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ABSTRACT 

We have compared the efficiency of two diagonal updating Newton methods for solving systems of nonlinear 
equations with singular Jacobian. Due to the fact that, the quadratic rate of convergence of Newton method for solving 
nonlinear systems of equations depends on when the Jacobian is nonsingular in the neighborhood of the solution. Contrary 
to this condition, i.e. the Jacobian to be singular the convergence is very slow and may even vanished. The two approaches 
are simple and straight forward to implement. We report on numerous numerical experiments which show that, the 
proposed algorithms are very promising.  
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1. INTRODUCTION 

Consider the system of nonlinear equations 
 

( ) 0F x =                                   (1.1) 
 

Where   with the following properties:             : nF → n                                                                  

1.  There exist  *x  with                                                             ( *) 0F x =                 

                                       

2. is continuously differentiable in a neighborhood f . F *x
3.                                                             ( )*( *) 0FF x J x′ = ≠

The most renowned method for solving (1.1) is 
Newton’s method. Moreover, the Newton's method for 
nonlinear equations it has the following general form: 
Given an initial point, say 0

nx ∈ℜ  it generates a 

sequence of correction { }ks and iterates }{ kx   [1], 
according to following stages: 
 
Algorithm NM (Newton’s method) 
Step 1: Solve  ( ) ( )F k k kJ x s F x= −

Step 2: Update 1k k kx x s+ = +  
Step 3: Repeat 1-2 until converges. 
Where  and  is the Jacobian matrix 

of . When the Jacobian matrix is nonsingular at the 
neighborhood of the solution, the convergence is 
guaranteed and the rate is quadratic [Yun and Tijalling, 
2005]. Newton method i.e. 

0,1, 2,...k = ( )F kJ x
F

 

21 * *k kx x h x x+ −− ≤                                           (1.2)                                                                
 

For some h,  0,1,2......k =
Violating this condition, i.e. when the Jacobian is 

invertible at the solution the convergence is unsatisfactory 
and may even diminish [Yun and Tijalling, 2005]. In 
addition Newton method slows down when approaching a 

singular root, this may vanishes the possibility of 
convergence to the solution *x [Eulalia and Juan, 2009].  
This requirement of non singularity of the Jacobian 
restricts to some level the application of Newton method 
for solving nonlinear systems of any category [Yun and 
Tijalling, 2005] 

There are a number of modifications to 
circumvent the point in which the Jacobian is singular, but 
there converges rate turn to be slow, resulting from less 
Jacobian information at each iteration [Waziri et al., 
2010]. The trouble-free modification is fixed Newton 
method. The modification is simply to implement as by 
setting ( ) ( )0F k FJ x J x≡ for . Fixed Newton method 
generates iterative points via the following stages: 

0k >

 
Algorithm FN (fixed Newton) 
Given 0x  

Step1: Solve  ( )0 ( )F k kJ x s F x= −  

Step2: Set 1k k kx x s+ = + , for  . 0,1,2......k =
FN method has eliminated both the computation and 
storage of the Jacobian (except at k=0) as well as avoiding 
solving linear system in each iteration but is 
significantly slower [Natasa and Zoma, 2001]. Inexact 
Newton method is also another Newton-type method for 
eliminating the shortcomings of Newton method for 
solving nonlinear equations. This method avoids solving 
Newton equation (stage1 of algorithm NM) by taking the 

correction{

n

}ks satisfying ( )0 ( )k F k kr J x s F x= + [3]. 
Inexact Newton method is given by the following stages: 
 
Algorithm INM (Inexact Newton) 
Let 0x be given 

Step1: Find some which satisfies  ks
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( ) ( )k kF k kJ x s F x r= − +   

 

Where 
 

.( )k k kr F xη≤
  

Step2: set 1k k kx x s+ = + . 

Where 
kη  is a forcing sequence. Letting  it gives 

back to Newton method. Another modification is Quasi-
Newton's method, the method is the famous method that 
replaces derivatives computation with direct function 
computation and also replaces Jacobian or its inverse with 
an approximation which can be updated at each iteration 
[Broyden, 1965] 

0kη ≡

In this paper we compared the efficiency of two 
diagonally updating Newton method for solving systems 
of nonlinear equations. These methods are presented by 
[Waziri et al., 2010a] and [Waziri et al., 2010b]. In 
[Waziri et al., 2010a] the approximation is on the Jacobian 
into nonsingular diagonal matrix. Whereby in [Waziri et 
al., 2010b] the approximation is on Jacobian inverse 
without the cost of computing and storing the Jacobian in 
every iteration. Our main emphasis in this paper is to 
compare the CPU time, number of iterations, matrix 
storage requirement and robust index of the two newly 
modified Newton methods for solving nonlinear equations 
when the Jacobian is singular at the solution with some 
variant of Newton methods. The diagonal updating 
methods study in this work has a very simple form, which 
will be favorable to making code and is significantly 
cheaper than Newton method as well as faster than both 
Newton and fixed Newton methods in term of CPU time 
and number of iterations, [Waziri et al., 2010b]. The rest 
of this work is organized as follows: we present the 
background of the two diagonally updating scheme in 
Section 2 and 3. Some numerical results and analysis are 
reported in section 4. Finally Discussion are presented in 
section 5.  
 
2. DIAGONAL JACOBIAN APPROXIMATION 

In this section we shall consider the 
approximation to the Jacobian into nonsingular matrix 
proposed by [Waziri et al., 2010a]. The authors presented 
the approximation via Taylor series expansion of  ( )F x   

about kx , i.e. 
 

( ) ( ) ( ) ( )2
( )

k k kkx x x x O x xF x F F+ − + −′= .                (1.3) 
 

Through imposing some conditions on the 
incomplete Taylor series expansion of  ( )F x  they were 
able to approximate ( )

kk xFD ′≈  as:  

1 2( , ,. . . , )nD diag d d d=                                                      (2.1) 

Where  is id
 

( ) ( )1

1( )
k k

i

k k

i i
i i

x

x x

F
d

x F+

+

−

−
=  for , 1, 2,. . .i =

If only the denominator is not equal to zero (see 
[Waziri et al., 2010a] for details). 

The algorithms and the update formula for the 
new approximation to the Jacobian into nonsingular 
diagonal matrix, is given as: 
  The update formula and the algorithm are given as 
(DJAN) [Waziri et al., 2010a]: 
 

1

1 ( )kk D kx x F x−

+ = −                                                     (2.2)                     
 

Where kD  defined by (2.1), provided 8
1 10i i

k kx x −
+ − >  

else set  1i id d −=   for 0,1, 2,. . . , .k n=  
 
Algorithm DJAN [Waziri et al., 2010a] 
Consider   with the same property as (1.1) : nF → n

Step 1: Given 0 0, nandx D Iε = , set k=0                                                 
Step 2: Compute ( )1

1k k k k andx x D F x−

+ −= ( )kF x   
Where defined by (2.1),   kD
Step 3: If  8

1 ( ) 10k kx x F x −
+ − + ≤  stop. Else go to step 4.  

Step4: If 8
1 ( ) 10k kx x F x −
+ − + ≤  compute

1kD +
, else 1k kD D+ = . 

Set 1K k= +  The above algorithm is faster than Newton 
method and fixed Newton method so also cheaper than 
Newton methods. 

and go to step 2.  

  
3. DIAGONAL JACOBIAN INVERSE  
    APPROXIMATION 

In this section we consider Jacobian inverse 
approximation into nonsingular diagonal matrix proposed 
by [Waziri et al., 2010b]. The advantage of this approach 
over the above updating scheme is that, no cost of storing 
or computation of the Jacobian matrix required in the 
implementation of the scheme. Indeed this gives it an 
improvement in terms of execution time (CPU time).  

The authors designed this diagonal updating 
method in the same fashion as Jacobian approximation 
(see [Waziri et al., 2010b] for details). 
They presented the approximation via Taylor series 
expansion of  ( )F x   about kx   , i.e. 

( ) ( ) ( ) ( )2
( )

k k kkx x x x O x xF x F F+ − + −′= . 
 

By imposing some conditions on the incomplete Taylor 
series expansion of  ( )F x  they were able to approximate   
 

( ) 1
kk xFD −′≈  as:  

 

1 2( , ,. . . , )nD diag d d d=                                             (3.1) 
 

Where  
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( ) ( )
1

1

( )i

k k

k k

i

i
i i

x x

x
d

F x F+

+ −

−
=

 

For 1, 2,. . .i = , if only the 

denominator is not equal to zero.  
The algorithms and the update formula for the 

new approximation to the Jacobian inverse into 
nonsingular diagonal matrix, is given as follows, [Waziri 
et al., 2010b]: 
 

The update formula is given as (DJIAN): 

1 ( )kk D kx x F x+ = −                                                      (3.2)                                                                                     
 

Where kD  defined by (3.1), provided 

( ) ( ) 8
1 10i ik kF x F x −
+ − >

 
else set 1i id d −= for 

 0,1, 2,. . . , .k n=
 
Algorithm DJIAN [Waziri et al., 2010b] 
Consider  with the same property as (1.1) : nF → n

Step 1: Given 0 0, nandx D Iε = , set k=0                                                                                                           

Step 2: Compute ( )1k k k k andx x D F x+ −= ( )kF x   
Where  defined by (2.1),   kD
Step 3: If 8

1 ( ) 10k kx x F x −
+ − + ≤ stop. Else go to step 4.  

Step 4: If 8
1 ( ) 10k kx x F x −
+ − + ≤ compute 1kD + , else

1k kD D+ = . 
Set and go to step 2.  1K k= +  The above algorithm is also considerable faster 
than Newton method and fixed Newton method so also 
cheaper than Newton methods. Despite the fact that DJAN 
is an approximation to the Jacobian DJIAN outperforms it, 
due to low computational cost and storage requirement 
associated to the building of the approximation matrix in 
DJIAN. 

To this end we next compare the numerical 
performance of the DJAN and DJIAN methods with some 
variant of Newton method. 

Our main aims here, is to locate between the two 
newly approximation which is reliable and efficient, in 
terms of CPU time, number of iterations and matrix 
storage requirements.  
 
4. NUMERICAL RESULTS AND COMPARISON  
 In this section, we present numerous numerical 
tests to exemplify the comparative study of DJAN and 
DJIAN for solving nonlinear systems of equations with 
singular Jacobian at a solution. The comparison was based 
on number of iterations and CPU time in seconds and 
matrix storage requirements. The methods used are 
namely: 
 

a) DJAN stands for Diagonal Jacobian approximation. 
b) DJIAN stands for Diagonal Jacobian inverse 

approximation. 
c) NM: Newton method. 
d) FN:  Fixed Newton Method. 
 

DJAN is proposed by [Waziri et al., 2010a] and [Waziri et 
al., 2010b] proposed DJIAN  

The numerical experiments were accomplished 
using MATLAB 7.0. All the calculations were carried out 
in double precision computer. We used the stopping 
criterion: 
 

8
1 ( ) 10k kx x F x −
+ − + ≤

                                            (4.1)
 

 

We used the following notations: Cpu: Cpu time 
in seconds. Lastly we present some details of the used 
benchmarks test problems as follows: 
 
Problem 1 [Eulalia and Juan, 2009]  

2: 2f R R→ is defined by 
 

1

2

2cos

2
1 1 2

2
1

( 1) ( )

( 2)
( ) {

x
x

x x x

x
f x ⎛ ⎞

⎜ ⎟
⎝ ⎠

− −

−
=

 

 

0 (1.5,2.5) and (0.5,1.5)x = are chosen the solution is 

. * (1,2)x =
 
Problem 2 [Eulalia and Juan, 2009]  

3: 3f R R→  is defined by 
 

( )

( )
( ) (

1

2 1 2

3

4 2
5

6

1

2 1

4
( ) {

xx

x x x

x

e

f x

−

)− −

+
=  

 

0 (2,1, 2)x = −  is chosen and  * (1,2, 4)x = −
 
Problem 3 [Waziri et al., 2010a]   
 

2: 2f R R→ is defined by 
 

1 1

2 1( ) { x

xf x
e

e

−

−
=  

 

0 (0.5,0.5), ( 1.5, 1.5)x = − − Are chosen the solution 

is . * (0,0)x =
 
Problem 4 [Waziri et al., 2010a]   

2: 2f R R→ is defined by: 
 

2 2
1 1 2

2 2
1 1

( )
cos( )

cos( ) 3

5{ xf x
x x

2x e x

x

x=

+

+
 

 

*
0 (0.2, 0.1) (0,0)x and x= − =  

 
Problem 5 [Eulalia and Juan, 2009]  

2: 2f R R→  is defined by 
 

 
41



                                              VOL. 5, NO. 10, OCTOBER 2010                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

( )

( )41 2

1 2

6

cos 1( ) { x x

x xf x

−

− +
=  

 

*
0 ( 0.5,0.5) and (0,0)x x= − =  

 
Problem 6 [Yun and Tijalling, 2005]  

2: 2f R R→  is defined by 
2 2
1 2

2
1 23( ) {x x

xf x x

+

+
=  

0 (0.5, 0.3) , (0.5,0.5)x = − are chose and         

  
* (0,0)x =

 
Problem 7 [Waziri et al., 2010b]  
 2: 2f R R→  is      defined by: 

2

1 2

11

( ) {
x

f x
e x
x x

− −

−=  

0 (0.7,0.7)x =  is chosen the solution is . * (0,0)x =

 
Table-1. The numerical results of problems 1-7: Number of iterations. 

 

Problems 0x  NM FN DJAN DJIAN 

1 1.5,2.5) 
(0.5,1.5) 

108 
33 

133 
71 

9 
11 

9 
9 

2 (2,1,-2) 143 _ 37 35 

3 (0.5,0.5) 
(-1.5,-1.5) 

4 
7 

9 
_ 

4 
7 

4 
6 

4 0.2,-0.1 12 85 10 7 

5 (-0.5, 0.5) 
(0.5,0.5) 

27 
26 

_ 
_ 

25 
25 

25 
23 

6 (0.5,-0.3) 
(-0.5,-0.4) 

13 
_ 

144 
_ 

8 
5 

7 
5 

7 (0.7,0.7) 28 128 16 13 
 
 

Table-2. The numerical results of problems 1-7: CPU time in seconds. 
 

Pm 0x  NM FN DJAN DJIAN 

1 (1.5,2.5) 
(0.5,1.5) 

90.4503 
28.6261 

68.1734 
47.0925 

6.5312 
5.9521 

5.2416 
4.6956 

2 (2,1,-2) 267.8698 _ 41.046 30.4045 

3 (0.5,0.5) 
(-1.5,-1.5) 

3.8064 
5.5224 

5.1012 
_ 

2.5625 
4.7145 

1.9812 
3.6831 

4 (0.2,-0.1) 19.0298 46.0203 9.0793 4.900 

5 (-0.5, 0.5) 
(0.5,0.5) 

21.3877 
20.4517 

_ 
_ 

18.2053 
19.1845 

13.0573 
14.2585 

6 (0.5,-0.3) 
(-0.5,-0.4) 

10.0152 
_ 

59.1244 
_ 

6.1409 
4.0248 

3.6504 
3.5384 

7 (0.7,0.7) 20.7562 61.0040 4.9184 3.4792 
 

The numerical results of the four (4) methods are 
reported in Tables 1 and 2, which includes number of 
iterations and CPU time in seconds respectively. Through 
examination of these Tables, we can easily observe that all 
the four methods have shown a good attempt to solve the 
systems, except FN method. The performance of DJAN 
method is considerable better than NM and FN in terms of 
number of iterations and CPU time, as can easily be seen 
that, it has least number of iterations and less CPU time.  

More so the result of DJIAN revealed that the 
method is quite cheaper than DJAN, this is due to the facts 
that, the method do not require computation and storage of 

the Jacobian in each iteration In particular, the DJAN and 
DJIAN methods outperformance the NM and FN methods 
for all the tested benchmarks problems with their 
respective initial guesses. In addition, we observe that 
DJAN and DJIAN methods are the best with 100% of 
successes when compared with NM method having 90.9% 
and FN method with 54.54% respectively.  It is worth 
mentioning that the DJIAN has total eliminates the need of 
Jacobian matrix storage, whereby DJAN method has 
reduces to vector storage, respectively.    
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5.  CONCLUSIONS 

We compared the numerical performance of two 
newly diagonal Newton method for solving nonlinear 
equations with singular Jacobian proposed by [Waziri et 
al., 2010a] and [Waziri et al., 2010b]. 

It is well acknowledged that the convergence of 
Newton method in solving nonlinear equations with 
singular Jacobian at the solution is unsatisfactory and may 
even fail. Due to the fact that, DJAN and DJIAN methods 
have a less computational expenditure and low storage 
requirements related with the building the approximation 
scheme. It is worth mentioning that the DJAN and DJIAN 
methods are capable of reducing the numerical execution 
time (CPU time) and number of iterations, while 
maintaining the good precision of the numerical result. 
Another assertion that makes the DJAN and DJIAN 
methods attractive is that throughout the numerical test 
they shown a promising performance. Hence we can 
recommend that DJIAN method is the good alternative to 
NM and FN methods, especially when the Jacobian is 
singular at a solution. 
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