surface image and the 
mean grey value of all the pixels under consideration. 

The five frequency features (F1, F2, F3, F4, and 
F5) and the tool wear feature (TWI) were used as input 
parameters for the training and testing of the neural 
network, while the optical roughness was used as output 
parameter. 
 
 
2.4 Development of the neural network model 
 
2.4.1 Design of the ANN model 

Neural Network Toolbox for MATLAB® was 
used to design the neural network. The basic steps 
involved in designing the network were: Generation of 
data; Pre-processing of data; Design of the neural network 
elements; Training and testing of the neural network; 
Simulation and prediction with the neural networks; and 
Analysis and post-processing of predicted result. 
 
2.4.2 Generation of dataset 

In order to generate input/output dataset for 
training and testing of the network, series of turning 
operations were carried out and the surface of machined 
workpiece was captured and analysed using the proposed 
machine vision system. The turning operations were 
conducted on Harrison M300 lathe powered with a 2.2 
kW, 3-phase, 1500rpm induction motor. The workpiece 
material used for the turning operation was NST 37.2 steel 
bar with 25 mm diameter obtained from the Delta Steel 
Company (DSC), Ovian Aladja, Nigeria. SANDVIC 
CoromantP

®
P cutting inserts with ISO designation SNMA 

120408 were used for turning operation. The cutting 
geometry of the insert was: approach angle, 75P

0
P, side rake 

angle, -6P

0
P, back rake angle, -6 P

0
P and clearance angle, 6P

0
P. 

The cutting parameters used were: feed rate (f) = 1.0, 1.8, 
2.2 mm/rev; cutting speed (v) = 20.42, 29.06, and 42.42 
mm/s; and depth of cut (a) = 0.2, 0.4, 0.8 mm. Eight 
passes of 50 mm length of cut were taken for the different 
conditions of the cutting parameters. A total of 27 cutting 
experiments were conducted. All the cutting operations 
were conducted without the application of coolant. The 
machined surface of the workpiece was captured and 
analysed after each pass for the different cutting 

conditions. The frequency features (FB1 B, FB2 B, FB3 B, FB4 B, and FB5B), 
optical roughness and the tool wear feature (TWI) were 
extracted from the captured image of the machined surface 
and the tool insert. 
 
2.4.3 Pre-processing of data 

The input/output dataset were normalized to 
range between 0 and 1 using the ‘premnmx’ function. The 
dataset was then portioned randomly into two subsets: 
training dataset (75%), and testing dataset (25%). 
 
2.4.4 Design of the neural network elements 

Feed-forward multilayer perceptron (MLP) neural 
network with 3 layers was designed, trained and tested. 
There were six neurons in the input layer, five in the 
hidden layer, while there was one neuron in the output 
layer. The structure of the neural network is shown in 
Figure-2. 
 

 
 

Figure-2. The model of feed-forward multilayer ANN 
used to predict optical roughness. 

 
2.4.5 Training of the neural network 

The Levenberg-Marquardt (trainlm) [18], back-
propagation training algorithm, commonly used because of 
its fast convergence and accuracy was used for training the 
network. The tan-sigmoid transfer function ‘tansig’ was 
used in the hidden layer, while linear transfer function 
‘purelin’ was used in the output layer. The ‘purelin’ 
transfer function was used in the output layer.  
 
2.4.6 Testing of the ANN model 

The mean square error (MSE) between the 
predicted and the desired outputs was used as the 
performance function during the training phase. The 
training was terminated when the threshold of MSE = 
0.001 or when the number of iterations equal to 1000 is 
attained. The predictive performance accuracy of the 
network was determined based on the coefficient of 
determination (R P

2
P-value) between the predicted and the 

actual values of optical roughness of the machined surface. 
 
3. RESULTS AND DISCUSSIONS 

Typical gray-scale images, and 3-D plots of the 
pixel intensity of the machined surface obtained after 
machining with cutting parameters (v = 20.42 mm/s, f = 
0.2 mm/rev, a =1.0 mm) for passes 1, 3, and 4 for are 
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shown in Figure-3. It can be seen, that as the number of 
pass increased the surface get rougher due to increase in 
tool wear. Hence, the pixel intensity of the image of 
machined surface increased with number of pass. The 
comparison between the ANN predicted optical roughness 
and the actual values for the test dataset is shown Figure-4. 
The result showed that the ANN model was able to model 
and predicts the optical roughness with a high accuracy 
with a coefficient of determination of 95.29%.   

The extracted roughness features: F1, F2, F3, F4, 
and F5, TWI, actual optical roughness and the ANN 
predicted optical roughness for different passes at the 
cutting condition (v = 20.42 mm/s, f = 0.2 mm/rev, a = 1.0 
mm) are presented in Table-1. The absolute error between 
the actual and ANN predicted optical roughness for this 
cutting condition was less than 0.05. Thus, indicating the 
high accuracy of the proposed machine vision system and 
the ANN model for on-line monitoring of surface 
roughness of machined components. 
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(a) Pass 4 
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Figure-3. Typical gray scale image (a), and pixel intensity plot (b)of the machined surface obtained at different passes for 
cutting parameters (v = 20.42 mm/s, f = 0.2 mm/rev, a =1.0 mm). 
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Figure-4. Comparison between ANN predicted and actual values of optical surface roughness 
for the test dataset. 

 
Table-1. Calculated roughness parameters, tool wear Index (TWI), actual optical surface roughness (GBaB) and ANN 

predicted values for different passes at cutting condition (v = 20.42, f = 0.2, a = 0.1mm). 
 

No. 
of 

pass 
F1 F2 F3 x10P

6
P F4 F5 TWI 

Actual 
optical 

(GBa B) 

ANN 
predicted 

(GBaB) 

Absolute 
error 

1 43.705 2843.67 2.62 95.0604 3.9852 0.06959 0.658 0.689 0.0311 
2 40.14 2441.99 2.75 97.6947 3.4044 0.11699 0.684 0.684 0.0000 
3 43.7786 2851.00 2.46 95.3156 4.0145 0.33355 0.731 0.691 0.0403 
4 53.581 2799.62 3.07 93.5983 3.8420 1.54709 0.759 0.760 0.0010 
5 69.8231 2834.19 3.52 93.3086 3.5610 1.89721 0.826 0.838 0.0120 
6 38.4472 3243.59 4.47 93.486 3.2672 3.18722 0.831 0.835 0.0040 
7 57.1899 3087.14 4.04 91.9414 3.4885 4.55688 0.872 0.853 0.0190 
8 65.3817 2472.10 3.91 93.6729 2.8376 8.85766 0.924 0.924 0.0000 

 
3.1 Design of graphical user interface (GUI)  

A graphical user interface (GUI), was designed 
using the GUI toolbox for MATLAB P

®
P for ease application 

of the vision system and the ANN model in analysing 
surface roughness of machined components.  The GUI was 
divided into parts: input, and output section. The input 
section consists of a field text where the file name of the 
captured surface image to be analysed is entered. On 
pressing the ‘acquire image’ button, the captured surface 
image is loaded to the graphic window and the file name 
of the image is also displayed on the window. The 
frequency coordinates of the maximum peak of the power 
spectrum U and V (Eqn. 5) of the image is entered and the 
FFT of the image is executed by pressing the ‘FFT 
MSEH’ button. The roughness features F1 to F7, actual 
optical roughness and ANN predicted roughness are 
estimated by pressing   the ‘analyse’ button. The values of 
the roughness features F1 to F5, and the ANN predicted 
optical roughness are displayed in the different designated 

numeric field box, while the corresponding degree of 
roughness F6 and F7 of the surface are displayed in the 
different designated numeric field box. 

An illustrative example of the application of the 
GUI for the analysis of surface roughness for cutting 
parameter (v = 20.42 mm/s, f = 0.2 mm/rev, a =1.8 mm) is 
shown in Figure-4. The captured surface image of the 
workpiece after pass three (3) was saved with the file 
name ‘ga11. ipg’. For this image, the extracted features 
were:  F1 (44.5997), F2 (2842.678), F3 (2.61785), F4 
(95.0604), F5 (3.98523), F6 (709745), F7 (19.2445), and 
ANN predicted optical roughness, GBaB (0.657669). 
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Figure-4. GUI developed for measurement of surface 
roughness. 

 
4. CONCLUSIONS 

A machine vision system suitable for on-line, 
non-contact measurement of surface roughness of 
machined component using feed-forward multilayer 
perceptron (MLP) artificial neural network has been 
developed and applied for measurement of surface 
roughness of NST 37.2 steel workpiece machined with a 
SANDVIC Coromant cutting inserts with ISO designation 
SNMA 120408. The study clearly demonstrated the 
feasibility of using machine vision and ANN model in on-
line monitoring and measurement of surface roughness of 
machined surfaces. The machined surface roughness 
image was captured and transformed using 2-D fast 
Fourier transform (FFT) algorithm. Five roughness 
features were extracted from the image and actual optical 
roughness was estimated. ANN model has been used to 
model and predict the optical roughness using the tool 
wear index (TWI) and five optical features extracted from 
the images were used as inputs to the network. The ANN 
predicted roughness values were found to be in close 
agreement with the actual optical roughness with RP

2
P-value 

= 0.9529. The proposed machine vision and ANN model 
can be used with acceptable accuracy for on-line 
monitoring of surface roughness of machined components. 
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