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ABSTRACT 
 Peristaltic motion of a Herschel-Bulkley fluid in a two-dimensional channel with wall effects is studied. 
Assuming that the wave length of the peristaltic wave is large in comparison to the mean half width of the channel, a 
perturbation method of solution is obtained in terms of wall slope parameter, under dynamic boundary conditions. Closed 
form expressions are derived for the stream function and average velocity and the effects of pertinent parameters on these 
flow variables have been studied. It has been observed that the time average velocity decreases with yield stress and power 
law index. Further, the time average velocity increases with rigidity in the wall. It has been observed that trapping occurs 
and the size of the trapped bolus increases with power-law index.  
 
Keywords: peristaltic transport, herschel-bulkley fluid, yields stress, dynamic boundary conditions. 
  
INTRODUCTION 

Peristaltic motion is a form of fluid transport 
induced by a progressive wave of area contraction or 
expansion along the length of a distensible tube containing 
fluid. This kind of fluid transport occurs in many 
biological systems such as transport of urine through 
ureter, the swallowing process through the esophagus, 
food mixing and chyme movement in the intestine, blood 
flow in cardiac chambers etc. Also biomedical instruments 
such as heart lung machine use peristalsis to pump blood 
while mechanical devices like roller pumps use this 
mechanism to pump slurries and other corrosive fluids. 

Significant initial investigations on mathematical 
models of peristalsis were done by Fung and Yih [1] and 
Shapiro et al., [2]. After these studies, several analytical, 
numerical and experimental attempts have been made to 
understand peristalsis in different situations for Newtonian 
and non-Newtonian fluids. Some of these studies have 
been done by Girija Devi and Devanathan [3], 
Radhakrishnamacharya [4], Misery et al., [5], Mishra and 
Rao [6], Srinivasacharya et al., [7], Hayat et al., [8], 
Kothandapani and Srinivas [9] and Sobh [10]. 

Though the Newtonian and several non-
Newtonian models have been used to study the motion of 
blood, it is realized (Blair and Spanner, [11]) that 
Herschel-Bulkley model describes the behavior of blood 
very closely. 

Herschel-Bulkley fluids are a class of non-
Newtonian fluids that require a finite stress, known as 
yield stress, in order to deform. Therefore, these materials 
behave like rigid solids when the local shear is below the 
yield stress. Once the yield stress is exceeded, the material 
flows with a non-linear stress-strain relationship either as a 
shear-thickening fluid, or a shear-thinning one. Few 
examples of fluids behaving in this manner include paints, 
food products, plastics, slurries, pharmaceutical products 
etc. 

Vajravelu et al., [12] considered peristaltic 
pumping of a Herschel-Bulkley fluid in a channel. Maruthi 
Prasad and Radhakrishnamacharya [13] discussed 

peristaltic transport of a Herschel-Bulkley fluid in a 
channel in the presence of magnetic field of low intensity. 
Recently Amit Medhavi [14] studied peristaltic pumping 
of a Herschel-Bulkley fluid under long wavelength and 
low Reynolds number approximation.  

However, the interaction of peristalsis with 
elastic properties of the wall has not received much 
attention. Mittra and Prasad [15] studied peristaltic 
transport in a two-dimensional channel considering the 
elasticity of the walls under the approximation of small 
amplitude ratio with dynamic boundary conditions. 
Srinivasulu and Radhakrishnamacharya [16] studied the 
same problem under long wavelength approximation. 
Muthu et al., [17] extended the analysis of Mittra and 
Prasad [15] to micropolar fluids. 

Hence, a mathematical model is presented in this 
paper to investigate the influence of wall effects on the 
peristaltic motion of a Herschel-Bulkley fluid in a two-
dimensional channel using the dynamic boundary 
conditions. A perturbation method of solution has been 
obtained in terms of wall slope parameter assuming that 
the wave length of the peristaltic wave is large in 
comparison to the mean half width of the channel.  Closed 
form expressions for the stream function and average 
velocity have been derived and the effects of various 
parameters on these flow variables have been studied. 
 
FORMULATION AND SOLUTION OF THE 
PROBLEM 

Consider the flow of Herschel-Bulkley fluid 
through a two dimensional channel of uniform cross 
section with flexible walls on which are imposed traveling 
sinusoidal waves of long wave length. A cartesian 
coordinate system (x, y) is chosen with x-axis aligned with 
the central line of the channel and in the direction of 
propagation of waves. The traveling waves are represented 
 

)(2sin),( ctxadtx −+=
λ
πη ,      (1) 
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Where d is the mean half width of the channel, t is the 
time, a is the amplitude,λ  is the wave length and c is the 
speed of the traveling waves (Figure-1). 
 

 
 

Figure-1. Geometry of the problem. 
 
The governing equation of the motion of the flexible wall 
may be expressed as 
 

0)( ppL −=η         (2) 
 

where L is the operator, which is used to represent the 
motion of stretched membrane with damping forces such 
that 
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Here T is the tension in the membrane, m is the 
mass per unit area and C is the coefficient of the viscous 
damping force. 

It is assumed that 00 =p and the channel walls 
are inextensible so that only their lateral motions normal to 
the unreformed positions occur. Thus, the horizontal 
displacement is assumed to be zero. 

The equations governing the flow of Herschel-
Bulkley fluid for the present problem, under long 
wavelength approximation and neglecting inertia terms, 
are (Vajravelu et al., [12], Maruthi Prasad and 
Radhakrishnamacharya [13]) 
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Where yxτ  for the Herschel-Bulkley fluid is given by 
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Where p is the pressure, µ and (n≥1) are consistency and 
flow behavior indexes, respectively and representing the 
non-Newtonian effects. 

Relation (6) corresponds to the vanishing of the 
velocity gradient in the region in which 0yx  ττ ≤  and 
implies a plug flow, when shear stress in the fluid is very 
high (i.e. 0yx ττ ≥ ), the power law behavior is indicated. 
It is noted that above Herschel-Bulkley fluid model 
reduces to Bingham fluid when n=1; to power law fluid 
when 00 =τ   and to Newtonian fluid when n=1 

and 00 =τ . It is important to mention that the plug core 

width increases with yield stress 0τ  and also with the flow 
behavior index n. 
The corresponding boundary conditions are 
                                  

, yat      0 η==u                     (7) 
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The dynamic boundary conditions at the flexible walls, 
following Mittra and Prasad [15] can be written as 
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Further, defining the stream function ψ  by 
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and the following non dimensional quantities 
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equations (4 - 9), after dropping the primes, can be written 
as 
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where yxτ  and 0τ  are dimensionless shearing and yield 
stress respectively. 
The boundary conditions are 
 

0yat        0     ;0 yy === ψψ ,    (14) 
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Where ( )d
a=ε  is the amplitude ratio,  
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are the non-dimensional elasticity parameters. 
 The non-dimensional quantities E1, E2 and E3 are 
related to the wall motion through the dynamic boundary 
condition (16). The parameters E1 and E2 respectively 
represent the rigidity and stiffness of the wall. The viscous 
damping force in the wall is represented by E3. In 
particular, E3=0 implies that the walls move up and down 
with no damping force on them and hence indicates the 
case of elastic walls (i.e. E3=0). 
Solving Equation (12) subject to the boundary conditions 
(14)-(16), we obtain the expression for velocity as 
 

 ( ) ( )[    ,
)1(

1 1
0

1
0

++ −−−
+

= kk PyP
kP

u ττη ]   (17) 

where .1    
x
p-P 

n
kand =

∂
∂

=  

 

We find the upper limit of the plug flow region by using 
the boundary condition that 0    0 yyatyy ==ψ  so 

that
P

y 0
0

τ
= . 

 Also, by using the condition ηττ η == yatyx     , we 

obtain
η
τ 0=P . 

Hence   
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The expression for the fluid velocity in the plug 
flow, , region is obtained by substituting y = ypu 0 in 
equation (17) and this obviously satisfies equation (13) in 
the plug flow region. 
Hence, we get 
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Integrating equations (17) and (19) and using the 
conditions 0=pψ  at y = 0 and pψψ =  at y = y0, we 
obtain the stream function as 
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and 
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Averaging equations (17) and (19) over one period of the 
motion yields the average velocity  u  as 
 

∫=
1

0

 dtuu       (22) 

 

It can be noticed that when the yield stress 00 =τ  and 
power-law index n =1, i.e., when fluid becomes 
Newtonian, the expressions for u  and ψ  reduce to the 
corresponding expressions for Newtonian fluid as given by 
Srinivasulu and Radhakrishnamacharya (Srinivasulu and 
Radhakrishnamacharya [16]). 
 
RESULTS AND DISCUSSIONS 

In this study, the effects of wall parameters, yield 
stress and power-law index on the peristaltic motion of a 
Herschel-Bulkley fluid are investigated. In order to discuss 
the effects of various parameters on the flow variables, the 
time average velocity u  has been calculated for various 
values of these parameters. Mathematica software has 
been used for the numerical evaluation of the analytical 
results and some important results are graphically 
presented in Figures 2 to 17. 

The average velocity for the present problem 
depends upon the following important non-dimensional 
quantities. 
 

a) E1, E2 and E3, the wall parameters which characterize 
the viscoelastic behavior of the flexible walls.  

b) The power-law index n determines the non-linear 
behavior of the fluid, for n<1, it describes shear 
thinning behavior and for n>1, shear thickening. 

c) The yield stress 0τ . 
 The effect of the rigidity parameter for the 
membrane E1 on the time average velocity u for the case 
of no stiffness ( 02 =E ) and no viscous damping in the 
channel wall ( 03 =E ) is shown in Figures 2 and 3. It is 

seen that the time average velocity u  increases with 
rigidity (E1) but decreases with power-law index n.  
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Figure-2.  Effect of E1 on average velocity  u  

(ε =0.6, E2=0, E3=0.0, n=3, 0τ =0.2). 

 

 
 

Figure-3.  Effect of E1 on average velocity  u  (ε =0.6, 
E2=0, E3=0.0, n=5, 0τ =0.2). 

 
Figures 4 to 6 show that the time average 

velocityu  increases with the rigidity of the membrane 
(E1) with stiffness ( ) and without stiffness 
( ) in the channel wall and also in the presence 
( ) and absence (

02 ≠E
02 =E
03 ≠E 03 =E ) of the dissipative 

effects. 
 

 
 

Figure-4.  Effect of E1 on average velocity  u  (ε =0.6, 
E2=0.1, E3=0.0, n=3, 0τ =0.2). 

 

 

Figure-5. Effect of E1 on average velocity  u  (ε =0.6, 
E2=0, E3=0.1, n=3, 0τ =0.2). 

 

 
 

Figure-6. Effect of E1 on average velocity  u  (ε =0.2, 
E2=1, E3=0.9, n=3, 0τ =0.2). 
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It can be observed that the time average 
velocityu  increases with stiffness in the wall (E2) 
[Figures 7 and 8] and viscous damping force (E3) [Figures 
9 and 10]. 
  

 
 

Figure-7. Effect of E2 on average velocity  u  (ε =0.6, 
E1= 0.5, E3=0.0, n=3, 0τ =0.2). 

 

 
 

Figure-8. Effect of E2 on average velocity  u  (ε =0.6, 
E1= 0.5, E3=0.9, n=3, 0τ =0.2). 

 

 
 

Figure 9. Effect of E3 on average velocity u  (ε =0.6, E1= 
0.5, E2=0.0, n=3, 0τ =0.2). 

 

 
 

Figure-10.  Effect of E3 on average velocity  u  (ε =0.6, 
E1= 0.5, E2=0.1, n=3, 0τ =0.2). 

 
 The effect of the power-law index n on the time 
average velocity u  is shown in Figures 11 to 13. It is 
observed that the time average velocity decreases with 
power-law index n in the presence and absence of stiffness 
as well as dissipative effects in the wall.  
 

 
Figure-11. Effect of n on average velocity  u  (ε =0.6, 

E1= 0.5, E2=0.0, E3=0.0, 0τ =0.2). 
 

 
 

Figure-12. Effect of n on average velocity  u  (ε =0.6, 
E1= 0.5, E2=0.1, E3=0.0, 0τ =0.2). 
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Figure-13. Effect of n on average velocity  u  (ε =0.6, 
E1= 0.5, E2=0.0, E3=0.1, 0τ =0.2). 

 
Figures 14 to 17 show the effects of yield stress 0τ on the 

time average velocity u . It can be observed from Figures 
14 and 15 that for the case of shear thinning (n<1), the 
time average velocity decreases with yield stress. Further, 
flow reversal takes place when there is no viscous 
damping force in the channel wall ( ) [Figure-14]. 

Also, the time average velocity 

03 =E

u  decreases as yield stress 

0τ  increases when there is stiffness ( ) and viscous 
damping force ( ) in the wall for the case of shear 
thickening (n>1) [Figures 16 and 17]. 

02 ≠E

03 ≠E

 

 
 

Figure-14. Effect of 0τ  on average velocity u  (ε =0.6, 
E1= 0.5, E2=0.1, E3=0.0, n=0.2). 

 

 

Figure-15. Effect of 0τ on average velocity u (ε =0.6, 
E1= 0.5, E2=0.0, E3=0.1, n=0.2). 

       

 
 

Figure16. Effect of 0τ on average velocity u (ε =0.6, 
E1= 0.5, E2=0.1, E3=0.1, n=1.2). 

 

 
 

Figure-17. Effect of 0τ  on average velocity u (ε =0.6, 
E1= 0.5, E2=1, E3=0.1, n=1.25). 

 
The effect of various parameters on stream line 

pattern is shown in Figures 18 to 22. It is interesting to 
note that trapping, an important feature of peristalsis, is 
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It can be seen from Figures 21 and 22 that the 
size of the trapped bolus increases with the power-law 
index n but there is no effect of yield stress 0τ on the 
stream line pattern. 

observed in all the cases. It may be noted that trapping was 
observed by Vajravelu et al. (2005) also.  

Figure-18 shows that for higher rigidity (E1), the 
stream lines get closer and the size of the trapped bolus 
increases in some region. Also, as the stiffness in the wall 
(E2) and viscous damping (E3) increases, the size of the 
trapped bolus increases [Figures 19 and 20]. 

 

 

 

Figure-18. Effect of E1 on stream line pattern of Herschel-Bulkley fluid a) (ε =0.2, E1=0.5,
E2=0.4, E3=0.5, n=3, 0τ =0.2) b) (ε =0.2, E1=10, E2=0.4, E3=0.5, n=3, 0τ =0.2). 

 

 
 

Figure-19. Effect of E2 on stream line pattern of Herschel-Bulkley fluid a) 
(ε =0.2, E1=5, E2=0.1, E3=0.5, n=3, 0τ =0.2) b) (ε =0.2, E1=5, E2=1, E3=0.5, n=3, 0τ =0.2). 
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Figure-20. Effect of E3 on stream line pattern of Herschel-Bulkley fluid a) 
(ε =0.2, E1=5, E2=0.4, E3=0.1, n=3, 0τ =0.2) b) (ε =0.2, E1=5, E2=0.4, E3=0.9, n=3, 0τ =0.2). 

 

 
 

Figure-21. Effect of n on stream line pattern of Herschel-Bulkley fluid a) 
(ε =0.2, E1=5, E2=0.4, E3=0.5, n=9, 0τ =0.2) b) (ε =0.2, E1=5, E2=0.4, E3=0.5, n=10, 0τ =0.2). 

 

 
 

Figure-22. Effect of 0τ  on stream line pattern of Herschel-Bulkley fluid a) 

(ε =0.2, E1=5, E2=0.4, E3=0.5, n=3, 0τ =0.1) b) (ε =0.2, E1=5, E2=0.4, E3=0.5, n=3, 0τ =0.3). 
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CONCLUSIONS 
We have analyzed the problem of the peristaltic 

motion of a Herschel-Bulkley fluid in a two-dimensional 
channel under the influence of wall properties. The 
governing equations have been linearized under long 
wavelength approximation and analytical expressions for 
time average velocity and stream function have been 
derived. The effects of various parameters on time average 
velocity and stream line pattern have been studied. It is 
found that the time average velocity increases with 
rigidity, stiffness and dissipative nature of the walls but 
decreases with power-law index and yield stress. Stream 
line pattern shows that the size of the trapped bolus 
increases in some region with higher rigidity in the wall. 
 
REFERENCES 
 
[1] Fung Y.C. and Yih C.S. 1968. Peristaltic transport. J. 

Appl. Mech. Trans. ASME. 35: 669-675. 
 
[2] Shapiro A.H., Jaffrin M.Y. and Weinberg S.L. 1969. 

Peristaltic Pumping with long wavelengths at low 
Reynolds number. J. Fluid Mech. 37: 799-825. 

 
[3] Girija Devi R. and Devanathan R. 1975. Peristaltic 

motion of micropolar fluid. Proc. Indian Acad. Sci. 
81: 149-163. 

 
[4] Radhakrishnamacharya G. 1982. Long wave length 

approximation to peristaltic motion of power law 
fluid. Rheol. Acta. 21:  30-35. 

 
[5] Misery A.M.EL., Shehawey E.F.EL. And Hakeem A. 

1996. Peristaltic motion of an incompressible 
generalized Newtonian fluid in a planar channel. J. 
Phys. Soc. Japan. 65(11): 3524-3529. 

 
[6] Mishra M. and Rao A.R. 2003. Peristaltic transport of 

a Newtonian fluid in an asymmetric channel. Z 
Angew math. Phy. 54: 532-550. 

 
[7] Srinivasacharya D., Mishra M. and Rao A.R. 2003. 

Peristaltic pumping of a micropolar fluid in a tube. 
Acta Mech.161: 165-178. 

 
[8] Hayat T., Wang Y., Hutter K., Asghar S. and Siddiqui 

A.M. 2004. Peristaltic transport of an Oldroyd-B fluid 
in a planner channel. Math. Problems Eng. 4: 347-
376. 

 
[9] Kothandapani M. and Srinivas S. 2008. On the 

influence of wall properties in the MHD peristaltic 
transport with heat transfer and porous medium. Phys. 
Lett. A372: 4586-4591. 

 
[10] Sobh A.M. 2008. Interaction of Couple stresses and 

slip flow on peristaltic transport in uniform and non-
uniform channels. Turkish J. Eng. Env. Sci. 32: 117-
123. 

[11] Blair G.W.S.  And Spanner D.C. 1974. An 
Introduction to Bioreheology. Elsevier, Amsterdam. 

 
[12] Vajravelu K., Sreenadh S.  And Ramesh Babu V. 

2005. Peristaltic pumping of a Herschel-Bulkley fluid 
in a channel. Appl. Math. Comput. 169: 726-735. 

 
[13] Maruthi Prasad K. and Radhakrishnamacharya G. 

2007. Peristaltic transport of a Herschel-Bulkley fluid 
in a channel in the presence of Magnetic field of low 
Intensity. Int. J. Computational Intelligence Research 
and Applications. 1:  71-81. 

 
[14] Medhavi Amit. 2008. Peristaltic pumping of a non-

Newtonian fluid. AAM. 3(1): 137-148. 
 
[15] Mittra T.K.  And Prasad S.N. 1973. On the influence 

of wall properties and Poiseuille flow in peristalsis. J. 
Biomech. 6:  681-693. 

 
[16] Radhakrishnamacharya G. and Srinivasulu Ch. 1999. 

Effect of elasticity of wall on peristaltic transport. 
Proceedings of ISTAM (India). 50-59. 

 
[17] Muthu P., Rathish Kumar B.V. and Chandra P. 2003. 

On the influence of wall properties in the peristaltic 
motion of micropolar fluid. ANZIAM J. 45:  245-260. 

 
 

   35 


