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ABSTRACT 

In this research work, estimation of tool wear for the CBN / PCD tool has been done by using Echostate Neural 
network during machining of Al6061 metal matrix composite. AN estimation percentage of 90.62% has been achieved. 
 
1. INTRODUCTION 

Aluminium matrix composites (AMCs) refer to 
the class of light weight high performance aluminium 
centric material systems. The reinforcement in AMCs 
could be in the form of continuous / discontinuous fibres, 
whisker or particulates, in volume fractions ranging from a 
few percent to 70%. Properties of AMCs can be tailored to 
the demands of different industrial applications by suitable 
combinations of matrix, reinforcement and processing 
route. Presently several grades of AMCs are manufactured 
by different routes. Three decades of intensive research 
have provided a wealth of new scientific knowledge on the 
intrinsic and extrinsic effects of ceramic reinforcement 
vis-a-vis physical, mechanical, thermo-mechanical and 
tribological properties of AMCs. In the last few years, 
AMCs have been utilized in high-tech structural and 
functional applications including aerospace, defence, 
automotive, and thermal management areas, as well as in 
sports and recreation. It is interesting to note that research 
on particle-reinforced cast AMCs took root in India during 
the 70’s, attained industrial maturity in the developed 
world and is currently in the process of joining the 
mainstream of materials. 

The term “composite” broadly refers to a material 
system which is composed of a discrete constituent (the 
reinforcement) distributed in a continuous phase (the 
matrix), and which derives its distinguishing 
characteristics from the properties of its constituents, from 
the geometry and architecture of the constituents, and from 
the properties of the boundaries (interfaces) between 
different constituents. Composite materials are usually 
classified on the basis of the physical or chemical nature 
of the matrix phase, e.g., polymer matrix, metal-matrix 
and ceramic composites. In addition there are some reports 
to indicate the emergence of Inter metallic-matrix and 
carbon-matrix composites.  

Aluminium metal matrix composites are 
attractive because of their  
 

 improved strength,  
 stiffness,  
 creep behaviour,  
 wear resistance 

 and low thermal expansion compared with the 
corresponding monolithic alloys  

 
The peak particle sizes are at about 4.5 and 6 µm. Within 
measured S-N curves the fatigue life-time at given stress 
amplitudes of SiC /Al6061 is superior to that of A1203 / 
AA6061 in the low-cycle fatigue region as well as in the 
high cycle fatigue region. The unique combination of low 
weight with high strength and wear resistance is a highly 
desired property in the automotive and aircraft industries. 
 
2. PROBLEM DEFINITION 

The research problem attempts to estimate the 
amount of tool wear during machining of AlSiC with PCD 
or CBN. During the process, the amount of remaining life 
time has to be estimated. 
 
3. PROPERTIES OF Al 6061 

The following are important properties of 
Al6061. 
 

Properties Values Conditions  T 
( 0C ) 

Density (×1000 kg/m3) 2.7 25 
Poisson's ratio 0.33 25 
Elastic modulus (GPa) 70-80 25 
Tensile strength (Mpa) 115 25 
Yield strength (Mpa) 48 25 
Elongation (%) 25 25 
Hardness (HB500) 30 25 
Shear strength (MPa) 83 25 
Fatigue strength (MPa) 62 25 
Thermal expansion 
(10-6/ºC) 23.4 20-100 

Thermal conductivity 
(W/m-K) 180 25 

Electric resistivity 
(10-9W-m) 37 25 
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Accepted wear limit for PCD and CBN are 0.25mm 
 

Density (g/cc) 3.43 3.49 
Compressive strength 
(GPa) 4.74 4.15-5.33 

knoop hardness (GPa) 50 44-60 
 
4. EXPERIMENTAL SETUP 
 

Technical specifications 
Model 1050/1 
Height for centers 175 mm 
Swing over bed 335 mm 
Swing over cross slide 175 mm 
Swing over saddle 230 mm 
Dist. between centers 800 mm 
Movement of cross slide 200 mm 
Threads No. / Range 
Inch 32/ 4-60 TPI 
Metric 15/ 0.5-6 mm 

 
The tool used is a single point indexable tips 

based on requirements. PCD contains a small amount of 
Cobalt as a result of the manufacturing process. If a PCD 
tool is subjected continuous and significant heating during 
cutting, the diamond is likely to transform back to 
graphite. In order to avoid this effect, the use of coolant is 
recommended. Due to the polycrystalline nature of PCD, it 
is impossible to create cutting edges as perfect as those of 
single crystal diamond. Even with the finest grade PCD, 
which has a particle size of 2 microns, it is not possible to 
machine plastics and produce optically flat surfaces.

PCD tools are relatively expensive, compared 
with conventional cutting tools. Poor quality materials, 
which have inclusions that break conventional cutting 
tools, or work holding systems that do not locate and hold 
the part securely, are likely to have the same effect on 
PCD tools but at a greater cost. 

Metal matrix composite (MMC) materials, 
Aluminium reinforced with Silicon carbide particles or 
filaments can be machined with PCD, but as the SiC 
content increases the tool life reduces and materials with 
more than 30% SiC are practically impossible to machine 
other than by grinding or EDM. The size of the workpiece 
is 55 x 250m length. The turning experiments were 
conducted and the readings are given in Table-1. 
 
5. ECHOSTATE NEURAL NETWORK 

An artificial neural network (ANN) is an abstract 
simulation of a real nervous system that contains a 
collection of neuron units, communicating with each other 
via axon connections. Such a model bears a strong 
resemblance to axons and dendrites in a nervous system. 
Due to this self-organizing and adaptive nature, the model 

offers potentially a new parallel processing paradigm. This 
model could be more robust and user-friendly than the 
traditional approaches. ANN can be viewed as computing 
elements, simulating the structure and function of the 
biological neural network. These networks are expected to 
solve the problems, in a manner which is different from 
conventional mapping. Neural networks are used to mimic 
the operational details of the human brain in a computer. 
Neural networks are made of artificial ‘neurons’, which 
are actually simplified versions of the natural neurons that 
occur in the human brain. It is hoped, that it would be 
possible to replicate some of the desirable features of the 
human brain by constructing networks that consist of a 
large number of neurons. A neural architecture comprises 
massively parallel adaptive elements with interconnection 
networks, which are structured hierarchically.  

Artificial neural networks are computing 
elements which are based on the structure and function of 
the biological neurons. These networks have nodes or 
neurons which are described by difference or differential 
equations. The nodes are interconnected layer-wise or 
intra-connected among themselves. Each node in the 
successive layer receives the inner product of synaptic 
weights with the outputs of the nodes in the previous layer. 
The inner product is called the activation value. The 
activation value is passed through a non-linear function. 
When the vectors are binary or bipolar, hard-limiting non-
linearity is used. When the vectors are analog, a squashed 
function is used. Some of the squashed functions are 
sigmoid (0 to 1), tanh (-1 to +1), Gaussian, logarithmic 
and exponential. 

A network with two states of a neuron (0 or 1, 
and -1 or 1) is called ‘discrete’, and the same with a 
continuous output is called ‘analog’. If, in a discrete 
network at a particular time ‘t’, the state of every neuron is 
updated, the network is said to be synchronous. If the state 
of only one neuron is updated, the network is said to be 
asynchronous. A network is feed forward, if there is no 
closed chain of dependence among neural states. The same 
network is feed backward, if there is such a closed chain. 
When the output of the network depends upon the current 
input, the network is static (no memory). If the output of 
the network depends upon past inputs or outputs, the 
network is dynamic (recurrent). If the interconnection 
among neurons change with time, the network is adaptive; 
it is called non-adaptive. The synaptic weight updation of 
the networks can be carried out by supervised methods, or 
by unsupervised methods, or by fixed weight association 
networks methods. In the case of the supervised methods, 
inputs and outputs are used; in the unsupervised methods, 
only the inputs are used; and in the fixed weight 
association networks methods, inputs and outputs are used 
along with pre-computed and pre-stored weights. Some of 
the supervised learning algorithms are the perceptrons, 
decision-based neural networks, adaptive linear element 
(ADALINE), multi layer perceptron, temporal dynamic 
models and hidden Markov analysis. The various 
unsupervised learning algorithms are neo-cognition, self-
organizing feature map, competitive learning, adaptive 
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resonance theory (ART) and the principal component 
analysis. The fixed weight networks are Hamming net, 
Hopfield net and the combinatorial optimization. The total 
pattern recognition system constitutes instantiation space, 
feature extraction, training the network, and the testing the 
network. 

Dynamic computational models require the 
ability to store and access the time history of their inputs 
and outputs. The most common dynamic neural 
architecture is the time-delay neural network (TDNN) that 
couples delay lines with a nonlinear static architecture 
where all the parameters (weights) are adapted with the 
backpropagation algorithm. Recurrent neural networks 
(RNNs) implement a different type of embedding that is 
largely unexplored. RNNs are perhaps the most 
biologically plausible of the artificial neural network 
(ANN) models. One of the main practical problems with 
RNNs is the difficulty to adapt the system weights. 
Various algorithms, such as backpropagation through time 
and real-time recurrent learning, have been proposed to 
train RNNs; however, these algorithms suffer from 
computational complexity, resulting in slow training, 
complex performance surfaces, the possibility of 
instability, and the decay of gradients through the topology 
and time. The problem of decaying gradients has been 
addressed with special processing elements (PEs). 

The echo state network (ESN), Figure-1, with a 
concept new topology has been found by. ESNs possess a 
highly interconnected and recurrent topology of nonlinear 
PEs that constitutes a “reservoir of rich dynamics” and 
contain information about the history of input and output 
patterns. The output of these internal PEs (echo states) are 
fed to a memoryless but adaptive readout network 
(generally linear) that produces the network output. The 
interesting property of ESN is that only the memory less 
readout is trained, whereas the recurrent topology has 
fixed connection weights. This reduces the complexity of 
RNN training to simple linear regression while preserving 
a recurrent topology, but obviously places important 
constraints in the overall architecture that have not yet 
been fully studied.  

The echo state condition is defined in terms of the 
spectral radius (the largest among the absolute values of 
the eigenvalues of a matrix, denoted by (|| ||) of the 
reservoir’s weight matrix (|| W || < 1). This condition states 
that the dynamics of the ESN is uniquely controlled by the 
input, and the effect of the initial states vanishes. The 
current design of ESN parameters relies on the selection of 
spectral radius. There are many possible weight matrices 
with the same spectral radius, and unfortunately they do 
not all perform at the same level of mean square error 
(MSE) for functional approximation.  
 

 
 

Figure-1. An echo state network (ESN). ESN is composed 
of two parts: a fixed weight 

 
(|| W || < 1) recurrent network and a linear readout. The 
recurrent network is a reservoir of highly interconnected 
dynamical components, states of which are called echo 
states. The memory less linear readout is trained to 
produce the output. 

Consider the recurrent discrete-time neural 
network given in Figure-1 with M input units, N internal 
PEs, and L output units. The value of the input unit at time 
n is u (n) = [u1 (n), u2 (n) . . . uM (n)] T,  
The internal units are  
X (n) = [x1(n), x2(n), xN (n)] T, and 
Output units are y (n) = [y1 (n), y2 (n) . . . yL (n)] T.  
The connection weights are given  
 in an (N x M) weight matrix  for 
connections between the input and the internal PEs,  

back
ij

back WW =

 in an N × N matrix  for connections 
between the internal PEs  

in
ij

in WW =

 in an L × N matrix  for connections from 
PEs to the output units and 

out
ij

out WW =

 in an N × L matrix  for the connections 
that project back from the output to the internal PEs.  

back
ij

back WW =

 
The activation of the internal PEs (echo state) is updated 
according to 
 

x(n + 1) = f(Win u(n + 1) + Wx(n) +Wbacky(n))         ..... (1) 
 

Where f = (f1, f2.  . . fN) are the internal PEs’ activation 
functions.  

Here, all fi’s are hyperbolic tangent functions xx

xx

ee
ee
−

−

+
−

. 

The output from the readout network is computed 
according to 
 

Y (n + 1) = fout(Woutx(n + 1))                                     …..(2) 
 

Where  
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out

L
outoutout ffff =  are the output unit’s 

nonlinear functions [15-16] generally; the readout is linear 
so fout is identity. 
 
6. IMPLEMENTATION 

This process is achieved by using Echostate 
network. 
Decide the input features of the registered image. 
Fix the target values. 
Set no. of inputs = 2; 
Set no. of reservoir = 20; 
Set no. of output = 1 
Create weight matrix (no. of reservoirs, no. of inputs) = 
random numbers -0.5 
Create weight backup matrix (no. of outputs, no. of 
reservoirs) = (random numbers -0.5)/2 
Create weight not (w0) (no. of reservoirs, no. of 
reservoirs) = (random numbers -0.5) 
Create temp matrix (Te) (no. of reservoirs, no. of 
reservoirs) = random numbers 
Calculate w0 = w0.* (te <0.3) 
Calculate w0 = w0.* (w0 <0.3) 
Follow the heuristics 
v = eig (w0) 
lamda = max(abs(v)) 
w1= w0/lamda 
w = .9* w1 
Create network training dynamics 
state = zeros(no_reservoir,1) 
desired = 0; 
For loop 
 Input = x (i: i+nipp-1) 
 F = wt_input* input' 
 TT = w*state 
 TH = wt_back' * desired 
 next_state = tanh( F+TT + TH) 
 State = next_state 
 Desired = x (i+nipp-1) 
desired_1 = desired 
end 
 
Echostate neural network (testing) 
 
Network testing 
Input = x (i: i+nipp-1); 
F = wt_input* input'; 
TTH = wt_back' * output_d; 
next_state = tanh(F + w*state + TTH); 
State = next_state; 
Output (i) = (wout'*state); 
 
 
 
 
 
 
 
 

7. RESULTS 
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Figure-2. Estimation of Vb using ESNN considering 
cutting forces. 
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Figure-3. Estimation of Ra by ESNN considering cutting 
forces. 
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Figure-4. Estimation of Vb using ESNN without 
considering cutting forces. 
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Figure-5. Estimation of Ra by ESNN without considering 
cutting forces. 

 
8. CONCLUSIONS 

In this research work, the estimation of tool wear 
of CBN / PCD on Al MMC machining and their 
machinabilty behavior were studied and analyzed using 
Echostate neural network. The percentage of estimation 
was achieved to be 90.62%. 
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Table-1. Experimental data. 

 

S. No. 
Volume 
fraction 

(%) 

Speed 
(m/min) 

Feed 
mm/rev 

Depth 
of cut 
(mm) 

Fx N Fy N Fz, N 

Mac
hini
ng 

time 
(min) 

Flank 
wear 

Vb 
(mm) 

Specific 
energy x 
10-3w.s 
/mm 

Surface 
roughness 

Ra µm 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

10 
10 
10 
10 
10 
10 
10 
10 
10 
15 
15 
15 
15 
15 
15 
15 
15 
15 
25 
25 
25 
25 
25 
25 
25 
25 
25 

50 
50 
50 

100 
100 
100 
150 
150 
150 
50 
50 
50 

100 
100 
100 
150 
150 
150 
50 
50 
50 

100 
100 
100 
150 
150 
150 

0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 
0.2 
0.4 
0.6 

0.5 
1.5 
2.5 
1.5 
2.5 
0.5 
2.5 
0.5 
1.5 
1.5 
2.5 
0.5 
2.5 
0.5 
1.5 
0.5 
1.5 
2.5 
2.5 
0.5 
1.5 
0.5 
1.5 
2.5 
1.5 
2.5 
0.5 

35 
40 
40 
50 
45 
60 
40 
45 
45 
50 
40 
45 
50 
40 
60 
55 
60 
60 
60 
55 
60 
25 
60 
70 
50 
50 
25 

65 
65 
75 
75 
85 
90 
80 
80 
90 
90 
105 
110 
125 
75 
80 
85 
150 
100 
90 
85 
100 
70 
100 
100 
80 
85 
70 

70 
75 
80 
90 

105 
110 
65 
70 
85 
85 

105 
105 
190 
95 

125 
130 
210 
115 
125 
140 
120 
85 

125 
115 
105 
100 
90 

2 
5 
8 
5 
8 
2 
8 
2 
5 
8 
2 
5 
2 
5 
8 
5 
8 
2 
5 
8 
2 
8 
2 
5 
2 
5 
8 

0.03 
0.14 
0.31 
0.15 
0.35 
0.04 
0.36 
0.04 
0.18 
0.39 
0.07 
0.19 
0.08 
0.21 
0.49 
0.21 
0.52 
0.09 
0.35 
0.56 
0.11 
0.62 
0.12 
0.43 
0.12 
0.45 
0.72 

15.19 
20.47 
25.11 
13.53 
17.05 
11.88 
13.03 
9.362 
12.23 
38.24 
16.88 
41.03 
11.16 
27.87 
29.90 
21.30 
23.48 
10.09 
42.83 
87.50 
32.88 
57.86 
22.34 
33.49 
17.07 
26.29 
52.28 

1.71 
3.83 
5.48 
1.85 
3.12 
2.65 
1.74 
1.73 
2.81 
2.11 
2.75 
3.17 
1.34 
1.81 
2.78 
1.01 
1.82 
2.02 
1.48 
1.91 
2.27 
0.93 
1.30 
1.95 
0.72 
1.28 
1.40 
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