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ABSTRACT 
 One of the fundamental hypotheses of turbomachine design is to assume that the stream surfaces in the machine 
bladed zones are of revolution type. This can be obtained by accepting the flow as axisymmetric in the hypothesis of 
incompressible and ideal fluid and by determining the hydrodynamic field constituted by the stream lines and equipotential 
ones, respectively, in the meridian plane. In this paper is developed a computational model of the hydrodynamic field in 
the meridian plane by the boundary element technique. The results are obtained by solving a boundary-limit conditions 
problem for Stokes’ equation for the ϕ velocity potential. From the connection between the functions ϕ and ψ is 
determined the stream function ψ and the velocity field along stream lines. The proposed computational model is applied 
to a pump-turbine runner and the numerical results are compared to those obtained by the finite element method. 
 
Keywords: model, pump-turbine runner, numerical simulation, axisymmetric motion, boundary element method, velocity distributions.  
 
1. INTRODUCTION 

Many times, the mathematical formulation of 
some physical phenomena will lead to partial differential 
equations that together with the corresponding to the limit 
conditions give the so called limit problems. In most limit 
problems there is the impossibility of constructing 
analytical solutions which has led to the elaboration of 
numeric methods for the purpose of obtaining some 
approximated solutions. From this point of view the 
Boundary Element Method (BEM) was developed. 

In this paper the dimensionless formulation in the 
ϕ  potential functions will be used to provide a generality 
of the results. Therefore in Figure-1 in the meridian plane 
are presented: the analysis domains and the boundary 
conditions in pump case, respectively water turbine. 
 
2. BOUNDARY ELEMENT METHOD 
    FORMULATION 

Within the BEM, taking into account the 
formulated hypothesis we well adopt a cylindrical 
coordinate system (r,θ z). The dimensionless way of 
dealing with the problem in the ϕ  potential functions will 
impose the next change of variable and of function: 
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where Q, Lax. represent the fluid flow rate and the axial 
extension of analysis domain. 
Given that the axisymmetric domain is notated with 

∗Ω and its boundary with ∗Γ , ∗∗∗ Γ=Γ ddrd θ , the 
following expression of integral equation on the boundary 
will result [5]: 
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in which ∗Γ is the ∗Ω  domain boundary in the axial 
semiplane in conformity with Figure-1 and ( )x,ζϕ ∗∗ and 

( )xq ,ζ∗∗ are the following integrals: 
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The fundamental ( )x,ζϕ ∗∗  for Laplace∋s equation in 
three-dimensional case, where ζ  is the source point and x 
is field point: 
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allows calculating the integrals (3) knowing that the 
normal derivative expression of the fundamental solution 
is determined with no difficulty. The first integral from (3) 
has the form [4], [6]: 
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a) Pump 

 

 
 

Figure-1. Analysis domains and the boundary conditions. 
 
 
 

in which the notation below have been used: 
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and the complet elliptic integral of first kind ( )mK  is 
replaced with polinom of approximation [1], [3]: 
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where mm −=11 , and ( )mε  is the error terms. 
The second integral from (3) in conformity with [5] has 
the expression: 
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where ( )mE  represents the complete elliptic integral of 
second kind. This is replaced with the next polinom of 
approximation: 
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The discretization of the ∗Γ  boundary in N  constant 
boundary elements that have the ∗Γ j  boundary makes the 
following discretized form of the (3) equation obtainable: 
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The coefficients jiH  and jiG  are given by: 
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jϕ  and 

jn ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗

∗

∂
ϕ∂ are notations for the values on the j  

element of the ∗ϕ  function and its normal derivative. 
The integral equation (10) after implementation of the 
boundary conditions will lead to a linear system of N 
equations with N variables. If on the ∗Γ j  boundary of the 

constant element j  are considered for the ∗z , ∗r  variables 
following parametric equations: 
 

;BAz +=∗ ξ  ;DCr +=∗ ξ  [ 1,1−∈ ]ξ   (12) 
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for coefficients jiG  are obtained expressions which 
contain integrals that can be numerically evaluated using a 
Gauss quadrature. These are [3], [7]: 
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In the relation above ( )mK ∗  comes from the decomposing 
proposed for ( )mK : 
 

( ) ( ) ( ) ( )ξξ lnGmKmK += ∗                  (15) 
The coefficients jiH  are calculated regarding the 
following expressions that can be numerically evaluated 
using a Gauss quadrature: 
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The  values in are determinated with the help 
of following integral representation written under discre-
tized form: 

∗
iϕ ∗Ω∈∀ iζ
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The coefficients  and  from (18) are 

determined with the relations (13) and (16) remembering 
that 

jiG jiH

ζ  is replaced with . On the basis of the BEM 

there were elaborated in FORTRAN programming 
language the computer programs FIELFR and FICTAXS 
for IBM-PC compatible systems. The first solves the 
equation (10) and the second, on the basis of the integral 
representation (18) determines the values 

∗Ω∈iζ

∗
iϕ  in ∗Ω∈∀ iζ . 

The it calculates, through numerical derivative the values 
of components ∗

∗z
v , ∗

∗r
v  belonging to the velocity ∗v  

in ∗Ω∈∀ iζ , determines streamlines .ct=∗ψ  and equipo-

tential .ct=∗ϕ  also the velocity and pressure field along 
the streamlines taking into account the relations [8]: 
 

2
1; ∗

∗

∗
∗ −== vp

v
vv AB                   (19) 

 
3. NUMERICAL RESULTS 

In Figures-2 is presented the hydrodynamic field 
in the pump and turbine cases. Notable is the fact the 
besides the results obtained with BEM in the figures below 
are also shown those calculated with the Finite Element 
Method (FEM) [9], [10], [11]. 

In Figures-3 and 4 are presented the velocity and 
pressure distributions along the streamlines in the pump 
and turbine cases. These are obtained taking into account 
eq. (19) with the observation that ∗∗∗ = ./ iesvvv  where ∗

.iesv  
is the velocity corresponding to the last point on the 
streamlines found on the CD boundary.  

From Figures 3 and 4 of interest are the 
values ∗

.maxv , .minp  and length ∗l  of the streamline 1=∗ψ  
also for the pump case as for the turbine case. These 
values are reported in Table-1. From this table is 
noticeable that values .minp = −1.045 (pump) .minp = −0.9 
(turbine); obtained with the BEM and respectively .minp = 
−0.8; .minp = −0.7 computed with FEM shows that the 
operating in pumping regime is less convenient 
cavitationally. In Table-2 there were centralized the values 
of the CDv ∗  velocity and of the CDp  pressure from exit in 

the pump case, respectively ABv ∗ , ABp operating as a water 

turbine, values obtained with BEM and FEM for ∗ψ =0.0; 
0.2; 0.6; 0.8; 1.0. 

 
Table-1. Maximal velocities and minimal pressures. 

 

BEM FEM 
Case ∗ ψ

∗
.maxv  .minp  ∗l  ∗

.maxv  .minp  ∗l  

Pump 1 1.43 -1.045 0.46 1.34 -0.8 0.45 

Turbine 1 1.38 -0.9 1.07 1.3 -0.7 1.07 
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                                        a) Pump                                                                                b) Turbine 
 

Figure-2. Hydrodynamic field. 
 
 
 

Table-2. Velocities and pressures on the boundary CD and AB. 
 

Pump Turbine 

BEM FEM BEM FEM ψ ∗  

v CD∗  pCD  v CD∗  p CD  v AB∗  p AB  v AB∗  p AB  

0.0 0.524 0.725 0.52 0.73 0.690 0.650 0.595 0.646 

0.2 0.524 0.725 0.52 0.73 0.565 0.680 0.570 0.675 

0.4 0.524 0.725 0.52 0.73 0.540 0.710 0.545 0.703 

0.6 0.524 0.725 0.52 0.73 0.530 0.720 0.530 0.720 

0.8 0.524 0.725 0.52 0.73 0.525 0.724 0.525 0.724 

1.0 0.524 0.725 0.52 0.73 0.520 0.730 0.520 0.729 
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Figure-3. Velocity and pressure distributions along streamlines in 
the pump case. 

 
4. CONCLUSIONS 

Figures 3 and 4 suggest the way in which kinetic 
energy becomes potential energy, along the streamline 
established for the runner with no blades, meaning the 
field defined by the solid boundaries 0=∗ψ , 1=∗ψ  and 
also the input and output boundaries. 

The dimensionless values of the minimum 
presure .minp = −1.045 (pump); .minp = −0.9 (turbine) 
obtained with BEM and .minp = ; −0.8 .minp = −0.7 
obtained with FEM show that the operation in pumping 
regime is the most unfavourable cavitationally. 

It has been observed that the values CDp = 0.725 

(BEM); CDp = 0.73 (FEM) obtained in the pumping 

regime are the same for all ∗ψ  values and in the turbine 

case ABp = 0.65...0.73 (BEM); ABp = 0.648...0.729 (FEM) 

variates according to ∗ψ . 
The method presented offers the possibility of 

determining the position of the point pertaining to the 
streamline ψ*=1, from which the pressure .minp  is 
obtained. This result can be the basis for accomplishing a 
geometrical optimization of the solid boundary ψ*=1, thus 
resulting a convenient value for .minp  which would 
diminish as much as possible the unsuccessful operating of 
the runner from a cavitational point of view. 
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Figure-4. Velocity and pressure distributions along streamlines 
in the turbine case. 
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