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ABSTRACT 

The flow of a couple stress fluid generated by performing longitudinal and torsional oscillations of a porous 
circular cylinder subjected to constant suction at the surface of the cylinder is studied. A finite difference method is 
proposed to analyze the velocity components, in an infinite expanse of an incompressible couple stress fluid under 
vanishing couple stresses of type A condition or super adherence condition of type B on the boundary. The effects of 
couple stress parameter, Reynolds number and the ratio of couple stress viscosities parameter on transverse and axial 
velocity components are studied. The drag force acting on the wall of the cylinder is derived and effects of couple stress 
parameters on drag are shown graphically. 
 
Keywords: couple stress fluid, longitudinal and torsional oscillations, drag, suction, injection. 
 
1. INTRODUCTION 

In numerous technological applications, the fluids 
in use do not obey the commonly assumed linear 
relationship between the stress and the rate of strain at a 
point and their accurate flow behavior cannot be predicted 
by the classical Newtonian theory. Such fluids are 
recognized as non-Newtonian fluids. In particular, the 
interest in non-Newtonian fluids has grown considerably, 
due largely to the demand of such diverse areas as 
biorheology, geophysics and chemical and petroleum 
industries. For this reason several models have been 
proposed to predict the non-Newtonian behavior of 
various types of fluids. One class of fluids which has 
gained considerable attention in recent years is the couple 
stress fluid. Couple stresses are a consequence of the 
assumption that the interraction of one part of a body on 
another, across a surface, is equivalent to a force and 
moment distribution. Couple stress fluids consist of rigid, 
randomly oriented particles suspended in a viscous 
medium such as blood fluids, electro-rheological fluids 
and synthetic fluids. The main feature of couple stress 
fluid is that the stress tensor is anti-symmetric. Stokes [1] 
generalized the classical model to include the effect of the 
presence of the couple stresses and this couple stress 
model has been widely used because of its relative 
Mathematical simplicity compared with the other models 
developed for effects of the couple stresses. This fluid 
theory is discussed in detail by Stokes himself in his 
treatise “Theories of Fluids with Microstructure” [2] 
wherein he also presented a long list of problems 
discussed by researchers with reference to this theory. 
Recently, the study of couple stress fluid flows has been 
the subject of great interest, due to its widespread 
industrial and scientific applications in pumping fluids, 
such as synthetic fluids, polymer-thickened oils, liquid 
crystals and animal bloods. Other important fields where 
couple stress fluids have applications are squeezing and 
lubrication theory.  

The motion of fluids through porous permeable 
surfaces at low Reynolds numbers has long been an 
important subject in the field of chemical, biomedical, and 
environmental engineering and science. This phenomenon 
is fundamental in nature and is of great practical 
importance in many diverse applications like production of 
oil and gas from geological structures, the gasification of 
coal, the retorting of shale oil, filtration, surface catalysis 
of chemical reactions, adsorption, coalescence, drying, ion 
exchange and chromatography. 

Starting from Couette flows, the flow generated 
in fluids by the motion of surfaces have been attracting the 
researchers. Among them, the study of flow due to 
longitudinal and torsional oscillations presents some 
interest in different engineering areas like Oceanography, 
the technology of vibrations on machinery, the process of 
certain polymer liquid crystals, and the offshore drilling of 
oil. There are three physical situations in which the study 
of the longitudinal and torsional oscillations can be 
applied. The first application is in lubrication theory. The 
cylindrical bearings containing a non-Newtonian fluid 
lubricant are subject to longitudinal and torsional 
vibrations on the machinery. A second application is the 
flow of polymer liquid crystals made of dumbbell like 
molecules processed inside a circular cylinder which is 
subject to longitudinal and torsional oscillations. And 
finally, a possible third application is the flow of mud in 
the drillstring of an offshore oil drilling unit which is 
subjected to oscillations due to oceanic waves. 

The motion of a classical viscous fluid due to the 
rotation of an infinite cylindrical rod immersed in the fluid 
was first described by Stokes [3]. Later following the 
work, many flow problems due to the motion of bodies 
were solved. Some flow problems related to the motion of 
a cylindrical rod performing longitudinal and torsional 
oscillations are given below. Casarella et al., [4] studied 
the external flow due to longitudinal and torsional 
oscillations of a rod in a Newtonian fluid and obtained an 
exact solution for the same. Rajagopal [5] studied the 
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same problem for the case of a second grade fluid. 
Ramkissoon and Majumdar [6] studied the internal flow 
due to longitudinal and torsional oscillations of a viscous 
fluid and they derived an analytical expression for 
velocities, shear stresses and drag on the cylinder. 
Ramkissoon et al., [7] obtained an exact solution for an 
infinite rod undergoing both longitudinal and torsional 
oscillations in a polar fluid and they have presented the 
effect of micropolar parameters on the microrotation and 
velocity fields graphically. Calmelet-Eluhu et al., [8] 
studied the internal flow of a micropolar fluid inside a 
circular cylinder subject to longitudinal and torsional 
oscillations and they have shown the effect of micropolar 
fluid on two components velocity field through graphs. 
Owen and Rahaman [9] studied the same type of flow with 
an Oldroyd-B liquid.  

 
A large number of theoretical investigations 

dealing with steady incompressible laminar flow with 
either injection or suction at the boundaries have appeared 
during the last few decades. Several authors, to mention 
some [10-13] have studied the steady laminar flow of an 
incompressible viscous fluid in a two-dimensional channel 
with parallel porous walls. Soundalgekar et al., [14] 
studied the effects of couple stresses on the oscillatory 
flow past porous, infinite, flat plate when the free stream 
velocity oscillates in magnitude about a constant mean. 
Eldabe et al., [15] have studied the effect of couple 
stresses on an unsteady MHD Eyring Powell model of 
non-Newtonian fluid flow between two parallel fixed 
porous plates under a uniform external magnetic field. 
They have shown the effects of couple stress parameters 
and Hartmann number on velocity distributions through 
graphs. Dewakar et al., [16] studied the Stokes’ first and 
second problems for an incompressible couple stress fluid 
by using the condition that couple stresses vanish on the 
boundary. They have plotted the velocity profiles for 
different times and different values of couple stress 
Reynolds number. Srinivasacharya et al., [17] studied the 
laminar flow of a couple stress fluid in a porous channel 
with expanding or contracting walls with symmetric 
injection or suction along the uniformly expanding porous 
walls by using similarity transformation. They have 
presented graphs for velocity components and temperature 
distribution for different values of the fluid and geometric 
properties. Ramana Murthy et al., [18] studied the steady 
MHD flow of a micropolar fluid through a porous circular 
pipe with constant suction/injection. They have shown the 
effects of skin friction with respect to micropolar 
parameters and Hartmann number through graphs. To the 
extent of the knowledge of the authors, very few 
literatures are available on the flow due to oscillations of a 
rod in couple stress fluids. The problems mentioned in [7] 
and [8] are some examples in this direction. Hence, in this 
paper we consider the flow of couple stress fluid generated 
by a porous circular cylinder performing longitudinal and 
torsional oscillations and subjected to suction velocity at 
the surface.  
 

2. FORMULATION OF THE PROBLEM    
Consider a porous circular cylinder of radius ‘a’ 

in an infinite expansion of a couple stress fluid. The 
cylinder is subjected to torsional oscillations, Exp (iω1t) 
and longitudinal oscillations, Exp (iω2t) with amplitudes 
q0sinβ0, q0cos β0 along the respective directions where ω1 

is the frequency of the torsional oscillations, ω2 is the 
frequency of the longitudinal oscillations, q0 is the 
magnitude of the oscillations and β0 is the angle between 
the direction of torsional oscillations and the base vector 
eθ. i.e., the cylinder oscillates with velocity as given by the 
expression

( )z
iω

θ
iω

Γ
2eCos  eSinq  eeQ ττ β+β= 000

1 .   
u0 is a suction or injection velocity on the surface of the 
porous cylinder. Cylindrical polar coordinate system is 
considered with the Z-axis along the axis of the cylinder 
and origin on the axis. Let R, θ and Z denote the radial, 
azimuthal and axial coordinates respectively of a point in 
the region of flow. Now we consider the flow generated in 
the couple stress fluid due to the oscillations of the 
cylinder. The physical model illustrating the problem 
under consideration is shown in Figure-1. 
 

 
 

Figure-1. Geometrical representation of 
the problem: non-dimensional form. 

 
After neglecting body forces and body couples, 

the condition of incompressibility and the equation motion 
for a couple stress fluid, as given by Stokes [1] are: 
 

01     =⋅∇ Q                                                           (1) 

QPQQ
Q

×∇×∇−∇−=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

1111   µ      
τ

 ρ  

                              Q×∇×∇×∇×∇− 1111  η   (2)  
 

Where  is velocity vector, P is fluid pressure, Q ρ  is 
density,  τ is time, µ is viscosity and η is couple stress 

viscosity coefficients, 1∇  is the dimensional gradient. By 
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nature of the flow, the velocity components are axially 
symmetric and depend only on radial distance and time. 

ence the velocity vector is taken of the form H
   

( ) ( ) ( ) zθr  τR,W     τR,V    RU e eeQ ++=               (3)     
 

Let us introduce the following non dimensional scheme  

0

1
1 q

ωσ a
= ,

0
2 q
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= ,
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R  r = ,
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  Qq =  ,
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q
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= , 
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0
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n = ,  

 q
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0

= ,  
 q

V  v
0

= ,  
 q

W  w
0

=    (4)   

 

By the non-dimensional scheme (4) in (1) and (2), the 
equations for the flow are transformed to the following 
non-dimensional form. 
 

0 . =∇   q                                                                       (5) 

qpqq
q

×∇×∇−∇−=⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂     Re .

t
 Re  

                              q×∇×∇×∇×∇−    S     (6) 
 

where 
µ
ρq

Re
a0=   = Reynolds number and 2µ

ηS
a

=  

= couple stress parameter.  
Now to match with the oscillating boundary, the velocity 
in (3) is assumed in the form 
 

( ) ( ) ( ) z
t

θ
t eeeq  e rw e  rv ru iσiσ

r
21 ++=              (7)  

The equation (6) will give raise to the following three 
calar equations in the directions of base vectors s  
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Using D2v and D4v in the equation (9), we get 
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Similarly we write (10) as 
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where 

S
b 1

1 −= , 
S

Renb2
11 −=  and  

S
Reiσb 2

3 =  

Now the equations (11) and (12) are solved for v and w 
under the no slip condition and type A condition or type B 
condition on the boundary. These conditions are given as 
follows. 
 
3. BOUNDARY CONDITIONS 
 
No slip condition 

The velocity of the fluid on the boundary is equal 
to the velocity of the boundary. It is explicitly given by   
 

ΓQ   = Velocity of Γ  = 

( )z
 τiω

θ
 τiω 2e  sin  ecos q ee 000

1 β+β  
It takes the following in non-dimensional form 

z
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This condition can be explicitly written as in the following 
equations       
( ) 01 β= cosv  And ( ) 01 β= sinw                                (13) 

 
Type A condition 

Type A-condition represents vanishing of couple 
stress tensor on the boundary. The constitutive equation 
for couple stress tensor M is given by 
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If M vanishes on the boundary, we get the conditions that 
 

D2v = 0 and  01
 =′−′′  w 

r
 e  w  where 

η
η   e
′

=  on r = 1       (15) 

 
Type B condition 

Type B-condition is the super adherence 
condition on the boundary. This condition requires that 
angular velocity of the fluid particle on the boundary is 
equal to angular velocity of the boundary. i.e.,  

   
2
1   1 ΓΓ ×∇= Qω  this implies that  

11 σ 2      w   r −=′ = And    ( ) 01      v r  
dr
d

 r ==              

(16)  
As r → ∞, the fluid is at rest and boundary conditions can 
be taken as  
 

v = w = D2v = 01   w 
r

 e  w =′−′′
 = ( )v r  

dr
d  = 0   on   r = ∞ (17)                                                                                                                          

 
 4. FINITE DIFFERENCE METHOD OF  
     SOLUTION 

In view of the complicated nature of two 
equations (11) and (12), the analytical solution for v and w 
seems to be beyond reach. The details of finite difference 
method used here can be studied from Ref. [19], for 
obtaining the solution for v and w. We take 50 units of 
distance from origin is very large representing infinity. 
Hence we discretise the interval [1, 50] into n subintervals 
with n+ 1 node. Each node is represented by ri =1 + i h, 
with h = 49/n the step length, starting from first node r0 = 1 
to the last node rn = 50. The values of the functions v, w at 
ri are given by vi and wi. The symmetric derivative 
formulae at the i’th node are given as below: 
  

2h
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Substituting these derivatives given in (18), in the equation 
(11) we get 
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The finite difference form of (12) is as the following: 
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Type A solution for velocities v and w 
We take the following boundary conditions  
 

( ) 2ncosvv =β== 00 1 ,   vn = 0,    
 

01    vD   r
2 ==  and 0   vD     r

2 =∞=                               (23) 

Evaluating (19) for different values of i we obtain  
 

i = 0:     
       000510101 v t   v t  v t  v t v t  ,32  ,40  ,22   ,  , −=+++ −−  
i = 1:     
      011111111 v t  v tv t v t v t   ,23 ,52  ,4  ,3 −=+++−   ,  
i = 2:     
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02121 v t  v t v t v t v t 42  ,532  ,42  ,32  ,2  , −=+++  

i = 3:     
0211   v t v t v t v t v t 53  ,543  ,433  ,33  ,23  , =++++  

… 
i = n–1: 

nn4,nn  ,5nn  ,32nn  ,23nn  , v tvt v t v t v t 11111111 −+−−−−−−− −=+++  
 i = n:      

nn3,nn  ,5nn  ,4nn  ,22nn  , v t  v t v t v t v t −=+++ +−+−− 21111  
                    (24) 

Thus the system of equations (24) represents n+ 1 
equation in n+3 unknowns. Hence we require two more 
equations. These can be obtained from  
 

01  ==   vD   r
2 And 0   vD   r

2 =∞=                              (25)    
 

Using the boundary conditions (25), then we have 
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Expressing the equations (24) and (26) in matrix form as  
 

A1 X1 = B1                                                                        (27) 
 

where the matrices A1, X1 and B1 are given in the 
appendix. B1 contains v0 and vn which are the value of v on 
the boundary and X1 consists of  values of v in the region. 
Solving the system (27) we get the solution for v.  
 
Now we find solution for w by applying the boundary 
conditions  
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Evaluating (21) for different values of i we obtain  
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Thus the system of equations (29) represents n+1 equation 
in n+3 unknowns. Hence we require two more equations 
which are obtained from the boundary conditions  
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2
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Expressing the equations (29)-(30) in matrix form as 
 

A2 X2 = B2                                                                       (31) 
where the matrices A2, X2 and B2 are given in the 
appendix. B2 contains w0 and wn which are the value of w 
on the boundary and X2 consists of  values of w in the 
region. Solving the system (31) we get the solution for w 
 
 
Type B solution for velocities v and w   
 
We take the following boundary conditions 
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From (19) substituting i = 0, 1, 2…..n–1, n and from (32), 
writing in matrix we get as  
 

A3 X1 = B3                                                                       (33) 
 

where A3, B3 are given in appendix. 
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Similarly we use the following boundary conditions for 
velocity w as 
 

( ) 3
2
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From (21) substituting i = 0, 1, 2…..n–1, n and from (34), 
writing in matrix we get as  
 

A4 X2 = B4                                                                       (35) 
where A4 and B4 are given in the appendix. On solving 
(35), we get the solution for X2, the values of axial 
velocity w . 
 
5. DRAG ON THE CYLINDER 

The drag D acting on a cylinder of length L is 
given by 
 

( d θsinTcosTLD ∫
π

β+β=
2

0
031021a )                                                                                            

                                                                                       (36) 
The stress component in (36) and Couple stress tensor M 
are defined by the following constitutive equation for 
couple stress fluids (Stokes [1]). 
 

( ) I    λ PI   Tij Q⋅∇+−= 1  

         ( )( ) ( M  I          T ⋅∇×+∇+∇µ+ 111 2
1

QQ )

]

      (37) 

 
( ) ( )[   2  2  mI  T QQ ×∇∇η′+×∇∇η+= 1111M       (38) 

 
The stress components T31 and T21 on the cylinder can be 
calculated as 
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      (40) 
 
Applying the finite difference scheme for (39) and (40), 
the non-dimensional form of stress components are 
calculated as           
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The non-dimensional drag can be calculated from (36) as 
 

021031 β+β=′  sinTcos TD                        (41) 
 

Where 
0

3

q 2L
Dh  D
πµ

=′  

 
6. RESULTS AND DISCUSSIONS 

 
The analytical expressions for the non-

dimensional velocity components v, w and drag are given 
by the equations (11), (12) and (41) respectively.  These 
values depend on the values of β0, if β0 = 0, we get only 
torsional oscillations and if β0 = π/2, we get only axial 
(Longitudinal) oscillations.   

The numerical results are presented in the form of 
graphs for S =10, Re=0.1, σ1=0.25, σ2=0.5, β0=0.7, 
n1=0.6, t=π. The Figures for type A boundary condition 
are shown on left column and the Figures for type B 
conditions are on the right column. The velocities v and w 
at different Reynolds number with type A and type B 
boundary conditions are shown in Figures 2-5. We notice 
that as Reynolds number Re increases both the velocities v 
and w decrease. The velocities v and w at different non-
dimensional times are shown in Figures 6-9. We observe 
that the transverse and axial velocity components near the 
cylinder are developing and fluctuating around zero with 
the same frequency as the cylinder. At the start of a cycle, 
the flow has its maximum velocities located at the surface 
of cylinder, with a gradual decrease toward zero in the 
region away from the cylinder. As the cycle continues, the 
velocities decrease with the maximum values no longer at 
the cylinder surface but inside the flow field. From Figures 
10-13, we see that as the couple stress parameter S 
increases, the transverse velocity v decrease for type A 
condition and increases for type B condition and the axial 
velocity w increases for type A condition, while it 
decreases for type B condition. Type B boundary 
condition doesn’t involve the parameter e, which is the 
ratio of couple stress viscosity coefficients η and η'. In 
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type A condition, as it can be seen from Figures 14-15 
both the axial and transverse velocities are insignificant 
with e. 

The non-dimensional drag is calculated 
numerically for different values of non-dimensional time 
in multiples of π/σ2 at fixed values of σ1, σ2 and the results 
are shown in the Figures 16-17. In the equations of 
motion, local acceleration term dominates if σ1, σ2 are 
large. To have all terms of LHS in the same order in 
equations (9) and (10), the frequency parameters σ1, σ2 are 
to be small. Hence we take both |σ1|, |σ2 | < 1. In the 
calculation of drag also we observe that if |σ1|<1, |σ2 | < 1, 
the drag will be within reasonable values. From Figures 
16-17, it can be seen that as the couple stress parameter S 
increases, the amplitude of oscillations for drag increases 
for both the type A and type B conditions. It can be seen 
for both the type A and type B conditions as σ1 increase, 
the variation in drag at the cylinder wall are changing in 
amplitude and frequency (Figures 18-19). From Figure-20 
and Figure-21, it is observed that the drag is insignificant 
to the variations in σ2 for type a condition and for type B 
condition the drag oscillates irregularly as σ2 increases. 
From Figures 22-23, we note that as Reynolds number Re 
increases magnitude of drag increases for small values of 
suction; but for higher values of suction drag increases for 
small values of Reynolds number and then decreases at 
higher values and almost constant for very high values of 
suction rate. From Figure-24, we note that drag is 
insignificant to the variation in e, for type a condition and 
type B condition is independent of e. 
 
 
7. CONCLUSIONS 
 We have observed that:   
 

i. The flow is sensitive with respect to couple stress 
parameter S and type A and type B conditions show 
opposite trend. i.e., the transverse velocity v decreases 
for type A condition, it increases for type B condition; 

ii. The drag increases as S increases i.e. the drag offered 
by viscous fluids is less than that of couple stress 
fluids; and  

iii. Suction on the cylinder decreases the drag. 
 

 
 

Figure-2. Type A variation of v with r. 

 

 
Figure-3. Type B variation of v with r. 

 

 
 

Figure-4. Type A variation of w with r. 
 

 
 

Figure-5. Type B variation of w with r. 
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Figure-6. Type A variation of vExp(iσ1t) with r. 
 

 
 

Figure-7. Type B variation of v Exp (iσ1t) with r. 
 

 
 

Figure-8. Type A variation of w Exp (iσ2t) with r. 
 

 
 

Figure-9. Type B variation of w Exp (iσ2t) with r 
 

 
Figure-10. Type A variation of v with r. 

 

 
 

Figure-11. Type B variation of v with r. 
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Figure-12. Type A variation of w with r. 
 

 
 

Figure-13. Type B variation of w with r. 
 

 
 

Figure-14. Type A variation of v with r. 
 

 
 

 
 

Figure-15. Type A variation of w with r. 

 
 

Figure-16. Type A variation of D' with σ2t. 
 

 
 

Figure-17. Type B variation of D' with σ2t. 
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Figure-18. Type A variation of D' with t. 
 

 
 

Figure-19. Type B variation of D' with t. 
 

 
 

Figure-20. Type A variation of D' with t. 
 

 
 

Figure-21. Type B variation of D' with t. 
 

 
 

Figure-22. Type A variation of D' with Re. 
 

 
 

Figure-23. Type B variation of D' with Re. 
 

 
60



                                                            VOL. 5, NO. 5, MAY 2010                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
 

Figure-24. Type A variation of D' with S. 
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Appendix 
 
The matrices A1, X1, B1 ; A2, X2, B2; A3, B3 and A4, B4 
defined earlier in the equations (27), (31), (33) and (35) 
are given by the following expressions. 
 
The coefficient matrix A1 given in (27) is defined as:  
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The solution vector X1 for velocity v at different points is given by  
X1 = [v–2, v–1, v1, v2, v3, v4 ……….vn–5, vn–4, vn–3, vn–2, vn–1, vn, vn+1, vn+2] T    
 
and  the vector B1 for the boundary values is given by 
 
B1 = [t3 v0, – t3,0 v0, – t2 , 1 v0, – t1 , 2 v0, 0….………..0, – t5 , n–2  vn, – t4 , n–1  vn, – t3 , n  vn, t6 vn]T

 
The matrices A2, X2, B2 defined in equation (31) are as follows. The coefficient matrix A2 is given by 
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The solution vector X2 for velocity w at different points is given by  
X2 = [w–2, w–1, w1, w2, w3, w4, w5..  ………… wn–5, wn–4, wn–3, wn–2, wn–1, wn, wn+1, wn+2] T    
 
and   the vector B2 for the boundary values is given by 
 
B2 = [2r0w0, – s3,0 w0, – s2 ,1 w0, – s1, 2 w0, 0…………0, – s5 , n–2 wn, – s4 , n–1wn, – s3, n wn, 2rnwn] T
 
The coefficient matrix A3 defined in equation (33) is given by 
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and  the vector B3 for the boundary values is given by 
 
B3 = [(2h/r0)v0, –t3,0 v0, –t2,1 v0, –t1,2 v0, 0, …., 0, –t5,n–2 vn, –t4,n–1 vn, –t3,n vn, (2h/rn)vn]T

 
The coefficient matrix A4 defined in equation (35) is given by 
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and  the vector B4 for the boundary values is given by 
 
B4 = [4σ1h, –s3,0 w0, –s2,1 w0, –s1,2 w0, 0,……….,0, –s5,n–2  wn, –s4,n–1 wn, –s3,n wn,0] T
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