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ABSTRACT 

In this article, a robust, stable and fast calculable controller that reduces the variance to the minimum for minimal 
and non-minimal phase Linear Time Invariant (LTI) system is proposed. The calculation is based on an algorithm that 
overcomes the complexity of conventional methods. The algorithm utilizes Diophantine Equation to obtain over- 
parameterized transfer function polynomial forms that contribute to the variance reduction. It analytically proves that 
increasing the order of the parameterized controller’s coefficients makes the variance converge to the minimum, while 
maintaining the same simplicity of calculation. Simulated examples for different LTI models support our findings. 
 
Keywords: output variance, over-parameterization, pole-placement.  
 
1. INTRODUCTION 

Almost all practical control systems are often 
affected by various external disturbances [14, 7, 15], 
which can deteriorate t h e  performance of feedback 
control Linear Time Invariant (LTI) systems. Previous 
works in the field have addressed the various aspects of 
disturbance rejection s u c h  a s  optimal disturbance 
rejection [8], asymptotic disturbance rejection [18], 
optimal disturbance rejection using PID controller [13], 
disturbance rejection with saturated actuator [9], and 
practical application of altitude tracking and 
disturbance rejection [2]. 

In the domain of disturbance rejection, Minimum 
Variance (MV) was early introduced in the valuable work 
of Astrom and Wittenmark [1]. Another detailed 
account was written in 2006 by Landau and Zito [15]. 
Minimum Variance regulation only applies to plants 
having a discrete-time model with stable zeros. 
Generalized Minimum Variance (GMV) came to the scene 
in treating plants with unstable zeros. It is an extension to 
the existent minimum variance strategy [15]. Pioneers 
have developed the technique of Generalized Minimum 
Variance (GMV) [3 and 4]. Several studies have 
implemented the GMV technique, such as self-tuning PID 
controller based [19] and a self-tuning controller for 
minimum and non-minimum phase systems [16]. Ertunc et 
al., [6] did a comparative study between the performance 
of GMV and PID controller. However, the main limitation 
of this technique is that the existence of a solution to a 
stable closed loop system is not guaranteed especially in 
the case of several unstable zeros. Thus, the solution is 
always an asymptotically stable closed loop system [15, 
12]. 

These findings motivated other researchers to 
develop LQG feedback control [17, 12]. However, LQG 
control scheme exhibits heavy calculation load [17] in 
addition to no guarantee to the conventional desired gain 
and phase margin [11]. 

Our objective in this work is to develop a 
controller that features fast calculated coefficients and 

robustness against system time delay and pole locations. 
The proposed controller can perform reduced variance 
without the need to factorize the zeros.  

The concept of over-parameterization is adopted 
to ensure variance reduction. Earlier works have utilized a 
similar concept [10]. It consists of developing a single 
structure controller that track reference signal of LTI 
system in addition to achieving variance reduction on the 
output. Halpern [10] has always assumed a unity 
characteristic equation and heuristically, his developed 
algorithm reduces the output variance after a careful 
tuning to a weighting matrix. Davies and Zarrop [5] 
worked on over-extending the minimal solution of pole 
placement, using Diophantine Equation, in order to 
achieve variance reduction of LTI system. They 
analytically proved that over-extending the parameter of 
its proposed controller to infinity, the variance decreases 
to a variance of an LQG controller [5]. 

Our approach to the problem is to adopt a 
Diophantine equation in order to calculate the over-
parameterized coefficients for the controller of an 
ARMAX model. The minimum variance for a general 
system output that may include unstable poles is 
analytically derived. The result is truncated so that it leads 
to dual Diophantine Equations, that both can be over-
parameterized. This step is essential in overcoming 
complexity of calculating the H2 norm of the minimum 
variance. The calculated polynomial that minimizes the H2 
norm of the first over-parameterized polynomial also 
minimizes H2 norm of the second, which leads to the 
solution. The proof is realized by introducing a sub-
optimal solution and analytically proving that its over-
parameterized H2 norm converges to zero. This causes the 
optimal solution to converge to zero as well, because the 
optimal H2 norm is sandwiched by the sub-optimal norm 
from above. 
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2. PRELIMINARIES ON VARIANCE 
    MINIMIZATION 

A linear single-input single-output system 
represented by an autoregressive moving average with 
auxiliary input ARMAX model of the form 
 
A(q-1)y(t) = q-dB(q-1)u(t) + C(q-1)e(t)                   …(1) 
 

where, 
 

1 1
1( ) 1 ... a

a

n
nA q a q a −− −= + + + q  

 

1 1
0 1( ) ... b

b

n
nB q b b q b q−− −= + + +  

 

1 1
0 1( ) ... nc

ncC q c c q c q− −= + + + −  
 

Polynomials A (q-1) and B (q-1) in equation (1) 
are the denominator and numerator of the ARMAX system 
respectively. The unit delay is represented by the variable 
q-d. The command signal, u (t), is the control signal that 
excites the ARMAX model, described in the discrete time 
t. The output of the system is denoted as y (t). The system 
is described in discrete time domain t. a source of white 
spectrum source is defined with the random signal, e (t). 

A general controller for regulation is defined in 
equations (2), (3) and (4) with the two polynomials G (q-
1) and F (q-1) that denote the controller transfer function 
numerator and denominator. Figure-1 presents the general 
form of ARMAX model with noise source, e (t) and the 
backward shift operator, q, is replaced with its equivalent z 
operator. 
 

    … (2) 
 

Where 
 

             … (3) 
                     … (4) 

 

 
 

The feed-forward polynomial H (q-1) is normally 
chosen to give a good set-point tracking. In this paper, H 
(q-1) is normally chosen so that the overall DC gain for 
the closed loop system is unity. 

Let the polynomial T (q-1) denotes the 
characteristics equation of the sys- tem (i.e. the 
denominator of the closed loop transfer function). 

Therefore, T (q-1) is described according to the following 
Diophantine equation 
 

        … (5) 
 

Equation (5) has a unique solution if 
 

                            … (6) 
 

Let F0 (q-1) and G0 (q-1) be the minimal order for the 
controller satisfying equations (5) and (6). The set of all 
controllers that satisfy equation (5) is given by 
 

                                           … (7) 
 

                                                         … (8) 
 

The operator q-1 has been omitted for simplifying 
writing the equations. Polynomial Pnp in equations (7) and 
(8) denotes a polynomial of degree nP that we used to 
extend the original solution of F (q-1) and G (q-1). 
Substituting equations (7), (8), and (5) in (1) and (2) 
 

       … (9) 
 

                          … (10) 
 

From equations (9) and (10), the input and the 
output variance are given by 
 

 
 

                                        … (11) 

 

 
 

                                                       … (12) 
 

The objective is to minimize a cost function that 
defines the output variance, described in equation (11). 
The output variance is a function of the coefficients of . 
A description of a cost function is described as 
 

                                        … (13) 

 

[5] proposed a technique that computes the 
optimum  , but the computation is not tractable because 
it requires the computation of mathematical 
expectation.[10] proposed a simpler method to reduce the 
output variance in equation (13) by letting equation (5) 
equals to one. This proposition can serves only certain 
cases. 

The minimization of the cost function in equation 
(13) fulfills the objective if the reference signal of the 
closed loop system equals to zero. In this paper, we deal 
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with the minimization of the output variance in equation 
(13). Precisely, we deal the minimizing of the norm of the 
nominal control sensitivity transfer function, whether the 
actual plant is minimum or non-minimum phase. 
 
3. VARIANCE MINIMIZATION AND 
    OVER-PARAMETERIZATION 

Let polynomial B be factorized as B = B+B-, 
where B+ and B- denotes the stable and unstable factors of 
the polynomial respectively. Let  to denote the 
normalized reciprocal of B (i.e. ) 
 
Lemma 1: The stable rational transfer function PnP that 
minimizes equation (13) is given by  
 

                                                        … (14) 
 

Where polynomial Q is obtained from the Diophantine 
Equation defined  
 

                                        … (15) 
 

Where, 
 

 
 

And  
 

 
 

Proof 
Expanding the expectation function equation (11) 

into two terms and decomposing the first term of the result 
into stable and causal, and unstable and non-causal terms.  
 

 
 

                                                   … (16) 
 

Where 
 

                                        … (17) 
 

This decomposition requires the solution of equation (15). 
 It will be proved later the minimum output 
variance is a function of R.  Using equation (17), 
equation (16) is rewritten as 
 

 
 

                          … (18) 
 

Introducing . Using 
equation (18) with the definition of W and 
arranging , the cost function of equation (13) is 
expressed  
 

 
 

 … (19) 
 

After interchanging the operator q with z, it is 

important to notice that  that is a 

constant. Therefore the term KK* in equation (19) can be 
taken outside the integration. Since stable solution of  

is sought in equation (18), W must be stable, hence W* has 
all its poles outside the unit circle. Applying Cauchy 
Theorem, equation (19) becomes 
 

           … (20) 
 

The first term in the integration is function in P 
and independent of the second term. Therefore, 
minimizing equation (20) is achieved by letting W equals 
to zero, which yields to describe  that minimizes the 
cost function of equation (13) as depicted in equation (14). 
The minimum cost function is then described as 
 

 
 

                                                            (21) 
 

Considering applying the control feedback 
system, , where polynomials Q and R 
are the solutions of equation (15). According to [1], the 
polynomials Q and R are the solution for the General 
Minimum Variance problem GMV. Using equation (9) 
and the result of equation (21), the closed loop system 
after the application of high order pole-placement 
controller becomes 
 

                          … (22) 
 
4. REDUCED VARIANCE USING 
    OVE-PARAMETERIZED CONTROLLER 

In order to simplify the calculation, [10] neglects 
the effect of the characteristics equation, T, in equation 
(11) and minimized the cost function 
 

                          … (23) 
 

Equation (23) can be described as a sum of 
coefficients squares of . [10] Argued 
heuristically that the proposed method reduces also the 
output variance. However, by neglecting the effect of 
polynomial T, the method works only for restricted cases 
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when T = 1. The difficulty for other choice of T is that the 
formulation of equation (11) into a set of linear equations 
in term of unknown coefficients of polynomial as proved 
by [20] is computationally cumbersome. The developed 
method here retains simplicity comparing with the 
algorithm proposed by [10] and overcoming its limitation. 
From equation (21), the cost function in equation (13) is 
minimized when 
 

                                        … (24) 
Now, letting  
 

                                                        … (25) 
 

Where  is an  order polynomial and . It is 

important to recall that  is the normalized reciprocal of 
the unstable part of polynomial B. Because the derivation 
of the proposed controller is relying on this fact in 
equations (24) and (25), this leads to the proposed 
controller is applicable to non-minimal phase systems. 
Equation (25) is an approximation of the long division of 
equation (24). The output variance can be computed as the 
sum of square of  coefficients. Obviously, it is 
desired to minimize these coefficients because this will 
result in minimum output variance. Specifically, finding 
the coefficients of that minimizes equation (11), leads 

also to minimize the norm . Using equation 

(25), equation (24) becomes a Diophantine Equation. 
 

                                        … (26) 
 

Equation (26) can be reconfigured using Sylvester’s 
Theorem into a set of linear equations illustrated in 
equation (27) and with a unique solution described in 
equation (28) 
 

                                                                     … (27) 
 

           … (28) 
 

The minimal order solution is of no interest since 
is over extended by the coefficients of . If nP and  is 
chosen bigger than equation (28), then the solution of 
equation (27) is no longer unique because number of 
variables are more than number of equations. It is 
remarkable that once nP is selected,  
from . This extra degree of freedom can 

be exploited to reduce . The design problem 

can be formulated as a simple convex optimization 
problem to choose nP greater than the value set in equation 
(28) and minimizing subjected to the criteria in equation 
(27). A proposed algorithm for synthesizing the controller 
is introduced.  

Let  and  are the minimal order solution to 
equation (26). Therefore, the general solution using 
Diophantine equations is defined by 
 

                                                            (29) 
 

                                                            (30) 
 

Polynomial  represents  and polynomial 
 is a polynomial with arbitrary coefficients. According to 

equations (24) and (25), it is clear that choosing , which 
minimizes (30) leads to the norm minimization of (29). 
The minimization mechanism is adopted in a similar 
approach of [10]; we obtain the least square solution of the 
equations that are result from equating coefficients of 
similar power in (30). More precisely, by differentiating 
all the coefficients of  and find  that makes the 
differentiated terms equals to zero. Defining the 
polynomial 
 

 
 

                                                            (31) 
 

The dependency on operator q-1 is omitted for 
simplicity and . Expanding the sum of equation 
(31) yields 
 

           … (32) 
 

The solution for  that minimizes equation (32) 
is expressed  
 

                                                       … (33) 
 

 
 

Let  denotes the solution of equation (33) and 
denotes the polynomial  after 

substituting in equation (30).Therefore, polynomial 
 is considered the minimal norm in L2 space and 

the following bound is valid 
 

                                        … (34) 
 

Where is a sub-optimal solution to be chosen 
later and equation (34) is interpreted that the norm of any 
suboptimal solution is greater or equal to the norm of the 
optimal solution for any order of . The importance of 
equation (34) will be clarified in the next section.  
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4.1 Analytical proof for variance reduction 
In this section, we introduce an analysis that 

describes the optimal solution of the norm in equation (30) 
as a function of degree .  
 
Lemma 2 

The norm in L2 for the over-parameterized  
suggested in (32) converges towards the minimum 
variance as the order increases towards infinity, 
regardless of the characteristics equation T in (5). 
 
Proof 

Defining the fraction  from equation (24) as 
a summation series denoted  
 

 
 

                                         … (35) 
 

Where are real coefficients and;  therefore, one 
concludes 
 

                                                       … (36) 
 

The objective is to develop polynomial , 
which is defined as in equation (30) that has its norm L2 
approaches the optimal norm,  of equation (34). 

Polynomial  is determined using least square method. 
Adopting an approach inspired from the work of [5], we 
define a suboptimal solution of the problem. According to 
(31), let 
 

                          … (37) 
 

Arranging  and 
interchanging the operator q with the discrete operator z. 
The infinity series in equation (37) can be represented by a 
finite and infinity series respectively.  
 

                                        … (38) 
 

 

                                             (39) 
 

Substituting equations (38) and (39) into equation 
(31) with a suboptimal solution  in 
equation (29) yields 
 

 
 

           … (40) 
 

The term, , is the order of the polynomial . It 

is important to highlight that is a stable polynomial. 
From equation (38), it is clear that the norm L2 of is a 

function in . Investigating the norm of in L1 and find 

the relationship with leads to understand the behavior of 
the norm of in L2. Defining  
 

                          … (41) 
 

Let  and evaluating the term  

for  using Cauchy integral of radius  centered on 
the origin, satisfying . 
     

           … (42) 
 

Recalling that  
 

                          … (43) 
 

Where, LC is the path along the integration taken. 
The path in our analysis is the circumstances of the unity 
circle. 
 

  (44) 
 

     … (45) 
 

From equation (38), we can relate the term 
 as a function of and . 

 

                          … (46) 
 

According to equation (46) and taking into 
account (37), equation (45) is reformulated as  
 

 (47) 
 

Because the term  is a finite 
summation and its Cauchy integral equals to zero. Taking 
the norm in L2 of equation (47) and substituting it in 
equation (40) 
 

 
 

                                                            (48) 
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Equation (48) proves that the norm of the sub-
optimal solution tends to zero as the order of n tends to 
infinity. Recalling the lower bound in equation (34), as the 
norm of sub-optimal solution goes to zero, the norm of the 
optimal solution tends to zero as well as n tends to infinity. 
Consequently, the optimal solution tends to zero also for 
the same nP. A suitable algorithm that is used to design the 
higher order controller is illustrated. 
 
Algorithm 
Step 1 Select T to give the desired servo behavior  
Step 2 Solve the pole-placement equation (5) to obtain the 
minimal order solution F0 and G0. 
Step 3 Solve for the minimal P0 and  using equation (26) 
Step 4 Select the desired n that will give  
Step 5 Find  that minimizes  according to 
equations (310, (32), and (33). 
Step 6 Obtain  using equation (29) 
Step 7 Form the higher order controller using equation (9).  
It is important to note that the spectral factorization and 
explicit formulation on the time delay are not required in 
this algorithm. Once P0 and  are computed, only steps 

four to seven are required to be repeated if different higher 
order controller is needed to improve the variance 
reduction. This feature is useful for an adaptive scheme of 
the on-line supervisor is used to tune the order of the 
controller to get the desired variance reduction.  
 
5. RESULTS AND DISCUSSIONS 

In this section, two simulated examples are 
introduced to demonstrate the variation of the variance as 
a function with the order of polynomial  Firstly, an 
example to consider the design of a pole placement to a 
plant described with a non-minimum phase and a second 
example demonstrates the implementation of the algorithm 
with a non-minimum-phase system model. The two 
models are configured as ARMAX models 
 
5.1. Non-minimal phase model 

A non-minimal ARMAX model is introduced. 
The locations of the zeros are 0, 3, and 0.201. The set of 
characteristics equation is in (50). The result of the 
measured output variance using the proposed algorithm is 
compared with the work of Halpern [10]. 

 

… (49) 
 
The characteristics equation proposed  
 

                                        … (50) 
 

The minimal degree solution of F (q-1) and G (q-

1) are denoted by F0 (q-1) and G0 (q-1) respectively and are 
found using the Diophantine Equation (5)  
 

 
 

  … (51) 
 

Calculating the output variance of the system 

with minimal order solution using  is 330.335. 

Choosing  equals to 0, 1, 4, 9, and 19 to form high 
order controller as in Table-1, results with the following 
output variance calculation 
 

Table-1. Variance of zero responses with increasing nP. 
 

  
  

1 0 8.853 1.0423 
2 1 2.6109 1.0423 
5 4 2.3982 1.0423 

10 9 2.3982 1.0423 
20 19 2.3982 1.0423 

 

From Table-1, it is noticed that increasing the 
degree of decreases the variance of the system’s output 
towards the minimal (i.e. minimum variance of 1) 
Adopting the algorithm that was developed by [10] for the 
same system with an initial selection of characteristics 
equation’s poles 
 

Table-2. Variance of zero response with the algorithm 
proposed by Halpern [10]. 

 

  
  

1 0 6.928 2.4 
2 1 9.1262 2.4 
5 4 11.9942 2.4 

10 9 12.5732 2.4 
20 19 12.4657 2.4 

 
The measure of the variance according to the 

order of nP is presented in Table-2.using the algorithm 
proposed by [10]. Because of a non-unity characteristics 
equation, the variance, in Table-2, is not linearly collated 
with order of the order of nP. 
The calculation of minimum variance, from equation (21) 

= 2.4, confirms the results that the 

algorithm achieves minimum variance.  
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5.2. Minimal phase model 
Consider the stable plant  

 

 
 

      … (52) 
 

With a characteristic equation  
 

 
 

Solving the pole-placement problem of equation 
(5) yields to a minimal order F0 (z-1) and G0 (z-1) 
 

 
 

 
 

The minimum variance that the system can attend 
is calculated from equation (21) and equals to Jmin = 1.0. 
Measuring the output variance and arranging a similar 
Table as in Table-1. It is important to highlight that the 
output variance when using minimal order of F and G 
equals to 125.2636.  
 

Table-3. Variance of a zero response with increasing nP. 
 

  
  

1 0 10.5518 1.0 
2 1 5.9319 1.0 
5 4 1.548 1.0 

10 9 1.0152 1.0 
20 19 1.0 1.0 

 
Table-4. Variance of zero response with the algorithm 

proposed by Halpern [10]. 
 

  
  

1 0 4.4711 1.0 
2 1 4.9705 1.0 
5 4 4.3877 1.0 

10 9 4.6961 1.0 
20 19 4.8875 1.0 

 
Utilizing the algorithm of Halpern [10] yields to 

the results illustrated in the Table-4. From Table-4, the 
algorithm of Halpern [10] lacks the consistency in 
reducing the variance with increasing the order of 
polynomial F. This is explained due to the neglecting of 
polynomial T in setting the constraint minimization.  
 
 

6. CONCLUSIONS 
This work demonstrates a new method to 

determine the coefficients of a Reduced Variance 
Controller for a linear time invariant system. The 
algorithm is applicable for both minimum and non-
minimum phase systems. This novel method retains a 
consistent reduction in the variance. 

It has been proven analytically that increasing the 
order of the coefficients using the prescribed algorithm 
decreases the variance of the system output towards the 
minimum variance.  
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