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ABSTRACT 

In this paper computational modeling and simulation of the contact response of the quasi- isotropic carbon fibrous 
composite panels against blunt nose tip indenters has been studied. Mathematical modeling of spatial contact interaction 
was developed and incorporated into the finite element analysis software ABAQUSTM using implicit dynamic integration 
routine. Effect of ply orientation, thickness, indenter size, and variable loads were studied. Both the isotropic and quasi-
isotropic material models were simulated. The comparison of computer generated stresses, strains and deflections show 
that laminate thickness, material properties, loads and indenter sizes have significant affect on individual plies. The 
approach significantly reduces complexity in modeling some of the similar problems. The obtained results could be useful 
in improving the simulation modeling for design parameters. The selected results are included in the forms of graphs, 
contour plots and legend tables.  
 
Keywords: finite element analysis, fibrous composites laminates, contact behaviour, stress analysis. 
 
1. INTRODUCTION 

Analysis and prediction of materials’ contact 
response when subjected to transverse loading finds 
applications in low velocity impacts, flexural tests for 
material characterizations. The contact studies also have 
applications in tribology, three- and four-point bending 
tests for flexural, shear strength of materials. Some of the 
other applications are ball and roller bearing, locomotive 
wheels, host of machine components, parts of machines, 
plain bearings, hinges, and other applications of 
engineering mechanics. Several studies of the contact 
between indenters and plates have been published some of 
them are given below:  

The stress state using Hertz theory in a narrow set 
of the contact problem was studied in (Shaterman, 1949). 
The fibre orientation relative to the sliding direction in the 
contact behaviour of fibrous plastic-metal where couples 
becoming less significant as the fibre volume fraction 
increases predicted in (Giltrow, 1970). Sun in (Sun and 
Tang, 1982-1985) performed static indentation test to 
investigate low-velocity impact phenomena of composite 
laminates. Ccontact behaviour of orthotropic beams was 
investigated in (Keer, 1986). Wu et al., in (Wu, 1993) 
studied the contact between a composite laminate and a 
cylindrical indenter. An analysis of the indentation of 
simply supported laminated plates under rigid spheres 
using three-dimensional elasticity theory indicated that the 
stacking sequence has little effect on the contact law 
confirming previous experimental results (Wu and Yen, 
1994). Many researchers studied the low-velocity impact 
problem on composite laminates following the ‘lumped 
mass method’ to approximately calculate contact force 
history of composite laminates subjected to low-velocity 
impact as reported in (Hong and Choi, 1994). Analytical 
models of elastic contact of system of finite cylindrical 
bodies are widely used in applications of engineering 
mechanics for calculating a stress state of some parts of 
machines, such as plain bearings, hinges. It forms a base 

for calculating a stress state of some parts of machines, 
such as plain bearings, hinges as studied in (Kovalenko, 
1995). However, analytical methods such as complex 
potential theory can’t be used in many cases due to the 
bulky character of mathematical transformations 
(Kovalenko, 1995; Chernets, 1996). Aanalytically and 
experimentally investigation on contact to study low-
velocity impact problems of composite laminated 
structures were listed in (Abrate, 2001). The initial 
softness allowances of metals to deform and fill voids 
among asperities at the contact surface were studied in (A-
Al-Mayah, 2003) indicating that sandblasting the inner 
surface of the metal counterpart further increased the shear 
stress. The ‘spring element method’ to analyze impact 
response of composite laminates using spring or gap 
element solved using general purpose commercial FEM 
software (Lim and Choi, 2004). Impact characterisation of 
low fibre-volume glass reinforced polyester circular plates 
were studied by Sutherland in (Sutherland, 2005). The 
effect of sleeve material contact and hardness on the 
interfacial grip was considered experimentally using 
copper and aluminium alloy for carbon fibrous plastics rod 
was studied in (A-AL-Mayah, 2006). Predictions of 
stresses in transversely isotropic composite plates were 
studied by Robin in (Robin and Soren, 2006). Finite 
element modelling of composite plates with internal 
delamination due to contact was studied Alnefaie in 
(Alnefaie, 2009). Finite element modelling and simulation 
model was developed by Farooq in (Farooq, 2009) to 
study the contact interaction and deformation of carbon 
fibrous composite beam against rigid indenters.  

Several software programs have been developed 
to analyze stress state of interacting bodies. However, 
certain difficulties arise when these programs solve three-
dimensional contact problems if local geometric 
peculiarities, high cost of software and the required 
equipment are taken into account. Moreover, existing 
investigations can’t be used in many cases of contact 
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interaction due to the bulky character of mathematical 
transformation. The case of aligned fibrous composites as 
the contact law becomes much more complex because of 
the contacting lamina and their sequences are additional 
parameters. These issues need to be adequately addressed 
by developing simulation models.  

The present approach has addressed the important 
issue of modeling complex contact problems into simple 
and easy implicit dynamic routine, which could be 
reproduced, extended and re-run for number of similar 
problems. Computer generated results could be utilized to 
study damage, fatigue, and failure predictions required for 
design improvements.  
 
2. MATHEMATICAL FORMULATION OF HERTZ 
    CONTACT FOR LAMINATED COMPOSITES 

The first step towards the solutions of contact 
problems is the determination of the size and shape of the 
contact area as well as the distribution of normal pressure 
acting on the area. Geometrical effects on local elastic 
deformation properties have been considered as early as 
1880 with the Hertzian theory (Timoshenko, 1951). The 
Hertz theory relates stresses owing to the contact of a 
sphere on a plane, a sphere on a sphere, a cylinder on a 
cylinder, etc. The application of a load over a small area of 
contact results in usually high pressures. Situations of such 
nature are found on a small microscopic scale whenever 
force transmitted through bodies in contact. The stresses 
and deformations resulting from the interfacial pressure 
are then evaluated.   
 

 
 

Figure-1. Two surfaces in contact. 
 

In Figure-1, P is the pressure one surface applies 
to the other.  R1, E1, and v1 and R2, E2, and v2 are the 
radius, Young’s Modulus, and Poisson’s ratio of surfaces 

1 and 2 respectively and ‘a’ is one half the length of the 
contact patch, which is defined by the other variables. 
Hertz supposed that for the calculation of local stresses 
each body may be considered as an elastic half-space 
loaded along a small elliptical area on its surface. In order 
to define ‘a’, the characteristic radius ‘R’ must first be 
defined as   
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Next an equivalent Young’s modulus must be defined 
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Where E* is the equivalent Young’s modulus. The area 

“a” can then be defined as “
*E

PRa = ”. Next the 

pressure along the contact patch reduces to 
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The way stress was calculated for general load on 
an elastic half space but using ‘a’ as one half the length of 
the contact area, zero for all applied sheet stresses and p(x) 
for the pressure along the contact area. The static 
indentation of laminated composites includes the 
unloading and reloading phases. During the first loading 
phase, the contact law closely follows Hertz’s law of 
contact:   
 

2
3

αkP =                       (4) 

 

The radius of the indenter and the elastic properties of the 
impactor and the target can be found using  
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3
4 ERk =                                    (5) 

 

With R given by Eq.(1) and E is given by Eq.(2), 
E2 being the transverse modulus of the composite. 
Poisson’s ratios of the composite were neglected. Since 
Hertz’s contact law is for semi-infinite solids, this 
modified law includes the effect of the properties of the 
target on the contact behaviour through only the out-of-
plane stiffness (modulus E3) of that ply of the target which 
comes into contact with the impactor. A modified form of 
the Hertz contact law is used to study composites. The 
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contact law should depend on the thickness of plies, the 
relative orientation of various plies and various stiffness 
constants.  
 

( )
( )

5.2

0

0
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
αα
αα

m
mPP                                  (6) 

 

Equation (7) describes the contact law during the 
loading phase of the indentation process. During the 
unloading phase, Pm is the maximum force reached before 
unloading, αm is the maximum indentation, and α0 is the 
permanent indentation, which is zero when the maximum 
indentation remains below a critical value αcr. When αm > 
αcr, 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

5
2

0 1
m

cr
m α

α
αα       (7) 

 

During subsequent reloading, the resulting curve 
is distinct from the unloading curve but always returns to 
the point where unloading began. The unloading curve is 
modeled by  
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The parameter α0 does not necessarily correspond 
to the permanent indentation of the laminate, even if P = 0 
when α = α0, selected so that Eq. (8) fits the experimental 
unloading curve using a least squares fir procedure. The 
parameter α0 is related to the actual permanent indentation 
αp and the maximum indentation αm during the loading 
phase by  
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When αm > αcr,;   α0 = 0 otherwise. The permanent 
indentation αp and the parameter β are determined from 
experiments. During the unloading phase the behaviour is 
modeled by  
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Where the permanent indentation α0 was the maximum 
load Pm and the present exponent q has an average value of 
4.1. The exponent in Eq. (11) compared to 1.5 for Herzian 
contact, and that q = 4.1 for this Kevlar-epoxy laminate for 
glass-epoxy and graphite epoxy the usual value is 2.5. In 
the special case of a sphere contacting a body of the same 
material but having a flat surface, the equations lead to the 
contact pressure distributed over a small circle of radius 
‘a’ given by  
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3. COMPUTATIONAL PROCEDURE OF IMPLICIT 
     TIME INTEGRATION 

Computational contact procedure was developed 
on the basics of non-linear continuum mechanics 
employing numerical methods such as the finite element 
method. The contact was considered as a boundary 
condition. The process of solving the equilibrium 
condition is equivalent to the minimisation of total 
potential energy of the system in terms of the prescribed 
displacement field extended to a variational formulation. 
 

 
 

Figure-2. 2D discrete plane with triangular elements. 
 

In Figure-2, a typical finite element, e, is defined 
by nodes, i, j, m and straight line boundaries, N is force, B 
is differential and D is the elastic matrices. By imposing a 
virtual nodal displacement du, equilibrium with the 
external and internal work is achieved. The work done by 
the nodal forces is the sum of the products of the 
individual force component and the corresponding 
displacement in which f is the body force. Employing the 
virtual work principle that equates the external work to the 
total internal work, Eq. (12) is obtained: 
 

  ( ) ( ) ∫∫ −= dydxNfudydxDBBduF e
T

ee σ  (12) 
 

Substituting Eqs. (12), the following equation can be 
obtained: 
 

    ( ) ( )( )∫ ∫−= dydxNfdydxBduFdu eee σ  (13) 
 

 
 wher ( )∫= dydxDBBk T

e σ is the matrix of element 

stiffness. Fe is a set of unknown parameters. In order to 
determine the displacement field ue, boundary conditions 
must be employed to resolve these equations at the overall 
system level. The stiffness of the whole system is obtained 
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by assembling the stiffness matrices of all elements 
together. 

∑= ekK                                               (14) 
 

The principle of virtual displacement used above 
ensures the equilibrium of the system for the displacement 
pattern that minimises the potential energy. The 
equilibrium would be complete only if the virtual work 
equality for all arbitrary variations of displacement were 
ensured. Balancing the internal energy with the external 
work: 
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The first term of the above equation be 
recognized as the variation of the strain energy of the 
structure, and the second term that is in the brackets is the 
variation of the potential energy of external loads. 
Rewriting Eq. (15): 
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is the total potential energy. This means the finite element 
method seeks a displacement field that keeps the total 
potential energy stationary and minimised. In that case, 
finite element method can be used in any problem in 
which function could be specified or in the following 
minimum condition: 
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The displacement field can be obtained, and other 
terms such as the strain and the force are derived from the 
obtained displacement. However, because of the material 
plasticity and contact boundary condition, the non-
linearity is involved. Thus the approach is generalized to 
accommodate the nonlinear problems. The governing 
equations are written in the general form as: 
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The equivalent weak-form is expressed as 
 

( ) ( )∫ ∫ =Γ+Ω 0duJwduHw                 (18) 
 

Where w and w are arbitrary parameters called weighted 
coefficient, with lower requirement of connectivity for 
displacement function. The solution in approximation 
form is written as following: 
 

NddNu ii ==∑      (19) 
 

Where d is the nodal displacement field. The 
approximation is written as: 
 

( ) ( )∫ ∫ =Γ+Ω 0ddNJwddNHw    (20) 
 

The H (Nd) and J (Nd) represent the residual 
obtained by substitution of the approximation into the 
differential governing equations. The method chooses the 
shape function as the weighted coefficient and written as 
Wj =Nj. As a result, the Eq. (21) is derived: 
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The contact pressure and traction represented by 
term f b are considered as boundary constraints. The 
Lagrange multiplier method and the Penalty method of 
contact constraint enforcement are employed to solve the 
equilibrium equations. Contact is a complex boundary 
condition because of its nonlinearity. Before employing 
the contact constraint enforcement to solve the equilibrium 
equations, the relation between contact pressure/traction 
and displacement was set up. As the state of contact 
affects the relationship between the contact 
pressure/traction and the displacement, first the 
computational approach should establish the occurrence of 
contact. The following conditions are required to be 
assessed in each computational step. 
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A potential algorithm is presented as a simple 

illustration. Consider Figure-3 indicating two elastic 
bodies Bi, x i denotes coordinates of the original 
configuration. In the normal direction of contact, non-
penetration condition is defined as gap function N g given 
by: 
 

 
 

Figure-3. Two bodies in contact. 
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Eq. (22) is used to judge the state of contact/non-contact, 
in which n is the normal vector to the contact surface, gNo 
is the original gap, expressed as (23): 
 

( ) nxxg N .120
−=       (23) 

 

In Eq. (22), the contacting bodies penetrate into 
each other and the penetration is defined as gN. The 
tangential motions of contact state are associated with 

stick and slip. Stick refers to no relative motion between 
the two contact bodies while slip refers to existence of 
relative tangential motion. The motion can be defined 
using a functional uT in the tangential direction. For stick 
condition: 
 

[ ]( ) 021 =−−= uunxnIuT                  (24) 
 

While in slip conditions: 
 

[ ]( ) 021 ≠−−= uunxnIuT                  (25) 
Where I is the unit matrix. Through (22) to (25), the 
contact states are determined. The compressive contact 
pressure p within the contact patch can be expressed as: 
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Where the boundary value of stress on the contact surface. 
For the slip zone, the frictional tangential traction employs 
Coulomb friction law the stick zone, the frictional traction 
is expressed as: 
 

pnnq −= .σ                     (27) 
 

The stresses are converted to displacement based 
on the elastic or elasto-plastic material model. Thus, the 
relation between contact pressure/traction and 
displacement is developed. To solve the equilibrium 
equations, the contribution of total potential energy from 
the contact boundary is extracted and Eq. (17) is rewritten 
as: 
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Where sum of internal and external energies except from 
the boundary of contact is the energy contribution from 
contact. The further extended as: 
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One of the most widely applied implicit methods is the 
Newmark in (Newmark, 1959) method. The 

approximation of displacement and velocity are based on 
the following two functions: 
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Where the constant parameters an be chosen freely and the 
order and accuracy of the method is determined. By 
inserting Eq. (17) into Eq. (30)  
 

FuKuCum d =++ &&&                                  (31) 
 

The equilibrium equation which can be solved by 
using some iteration method such as Newton method. 
After obtaining solution for acceleration, the displacement 
and velocity can be worked out using Eq. (31).  

The nature of contact problems determines that 
the time increment should be small and hence the number 
of increments would be numerous. By using the implicit 
method, the computational cost would be expensive as 

every increment would involve a number of iterations but 
procedure is easy and simple.  
 
4. NUMERICAL RESULTS AND DISCUSSIONS 

The commercially available software 
ABAQUSTM has a good capability for studying impacted 
surface behaviour and offers two different methods for 
modeling the contact: small sliding and finite sliding 
formulations. The small sliding approach implemented 
here uses Lagrange formulation that the contacting 
surfaces can only undergo relatively small sliding relative 
to each other, but arbitrary rotation of the bodies is 
permitted. Here, of the two contacting surfaces, the 
indenter (the slave) is rigid. The nodes of the slave surface 
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are constrained not to penetrate into the master surface. 
Consequently, the contact direction is always normal to 
the master surface. The contact between the surfaces is 
hard contact, i.e. when the surfaces are in contact any 
pressure stress can be transmitted between surfaces with 
no penetration of one surface into another. The surfaces 
separate if the pressure reduces to zero. By small sliding it 
is meant that a given slave node will interact with the same 
local area of the master surface during interaction. 

Because of such facilities the software was selected for 
this study. Two independent parts were created in part 
module of and assembled in the assembly module. 
Dimensions of the specimen plate are dimension 0.3048 m 
x 0.3048 m x 0.00288 m. The indenter block has Young’s 
modulus of 15 GPa and Poisson’s ratio of 0.3 with 
dimensions of 0.1524 m x 0.1524 m x 0.0762 m as 
indicated in the Figure-4 below. 

 

 
 

Figure-4. Schematic view of the laminated plate and the indenter in contact. 
 

The isotropic and quasi-isotropic properties were 
assigned to the models and simulations were carried out 
for 0.11 seconds. Twenty-thousand maximum number of 
increments with increment size of 0.001 were introduced. 
Full Newton techniques were selected while half-step 
residual calculations were suppressed. Both the models 

were fully clamped and were contacted by a fully free 
steel block at the centre pushed by a 10 Newton load. 
Material properties of the isotropic specimens were used 
as E = 150 GPa with 0.3 Poisson’s ratio, the properties of 
the quasi-isotropic specimens of 8-ply are given in the 
Table-1 below: 

 
Table-1. Laminate of stacking sequences [45/0/-45/90] S.

 

Material properties  Ultimate  strengths MPa 

E1 = 150 GPa, E2 =  E3  = 15 GPa ( )
ult

Tσ 1
=  ( )

ult

Cσ 1
 = 1500  

G12 = G13  = 5.7 GPa G23 =7.26  GPa 
Poisson's Ratios  ν12 = 0.33 ν23 = 0.03 ν13 = 0.01 ( )

ult

Tσ 2
 = 40  ( )

ultτ 12
 =  53 ( )

ult

Cσ 2
= 20 

 

Mapped meshing options were selected to create adequate number of elements in the regions where high 
concentrations of deformations were expected. The meshed model is given below in Figure-5. 

 

 
 

Figure-5. Computer generated meshed model. 
 

Computer generated results were obtained and 
some of the selected ones are presented for comparison 
and discussion. Comparisons of displacement graphs 
shown in Figure-6 demonstrate that specimen of isotropic 
material behave elasto-plastically at the threshold contact 
load. However, the graph of the quasi-isotropic model as 
in shown in the same figure demonstrated a significant 
reduction in strength change that confirms that ply (ies) 
failure at that point.  

Legend Tables and contour plots as shown in 
Figure-7 demonstrate that displacement values of quasi-
isotropic material model are three times higher from the 
isotropic model which demonstrate further that the quasi-
isotropcic model three-fold elastic than the isotropic 
material model. Legend Tables and contour plots for 
isotropic material model and ply 1 and ply 8 of the quasi-
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isotropic material as shown in Figure-8 demonstrate that 
tensile stress values of quasi-isotropic material model are 
half of the isotropic model which demonstrates that the 
quasi-isotropic model absorbs considerable amount of 
energy and is under less tensile stresses. Legend Tables 
and contour plots for isotropic material model and ply 1 
and ply 8 of the quasi-isotropic material as shown in 
Figure-9 demonstrate that compressive stress values of 
quasi-isotropic material model at ply 1 are double than that 
of the isotropic model and ply 8 of the same model. The 
stress values’ differences are according to expectation and 
demonstrate that the top ply sustains very high 
compressive stresses. Legend Tables and contour plots for 

isotropic material model and ply 1 and ply 8 of the quasi-
isotropic material as shown in Figure-10 demonstrate that 
in-plane shear stress values of quasi-isotropic material 
model at ply 1 are a quarter than that of the isotropic 
model and half of the ply 8 of the same model. The shear 
stress values’ differences are according to expectation and 
confirm that the computed values are realist. Legend 
Tables and contour plots for isotropic material model and 
ply 1 and ply 8 of the quasi-isotropic material as shown in 
Figure-11 demonstrate that in-plane strain values of quasi-
isotropic material model at ply 1 and ply 8 are almost the 
same. The predicted values confirm that the computational 
models are reliable. 

 
Isotropic model Quasi-isotropic model 

 
 

 

Figure-6. Graph of displacement versus time. 
 

Isotropic model Quasi-isotropic model 

  
 

Figure-7. Legends table and contour plots of displacements. 
 
 
 
 
 

Isotropic model Quasi isotropic model 
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Figure-8. Legend table and contour plots of normal stresses in x-direction. 
 

Isotropic model Quasi isotropic model 

 
 

Figure-9. Legend table and contour plots of lateral normal stresses in y-direction. 
 

Isotropic model Quasi isotropic model 

 
 

 

 

Figure-10. Legend table and contour plots of in-plane shear stresses. 
 
 
 
 
 

Isotropic model Quasi isotropic model 
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Figure-11. Legend table and contour plots of principal strains in x-direction. 
 

The comparison of results indicated that the 
isotropic materials are less flexible and under less tensile 
strains than the quasi-isotropic material model, which 
means that the quasi-isotropic isotropic model is more 
flexible. The legend Tables and contour plots comparison 
indicates that the implicit dynamic model is capable to 
predict difference between the computed variables 
including strains of isotropic and quasi-isotropic models. 
Though the values are small yet they predict the extension 
incurred in the system by the contact on top plies and 
compression on the bottom plies. Moreover, there is not 
big difference between strains at 1st ply and the 8th ply this 
demonstrate that flexible performance of the model having 
effect up to bottom ply’s flexible stretching.  
 
5. CONCLUSIONS 

Contact models incorporated into implicit 
dynamic routine have been simulated successfully which 
can be used and extend for variety of bodies to a similar 
system of boundary value problems. In fact it has 
generalized the models to some extent for variety of cases 
under variable load intensity. This considerably reduces 
the complexity and cost of investigation in contact impact 
studies in practice. The contact duration for this study was 
small even then the comparison of selected results 
indicated that material properties have significant effect on 
the contacting systems. The analysis predicts that quasi-
isotropic material systems have indicated more flexibility 
and strength and could perform better than isotropic 
material systems in such interacting events.    

The approach has demonstrated that some of the 
contact problems of the similar nature could be solved 
using implicit dynamic routine. The modeling approach is 
relatively easier than the explicit dynamic routine. The 
data results obtained from the solution sets could be 
utilized to select stronger materials and design 
improvements as well as to predict failure, damage and 
fatigue lives of the interacting systems.  
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