
 VOL. 5, NO. 10, OCTOBER 2010 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

A COMPARATIVE STUDY OF DIAGONAL UPDATING NEWTON
METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS WITH

SINGULAR JACOBIAN

Mohammed waziri Yusuf1 and Ibrahim Saidu2

1Faculty of Science, Department of Mathematics, University Putra Malaysia, Malaysia
2Faculty of Computer Science and Information Technology University Putra, Malaysia

E-Mail: waziri@math.upm.edu.my

ABSTRACT

We have compared the efficiency of two diagonal updating Newton methods for solving systems of nonlinear
equations with singular Jacobian. Due to the fact that, the quadratic rate of convergence of Newton method for solving
nonlinear systems of equations depends on when the Jacobian is nonsingular in the neighborhood of the solution. Contrary
to this condition, i.e. the Jacobian to be singular the convergence is very slow and may even vanished. The two approaches
are simple and straight forward to implement. We report on numerous numerical experiments which show that, the
proposed algorithms are very promising.

Keywords: diagonal, Newton method, and Jacobian.

1. INTRODUCTION

Consider the system of nonlinear equations

() 0F x = (1.1)

Where with the following properties: : nF → n

1. There exist *x with (*) 0F x =

2. is continuously differentiable in a neighborhood f . F *x
3. ()*(*) 0FF x J x′ = ≠

The most renowned method for solving (1.1) is
Newton’s method. Moreover, the Newton's method for
nonlinear equations it has the following general form:
Given an initial point, say 0

nx ∈ℜ it generates a

sequence of correction { }ks and iterates }{ kx [1],
according to following stages:

Algorithm NM (Newton’s method)
Step 1: Solve () ()F k k kJ x s F x= −

Step 2: Update 1k k kx x s+ = +
Step 3: Repeat 1-2 until converges.
Where and is the Jacobian matrix

of . When the Jacobian matrix is nonsingular at the
neighborhood of the solution, the convergence is
guaranteed and the rate is quadratic [Yun and Tijalling,
2005]. Newton method i.e.

0,1, 2,...k = ()F kJ x
F

21 * *k kx x h x x+ −− ≤ (1.2)

For some h, 0,1,2......k =
Violating this condition, i.e. when the Jacobian is

invertible at the solution the convergence is unsatisfactory
and may even diminish [Yun and Tijalling, 2005]. In
addition Newton method slows down when approaching a

singular root, this may vanishes the possibility of
convergence to the solution *x [Eulalia and Juan, 2009].
This requirement of non singularity of the Jacobian
restricts to some level the application of Newton method
for solving nonlinear systems of any category [Yun and
Tijalling, 2005]

There are a number of modifications to
circumvent the point in which the Jacobian is singular, but
there converges rate turn to be slow, resulting from less
Jacobian information at each iteration [Waziri et al.,
2010]. The trouble-free modification is fixed Newton
method. The modification is simply to implement as by
setting () ()0F k FJ x J x≡ for . Fixed Newton method
generates iterative points via the following stages:

0k >

Algorithm FN (fixed Newton)
Given 0x

Step1: Solve ()0 ()F k kJ x s F x= −

Step2: Set 1k k kx x s+ = + , for . 0,1,2......k =
FN method has eliminated both the computation and
storage of the Jacobian (except at k=0) as well as avoiding
solving linear system in each iteration but is
significantly slower [Natasa and Zoma, 2001]. Inexact
Newton method is also another Newton-type method for
eliminating the shortcomings of Newton method for
solving nonlinear equations. This method avoids solving
Newton equation (stage1 of algorithm NM) by taking the

correction{

n

}ks satisfying ()0 ()k F k kr J x s F x= + [3].
Inexact Newton method is given by the following stages:

Algorithm INM (Inexact Newton)
Let 0x be given

Step1: Find some which satisfies ks

39

 VOL. 5, NO. 10, OCTOBER 2010 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

() ()k kF k kJ x s F x r= − +

Where

.()k k kr F xη≤

Step2: set 1k k kx x s+ = + .

Where
kη is a forcing sequence. Letting it gives

back to Newton method. Another modification is Quasi-
Newton's method, the method is the famous method that
replaces derivatives computation with direct function
computation and also replaces Jacobian or its inverse with
an approximation which can be updated at each iteration
[Broyden, 1965]

0kη ≡

In this paper we compared the efficiency of two
diagonally updating Newton method for solving systems
of nonlinear equations. These methods are presented by
[Waziri et al., 2010a] and [Waziri et al., 2010b]. In
[Waziri et al., 2010a] the approximation is on the Jacobian
into nonsingular diagonal matrix. Whereby in [Waziri et
al., 2010b] the approximation is on Jacobian inverse
without the cost of computing and storing the Jacobian in
every iteration. Our main emphasis in this paper is to
compare the CPU time, number of iterations, matrix
storage requirement and robust index of the two newly
modified Newton methods for solving nonlinear equations
when the Jacobian is singular at the solution with some
variant of Newton methods. The diagonal updating
methods study in this work has a very simple form, which
will be favorable to making code and is significantly
cheaper than Newton method as well as faster than both
Newton and fixed Newton methods in term of CPU time
and number of iterations, [Waziri et al., 2010b]. The rest
of this work is organized as follows: we present the
background of the two diagonally updating scheme in
Section 2 and 3. Some numerical results and analysis are
reported in section 4. Finally Discussion are presented in
section 5.

2. DIAGONAL JACOBIAN APPROXIMATION

In this section we shall consider the
approximation to the Jacobian into nonsingular matrix
proposed by [Waziri et al., 2010a]. The authors presented
the approximation via Taylor series expansion of ()F x

about kx , i.e.

() () () ()2
()

k k kkx x x x O x xF x F F+ − + −′= . (1.3)

Through imposing some conditions on the
incomplete Taylor series expansion of ()F x they were
able to approximate ()

kk xFD ′≈ as:

1 2(, ,. . . ,)nD diag d d d= (2.1)

Where is id

() ()1

1()
k k

i

k k

i i
i i

x

x x

F
d

x F+

+

−

−
= for , 1, 2,. . .i =

If only the denominator is not equal to zero (see
[Waziri et al., 2010a] for details).

The algorithms and the update formula for the
new approximation to the Jacobian into nonsingular
diagonal matrix, is given as:
 The update formula and the algorithm are given as
(DJAN) [Waziri et al., 2010a]:

1

1 ()kk D kx x F x−

+ = − (2.2)

Where kD defined by (2.1), provided 8
1 10i i

k kx x −
+ − >

else set 1i id d −= for 0,1, 2,. . . , .k n=

Algorithm DJAN [Waziri et al., 2010a]
Consider with the same property as (1.1) : nF → n

Step 1: Given 0 0, nandx D Iε = , set k=0
Step 2: Compute ()1

1k k k k andx x D F x−

+ −= ()kF x
Where defined by (2.1), kD
Step 3: If 8

1 () 10k kx x F x −
+ − + ≤ stop. Else go to step 4.

Step4: If 8
1 () 10k kx x F x −
+ − + ≤ compute

1kD +
, else 1k kD D+ = .

Set 1K k= + The above algorithm is faster than Newton
method and fixed Newton method so also cheaper than
Newton methods.

and go to step 2.

3. DIAGONAL JACOBIAN INVERSE
 APPROXIMATION

In this section we consider Jacobian inverse
approximation into nonsingular diagonal matrix proposed
by [Waziri et al., 2010b]. The advantage of this approach
over the above updating scheme is that, no cost of storing
or computation of the Jacobian matrix required in the
implementation of the scheme. Indeed this gives it an
improvement in terms of execution time (CPU time).

The authors designed this diagonal updating
method in the same fashion as Jacobian approximation
(see [Waziri et al., 2010b] for details).
They presented the approximation via Taylor series
expansion of ()F x about kx , i.e.

() () () ()2
()

k k kkx x x x O x xF x F F+ − + −′= .

By imposing some conditions on the incomplete Taylor
series expansion of ()F x they were able to approximate

() 1
kk xFD −′≈ as:

1 2(, ,. . . ,)nD diag d d d= (3.1)

Where

40

 VOL. 5, NO. 10, OCTOBER 2010 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

() ()
1

1

()i

k k

k k

i

i
i i

x x

x
d

F x F+

+ −

−
=

For 1, 2,. . .i = , if only the

denominator is not equal to zero.
The algorithms and the update formula for the

new approximation to the Jacobian inverse into
nonsingular diagonal matrix, is given as follows, [Waziri
et al., 2010b]:

The update formula is given as (DJIAN):

1 ()kk D kx x F x+ = − (3.2)

Where kD defined by (3.1), provided

() () 8
1 10i ik kF x F x −
+ − >

else set 1i id d −= for

 0,1, 2,. . . , .k n=

Algorithm DJIAN [Waziri et al., 2010b]
Consider with the same property as (1.1) : nF → n

Step 1: Given 0 0, nandx D Iε = , set k=0

Step 2: Compute ()1k k k k andx x D F x+ −= ()kF x
Where defined by (2.1), kD
Step 3: If 8

1 () 10k kx x F x −
+ − + ≤ stop. Else go to step 4.

Step 4: If 8
1 () 10k kx x F x −
+ − + ≤ compute 1kD + , else

1k kD D+ = .
Set and go to step 2. 1K k= + The above algorithm is also considerable faster
than Newton method and fixed Newton method so also
cheaper than Newton methods. Despite the fact that DJAN
is an approximation to the Jacobian DJIAN outperforms it,
due to low computational cost and storage requirement
associated to the building of the approximation matrix in
DJIAN.

To this end we next compare the numerical
performance of the DJAN and DJIAN methods with some
variant of Newton method.

Our main aims here, is to locate between the two
newly approximation which is reliable and efficient, in
terms of CPU time, number of iterations and matrix
storage requirements.

4. NUMERICAL RESULTS AND COMPARISON
 In this section, we present numerous numerical
tests to exemplify the comparative study of DJAN and
DJIAN for solving nonlinear systems of equations with
singular Jacobian at a solution. The comparison was based
on number of iterations and CPU time in seconds and
matrix storage requirements. The methods used are
namely:

a) DJAN stands for Diagonal Jacobian approximation.
b) DJIAN stands for Diagonal Jacobian inverse

approximation.
c) NM: Newton method.
d) FN: Fixed Newton Method.

DJAN is proposed by [Waziri et al., 2010a] and [Waziri et
al., 2010b] proposed DJIAN

The numerical experiments were accomplished
using MATLAB 7.0. All the calculations were carried out
in double precision computer. We used the stopping
criterion:

8
1 () 10k kx x F x −
+ − + ≤

 (4.1)

We used the following notations: Cpu: Cpu time
in seconds. Lastly we present some details of the used
benchmarks test problems as follows:

Problem 1 [Eulalia and Juan, 2009]

2: 2f R R→ is defined by

1

2

2cos

2
1 1 2

2
1

(1) ()

(2)
() {

x
x

x x x

x
f x ⎛ ⎞

⎜ ⎟
⎝ ⎠

− −

−
=

0 (1.5,2.5) and (0.5,1.5)x = are chosen the solution is

. * (1,2)x =

Problem 2 [Eulalia and Juan, 2009]

3: 3f R R→ is defined by

()

()
() (

1

2 1 2

3

4 2
5

6

1

2 1

4
() {

xx

x x x

x

e

f x

−

)− −

+
=

0 (2,1, 2)x = − is chosen and * (1,2, 4)x = −

Problem 3 [Waziri et al., 2010a]

2: 2f R R→ is defined by

1 1

2 1() { x

xf x
e

e

−

−
=

0 (0.5,0.5), (1.5, 1.5)x = − − Are chosen the solution

is . * (0,0)x =

Problem 4 [Waziri et al., 2010a]

2: 2f R R→ is defined by:

2 2
1 1 2

2 2
1 1

()
cos()

cos() 3

5{ xf x
x x

2x e x

x

x=

+

+

*
0 (0.2, 0.1) (0,0)x and x= − =

Problem 5 [Eulalia and Juan, 2009]

2: 2f R R→ is defined by

41

 VOL. 5, NO. 10, OCTOBER 2010 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

()

()41 2

1 2

6

cos 1() { x x

x xf x

−

− +
=

*
0 (0.5,0.5) and (0,0)x x= − =

Problem 6 [Yun and Tijalling, 2005]

2: 2f R R→ is defined by
2 2
1 2

2
1 23() {x x

xf x x

+

+
=

0 (0.5, 0.3) , (0.5,0.5)x = − are chose and

* (0,0)x =

Problem 7 [Waziri et al., 2010b]
 2: 2f R R→ is defined by:

2

1 2

11

() {
x

f x
e x
x x

− −

−=

0 (0.7,0.7)x = is chosen the solution is . * (0,0)x =

Table-1. The numerical results of problems 1-7: Number of iterations.

Problems 0x NM FN DJAN DJIAN

1 1.5,2.5)
(0.5,1.5)

108
33

133
71

9
11

9
9

2 (2,1,-2) 143 _ 37 35

3 (0.5,0.5)
(-1.5,-1.5)

4
7

9
_

4
7

4
6

4 0.2,-0.1 12 85 10 7

5 (-0.5, 0.5)
(0.5,0.5)

27
26

_
_

25
25

25
23

6 (0.5,-0.3)
(-0.5,-0.4)

13
_

144
_

8
5

7
5

7 (0.7,0.7) 28 128 16 13

Table-2. The numerical results of problems 1-7: CPU time in seconds.

Pm 0x NM FN DJAN DJIAN

1 (1.5,2.5)
(0.5,1.5)

90.4503
28.6261

68.1734
47.0925

6.5312
5.9521

5.2416
4.6956

2 (2,1,-2) 267.8698 _ 41.046 30.4045

3 (0.5,0.5)
(-1.5,-1.5)

3.8064
5.5224

5.1012
_

2.5625
4.7145

1.9812
3.6831

4 (0.2,-0.1) 19.0298 46.0203 9.0793 4.900

5 (-0.5, 0.5)
(0.5,0.5)

21.3877
20.4517

_
_

18.2053
19.1845

13.0573
14.2585

6 (0.5,-0.3)
(-0.5,-0.4)

10.0152
_

59.1244
_

6.1409
4.0248

3.6504
3.5384

7 (0.7,0.7) 20.7562 61.0040 4.9184 3.4792

The numerical results of the four (4) methods are
reported in Tables 1 and 2, which includes number of
iterations and CPU time in seconds respectively. Through
examination of these Tables, we can easily observe that all
the four methods have shown a good attempt to solve the
systems, except FN method. The performance of DJAN
method is considerable better than NM and FN in terms of
number of iterations and CPU time, as can easily be seen
that, it has least number of iterations and less CPU time.

More so the result of DJIAN revealed that the
method is quite cheaper than DJAN, this is due to the facts
that, the method do not require computation and storage of

the Jacobian in each iteration In particular, the DJAN and
DJIAN methods outperformance the NM and FN methods
for all the tested benchmarks problems with their
respective initial guesses. In addition, we observe that
DJAN and DJIAN methods are the best with 100% of
successes when compared with NM method having 90.9%
and FN method with 54.54% respectively. It is worth
mentioning that the DJIAN has total eliminates the need of
Jacobian matrix storage, whereby DJAN method has
reduces to vector storage, respectively.

42

 VOL. 5, NO. 10, OCTOBER 2010 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

5. CONCLUSIONS

We compared the numerical performance of two
newly diagonal Newton method for solving nonlinear
equations with singular Jacobian proposed by [Waziri et
al., 2010a] and [Waziri et al., 2010b].

It is well acknowledged that the convergence of
Newton method in solving nonlinear equations with
singular Jacobian at the solution is unsatisfactory and may
even fail. Due to the fact that, DJAN and DJIAN methods
have a less computational expenditure and low storage
requirements related with the building the approximation
scheme. It is worth mentioning that the DJAN and DJIAN
methods are capable of reducing the numerical execution
time (CPU time) and number of iterations, while
maintaining the good precision of the numerical result.
Another assertion that makes the DJAN and DJIAN
methods attractive is that throughout the numerical test
they shown a promising performance. Hence we can
recommend that DJIAN method is the good alternative to
NM and FN methods, especially when the Jacobian is
singular at a solution.

ACKNOWLEDGEMENTS

This is to acknowledge Dr Leong of Department
of Mathematics, University Putra Malaysia for his
valuable advice and suggestions by improving the quality
of this work.

REFERENCES

Broyden C.G. 1965. A class of methods for solving
nonlinear simultaneous equations. Math. Comp. 19: 577-
593.

Dembo R.S, Eisenstat S.C and Steihaug T. 1982. Inexact
Newton method. SIAM J. Numer. Ana. 19: 400-408.

Dennis J E. 1983. Numerical methods for unconstrained
optimization and nonlinear equations, Prince-Hall, Inc.,
Englewood Cliffs, New Jersey.

José L.H, Eulalia M. and Juan R.M. 2009. Modified
Newton’s method for systems of nonlinear equations with
singular Jacobian. Comput. Appl. Math. 224: 77-83.

M.Y waziri, W.J Leong, M.A Hassan and M. Monsi.
2010a. Newton method for systems of nonlinear equations
with singular Jacobian using diagonal updating. Journal of
mathematics and computations. 8. S10, pp. 1-7.

M.Y waziri, W.J Leong, M.A Hassan and M. Monsi.
2010b. An efficient solver for systems of nonlinear
equations with singular Jacobian via diagonal updating.
Journal of applied mathematical sciences Vol. 4, 2010, no.
69, 3403 - 3412.

Natasa K. and Zorna L. 2001. Newton-like method with
modification of the right- hand vector. J. maths. compt. 71:
237-250.

S. Yun-Qiu and J. Y. Tijalling. 2005. Newton’s method
for singular nonlinear equations using approximate left
and right null space of the Jacobian. App. Num. Math. 54:
256-265.

T.N. Grapsay and E.N. Malihoutsakit. 2007. Newton’s
method without direct function evaluation. In: Proceedings
of 8th Hellenic European Conference on Computer
Mathematics and its Applications (HERCMA 2007),
Athens, Hellas.

43

