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ABSTRACT 

This problem of laminar convective flow of an incompressible, conducting, viscous fluid embedded with non -
conducting dust particles in the presence of uniform magnetic field and constant pressure gradient taking volume fraction 
of a dust particles into account when one plate of the channel is fixed and the other is oscillating in time and magnitude 
about a constant non-zero mean is formulated. Solutions are obtained for the velocity of fluid, dust particles and the fluid 
temperature within the channel. The effects of various parameters on the velocities are shown graphically and discussed. It 
is found that both the velocity of the liquid and dust particles decreases with the increase in the porous parameter )( 3ε . 
 
Keywords: magnetohydrodynamics, volume fraction, and dust particles. 
 
INTRODUCTION 

The influence of dust particles on convective 
flow of dusty viscous fluids has its importance in many 
application such as wastewater treatment, power plant 
piping, combustion and petroleum transport. Particularly, 
the flow and heat transfer of electrically conducting fluids 
in channels under the effect of a transverse magnetic field 
occur in magnetohydrodynamic (MHD) accelarators, 
pumps and generators. This type of flow has uses in 
nuclear reactors, geothermal systems and filtration, among 
others. The possible presence of dust particles in 
combustion MHD generators and their effect on the 
performance of such devices led to studies of volume 
fraction of dust particles in non-conducting walls in the 
presence of uniform transverse magnetic field. 

The study of convective flow of dusty viscous 
fluid under the influence of different physical conditions 
has been carried out by several authors like: Nag and Jana 
(1979) have studied unsteady couette flows of a dusty gas 
between two infinite parallel plates, when one plate is kept 
fixed and the other plate moves in its own plane. The 
problem has been solved with the help of Laplace 
Transform technique. It is found that the dust velocity in 
the case of accelerated start of the plate is less than the 
fluid velocity, for moderate value of the relaxation time of 
the dust particles become very fine. It is observed that the 
magnitude of the shear stress is larger when the plate starts 
with uniform acceleration than when it is impulsively 
started to move with uniform velocity. The paper of Nag 
and Jana (1979) did not examined time dependent plane, 
transient effects and wave structure of the fluid. 
Kulshretha and Puri (1981), have investigated the couette 
flow of a dusty gas due to an oscillatory motion of the 
plate. The time dependent plate and transient effects have 
been included. The dusty gas contained between two 
parallel plates is disturbed by the motion of the lower plate 
with an arbitrary velocity )(tF . When )(tF contains a 

factor of the type exp {-( 2 iλ ϖ− ) t }, two distinct types of 
waves are generated, one of which is oscillatory and the 
other is non-oscillatory which disappears for 0=λ .  
Reflections of these waves are studied and graphs for the 
wave speeds are presented. Long time approximations for 
this type of )(tF  are evaluated and steady state solutions 
are obtained for )(tF  of the type exp )( tiϖ .

Bratsun and Teplov (2000), also studied two 
phase flow in a tall vertical slot differently heated from the 
side walls, where one of the phase is fluid and another 
phase consists of small solid particles. The particles are 
subjected to downward drag exerted by the gravity and the 
drag exerted by finite frequency horizontal vibrations 
along the layer. In the framework of the generalized 
Boussinesq approximations non-contradictive set of 
governing equations describing the dynamics of 
suspension where derived. The pulsed base flow is 
obtained and its linear stability is analysed. The 
comparison of the numerical results with the recent 
experimental findings is given. In this study, the magnetic 
field and temperature field were not considered. 

Attia (2002) studied the effects of variable 
viscosity on the unsteady flow of an electrically 
conducting, viscous, incompressible dusty fluid and heat 
transfer between parallel non-conducting porous plates. 
The fluid is driven by a constant pressure gradient and an 
external uniform magnetic field is applied perpendicular to 
the plates. The governing non-linear partial differential 
equations are solved numerically using finite differences. 
The effect of the variation in the viscosity and electric 
conductivity of the fluid and the uniform magnetic field on 
the velocity and temperature fields for both the fluid and 
dust particles is discussed. 

Attia and Aboul-Hassan (2002), studied the flow 
of a conducting, viscoelastic fluid between two horizontal 
porous plates in the presence of transverse magnetic field. 
The plates are assumed to be non-conducting and 
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maintained at two fixed but different temperatures. The 
fluid viscosity is assumed to be temperature dependent and 
the fluid is subjected to a uniform suction from above and 
injective from below. The motion of the fluid is produced 
by a uniform horizontal pressure gradient. The equation of 
motion and energy equation are solved numerically to 
yield the velocity and temperature distributions. 

Attia (2006), investigated the time varying 
couette flow with heat transfer of a dusty viscous 
incompressible, electrically conducting fluid under the 
influence of a constant pressure gradient is studied without 
neglecting the Hall Effect. The parallel plates are assumed 
to be porous and subjected to a uniform suction from 
above and injection from below while the fluid is acted 
upon by an external uniform magnetic field applied 
perpendicular to the plates. The governing equations are 
solved numerically using finite differences to yield the 
velocity and temperature distribution for both the fluid and 
dust particles. It is found that both the fluid and the solid 
particle phases have two components velocity. The main 
two components of velocity of the fluid and dust particles, 
u and pu  respectively, are found to increase with an 
increase in the Hall parameter m. However, the other two 
components of velocity ϖ  and pϖ , which result due to 
the Hall Effect, increase with the Hall parameter m  for 
small m  and decrease with m  for large values of m . It is 
also found that the temperatures of both fluid and particles 
phases decrease with the Hall parameter. In these studies, 
the volume fraction of dust particles is neglected. 
However, the assumption of ignoring volume fraction of 
the particles is not justified for high fluid densities or high 
particle mass fraction where the volume fraction of the 
particles may become significantly large and cannot be 
neglected. 

Singh and Singh (2002) studied the laminar 
convective flow of an incompressible, conducting, viscous 
fluid embedded with non-conducting dust particles 
through a vertical parallel plate channel in the presence of 
uniform magnetic field and constant pressure gradient 
taking volume fraction of dust particles into account when 
one plate of the channel is fixed and the other is oscillating 
in time and magnitude about a constant non-zero mean 
.Solutions of the equation governing the flow are obtained 
for the skin velocity of the fluid and dust particles. The 
expression for skin friction and heat transfer is also 
obtained. The effects of various parameters on the 
velocities, skin friction and heat transfer are discussed. In 
this study porous parameter is not considered. 

In the present paper we discuss the laminar 
convective flow of a dusty viscous fluid through a porous 
medium of non-conducting walls in the presence of 
uniform transverse magnetic field with volume fraction 
and considering porous parameter. 
  
FORMULATION OF THE PROBLEM 

In Cartesian co-ordinate system, we consider 
unsteady laminar flow of a dusty, incompressible, 
Newtonian, electrically conducting, viscous fluid through 

a porous medium of uniform cross section h, when one 
wall of the channel is fixed and the other is oscillating in 
time about a constant non-zero mean. 

Initially at ( )0t ≤  the channel wall as well as 

the fluid are assumed to be at the same temperature . 

When t , the temperature of the channel walls is 
instantaneously raised to  which oscillate with time and 
is thereafter maintained constant. Let x-axis be along the 
flow of liquid at the fixed wall and y-axis perpendicular to 
it. A uniform magnetic field of strength 

0T
0>

wT

0 0( )cB Hµ=  is 
applied perpendicular to the flow region.  
 
Assumptions 

The governing equations are written based on the 
following assumptions:  
 The dust particles are solid, spherical, non-
conducting equal in size and uniformly distributed in the 
flow region. This means that the dust particles gain heat 
energy from the fluid by conduction through their 
spherical surface. 
 

(i) The number density of dust particles is constant and 
the temperature between the particles is uniform 
throughout the motion. It is an incompressible fluid, 
therefore the density is constant and also to prevent 
energy loss between the particles. 

(ii) The interactions between the particles, chemical 
reaction and radiation between the particles and liquid 
have not been considered. This is necessary in order 
to avoid multiple equations. 

(iii) The buoyancy force, induced magnetic field and Hall 
effects have been neglected. This means that the flow 
region has uniform temperature, uniform applied 
magnetic field and a Cartesian coordinate.  

(iv) The volume occupied by the particles per unit volume 
of the mixture, (i.e., volume fraction of dust particles) 
and mass concentration have been taken into 
consideration. 

(v) The magnetic Reynolds number is taken to be very 
small so that induced magnetic field is negligible. 
This means that a uniform magnetic field  is 
applied in the positive y-direction and is the only 
magnetic field in the problem. 

0B

(vi) The dust concentration is so small so that it is not 
disturbing the continuity and hydro magnetic effects. 
This means that the continuity equation is satisfied. 

 
Governing equations 

The fluid flow is governed by the momentum and 
energy equation under the above assumptions: 
 

2 221 0 0(1 ) (1 ) ( ) ( )02 1

KN Hu KN cp uv g T T v u u u
t Kx y

σµ µ
φ φ β

ρ ρρ

⎡ ⎤∂ ∂ ∂ +⎢ ⎥− = − − + + − + − + −
∂ ∂⎢ ⎥∂⎣ ⎦    (1)

 

 

2
( ) (0 02

v p uN m g T T KN u v
dt x y

φ µ ρ β
⎡ ⎤∂ ∂ ∂ +⎢ ⎥ )0= + + − + −
∂⎢ ⎥∂⎣ ⎦                              

(2) 
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2

2
T
t Cp y

κ
ρ

∂ ∂
=

∂ ∂

T

≤

                                                                       (3) 

 

The boundary conditions to the problem are: 
 

( ) ( ) ( )0; , , 0, , 0 0 1t u y t v y t T y t for y≤ = = = ≤  
 

( ) ( ) ( )0; , , 0, , 0 0t u y t v y t T y t at y> = = = =

1=

                                  (4) 
 

( ) ( ) ( )int int, , 1 , 1u y t v y t e T y t e at yε ε= = + = +  
 

Where  is the velocity of the fluid and ( ),u y t ( ),v y t   
velocity of the dust particles,  is the mass of each dust 
particle,  is the number density of dust particles, T  is 
the temperature.  Is the initial temperature,  is the 

raised temperature, 

m
0N

0T Tw

β+  is the volumetric coefficient of 
thermal expansion. Cp  is the specific heat at constant 

pressure, φ is the volume fraction of dust particles (i.e., the 
volume occupied by the particles per unit volume of the 
mixture),  is the Stoke’s resistance coefficient (K 6 rπµ=  
for spherical particles of radius ). r 0H  is the magnetic 
field induction, cµ  is magnetic permeability, σ  is the 
electrical conductivity of the liquid,  is thermal 
conductivity and 

κ
1K  is the porous parameter. 

The first term in the right hand side of equation 
(1) consists of pressure gradient while the second is the 
viscous flow and the third buoyancy force terms 
respectively. The last three terms represent the force term 
due to the relative motion between fluid and dust particles, 
magnetic and porous terms respectively .While the left 
hand side represent streamwise velocity unsteady term. 

From equation (1.2) the left hand side signifies 
unsteady normal velocity expressed in terms of pressure 
and viscous dissipation terms while equation (1.3) is the 
energy balance. 

The problem is simplified by writing the 
equations in the non-dimensional form. The characteristic 
length is taken to be h and the characteristic velocity isν . 
We introduce the following non-dimensional variables: 
 

2* * * * * * 0, , , , ,2 2 0

x y h p t uh T Tx y p t u T
h h T Twh

ν
νρν

−
= = = = = =

−  
and * vhv

ν
=                (5) 

 

Substituting equations (5) in equation (1-3), and 
then removing asterisks, we get 
 

2
( )1 22

u p u G T v u Mu urt x y
3ε ε ε∂ ∂ ∂

=− + + + − − −
∂ ∂ ∂      

                                 (6)              

 

2
(2

v p u )f G T u vrt x y
φ
⎡ ⎤∂ ∂ ∂⎢ ⎥= − + + + −

∂ ∂⎢ ⎥∂⎣ ⎦
β                                                (7) 

 

21
2

T T
t Pr y

∂ ∂
=

∂ ∂                                                                        
 (8)   

 

Where  
 

3( )0
2

g T T hwGr
β

ν

+ −=
(Grashofnumber),

1 (1 )1
fε

σ φ
=

−
, 

1 2
m

Kh

νσ =
, 1

2 1
ε

φ
=

−
, 2 2 2

0M h Hc
σµ
µ

=  (Magnetic parameter), 0mNf
ρ

= (mass 

concentration of dust particles), 2
3 (1 )1

h
K
µε

φ
=

−
(Porous 

Parameter), .
1
fβ
σ

= (concentration resistance ratio) and 

CpPr
µ
κ

= (Prandtl number). 

 The non-dimensional boundary conditions are: 
 

0; ( , ) ( , ) 0, ( , ) 0 0 1.t u y t v y t T y t for y≤ = = = ≤ ≤  
 

0; ( , ) ( , ) 0 ( , ) 0 0.t u y t v y t T y t at y> = = = =                                  (9) 
 

int int( , ) ( , ) 1 , ( , ) 1 , 1.u y t v y t e T y t e at yε ε= = + = + =  
 

The solution to equations (6) - (9) are in the form 
of the following Soundalgekar and Bhat (1984) equations.  
 

( ) ( )

( ) ( )

( ) ( ) ( )

int, ( )0 1
int, ( )0 1

int, 0 1

u y t u y u y e

v y t v y v y e

T y t T y T y e

ε

ε

ε

= +

= +

= +                                                   

(10)                     

 

p P
x
∂

= =
∂

Constant  

 
SOLUTIONS 

We solve equations (6-8) under the boundary 
conditions (9) 
Substituting equation (2) in equations (6-8), we get 
 

( ) ( ) ( ) ( ) ( )0 1 2 3 0 1 0 0u y M u y v y P G T yrε ε ε ε′′ − + + + = −                            (11) 
 

( ) ( ) ( ) ( )0 0 0 0v y u y u y P G T yrβ β φ⎡ ⎤′′= + − +⎢ ⎥⎣ ⎦
                                    (12) 

 

( ) 00T y′′ =                                                (13) 
 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 3 1 1 1 1u y M in u y v y G y T yrε ε ε ε′′ − + + + + =−                        (14) 
 

( )nifβ + [ ]( ) ( ) ( ) ( )1 1 1 1v y u y u y G T yrβ φ ′′= + +                                    (15) 
 

( ) ( ) 01 1T y inp T yr′′ − =                                                                (16) 
 

The corresponding boundary conditions are now   
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0, 0 00 1 0 1 0 1

1, 1 10 1 0 1 0 1

u y u y v y v y T y T y at y

u y u y v y v y T y T y at y

= = = = = = =

= = = = = = =

       (17) 

 

The solution to (11-16) subject to the boundary conditions 
(17) are 
By solving equation (13), we obtain 
 

( )0T y y=                                 (18) 
 

Substituting equation (18) in equation (11), and (12), we 
obtain  
 

( )( ) ( ) ( )0 1 2 3 0 1 0u y M u y v y P G yrε ε ε ε′′ − + + + = −                               (19) 
 

[ ]( ) ( ) ( )0 0 0v y u y u y P G yrβ β φ ′′= + − +                                             (20) 
 

Substituting equation (20) in equation (19), we obtain 

 
88



                                              VOL. 5, NO. 10, OCTOBER 2010                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
2( ) ( )0 0u y A u y P G yr′′ − = −                                                          (21) 

 

Where ( )2 2 3
1

M
A

β ε ε
β φε

+
=

+
 

 

By solving equation (2.11), we obtain 
 

(cosh 1) sinh( ) (cosh 1) 10 2 2 sinh 2
P P A G Ay Gru y Ay

AA A

⎡ ⎤− +
= − + − +⎢ ⎥

⎣ ⎦

yr
A

                   (22) 

 

The First and Second partial derivatives of equation (22) 
are: 
 

(cosh 1) cosh( ) sinh 10 2 2sinh
P P A G Ay Gru y Ay A
A AA A

⎡ ⎤− +′ = + − +⎢ ⎥
⎣ ⎦

r

        
                (23) 

 

(cosh 1) sinh2( ) cosh 10 2 sinh
P A G Aru y P Ay A

AA

⎡ ⎤− +′′ = + −⎢ ⎥
⎣ ⎦

y                             (24) 

 

Substituting equations (23) and (24) in equation (12) we 
obtain  
 

(cosh 1) sinh1( ) (cosh 1) 10 12 2 sinh
A P P A G Ay A G yrv y Ay A

AA A

⎡ ⎤− +
= − + − +⎢ ⎥

⎣ ⎦
1

2
r

A
            (25) 

 

Where 211A Aφ
β

= +  
 

By solving equation (16), we obtain 
 

sinh( )1 sinh 0
LoT y y
L

=                                                                    (26) 

 

Substituting equation (26) in equations (14) and (15), we 
obtain 
 

sinh 0( ) ( ) ( ) ( )1 1 2 3 1 1 1 sinh 0
G Lru y M in u y v y y

L
ε ε ε ε′′ − + + + + = −

     (27) 
 

 

sinh 0( ) ( ) ( ) ( )01 1 sinh 0
G Lrnif v y u y u y y

L
β β φ

⎡ ⎤
′′+ = + +⎢ ⎥

⎢ ⎥⎣ ⎦ (28)
 

 

Substituting equation (28) in equation (27), we obtain 
 

sinh2 0( ) ( )1 1 sinh 0
G Lru y B u y y

L
′′ − =−                                               (29) 

 

By solving equation (29), we obtain 
 

sinh sinh 0( ) 11 2 2 2 2sinh sinh 0( )0 0

G By Gr ru y L y
B LL B L B

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠                           

 (30) 

 

The First and Second partial derivatives of equation (30) 
are: 
 

cosh cosh0 0( ) 11 2 2 2 2sinh sinh 0( )0 0

G B By G L Lr ru y
B LL B L B

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

y

                

    (31) 

 

22 sinhsinh 00( ) 11 2 2 2 2sinh sinh 0( )0 0

L LG B By Gr ru y
B LL B L B

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′′ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

y

                    

(32) 

 

Substituting equations (31) and (32) in equation (28), we 
obtain 
 

sinh sinh 0( ) 11 2 0 2 2 2 2sinh sinh 00 0

G By G Lr rv y A B
B LL B L B

⎡⎛ ⎞ ⎛ ⎞
⎢⎜ ⎟ ⎜ ⎟= + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

y
⎤
⎥

                     

(33) 

Where 2 ( )12 0 2 2 2
B nA and B

n f

φ β β
β β

−
= + =

+

if  

 

Substituting equations (22) and (30) in equation (10), we 
obtain  
 

( ) sinhcosh 1
( , ) (cosh 1) 12 22 sinh

sinh sinh int01 2 2 2 2sinh sinh 0( )0 0

P Ay G yP A G rru y t Ay
AA AA

G By G L yr r e
B LL B L B

ε

⎡ ⎤− +
= − + − + +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

       (34) 

 

Substituting equations (25) and (33) in equation (10), we 
obtain 
 

( ) sinhcosh 11 1( , ) (cosh 1) 112 22 sinh

sinh sinh int012 0 2 2 2 2sinh sinh 0( )0 0

A P AP A G rrv y t Ay A
AA AA

G By G L yr rA B e
B LL B L B

ε

⎡ ⎤− + y A G y
= − + − + +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦       

(35) 

 

Also, substituting equations (13) and (26) in equation (10), 
we obtain 
 

sinh int0( , )
sinh 0

LT y t y ye
L

ε= +                                                         (36) 

 

Hence equation (34)-(36) represent velocity of 
the liquid, velocity of the dust particles and temperature 
respectively. 
 
RESULTS AND DISCUSSIONS 
 
VELOCITY OF THE LIQUID AND DUST 
PARTICLE ( 0Gr )<  
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Figure-1. showing the primary velocities of the 
liquid for є3=0. 
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Figure-2.Showing the Primary velocities of the liquid 
                     for various values of є3. 
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Figure-3. Showing the primary velocities of the dust 
particles for є3=0. 
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Figure-4. Showing the Primary velocities of the dust 
particles for various values of є3. 

 
TRANSIENT VELOCITY OF THE LIQUID AND 
DUST PARTICLE . ( 0Gr < )
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Figure-5. Showing the transient velocity of the 
liquid for є3=0. 
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Figure-6. Showing the transient velocities of the liquid 
for various values of є3. 
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Figure-7. Showing the transient velocities of the dust  
particles for є3=0. 
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Figure-8. Showing the transient velocity of the dust 
particles for various of є3. 

 
From the observations of Figure-1 and Figure-3, Figure-2 
and figure-4, Figure-5 and Figure-7, and Figure-6 and 
Figure-8, we arrive at the following conclusions: 
 

 An increase in M  results in a decrease in the primary 
velocities ( )0u y , ( )0v y  as well as in transient 

velocities ,
2

u y
n

π⎛ ⎞
⎜ ⎟
⎝ ⎠

, ( ),
2

v y
n

π
 for both 3 0ε =  and 

various values of 3ε . 
 An increase in β  leads to a small change in the primary 

velocities ( )0u y , ( )0v y  as well as in transient 

velocities ,
2

u y
n

π⎛ ⎞
⎜ ⎟
⎝ ⎠

, ( ),
2

v y
n

π
 for both 03 =ε  and 

various values of 3ε . 

 An increase in φ  leads to a small change in the primary 

velocities ( )0u y , ( )0v y  as well as in transient 

velocities ,
2

u y
n
π⎛ ⎞

⎜ ⎟
⎝ ⎠

, ,
2

v y
n
π⎛ ⎞

⎜
⎝ ⎠

⎟  for both 3 0ε =  and 

various values of 3ε . 
 
CONCLUSIONS 

In this paper the effects of concentration 
resistance ratio( β ), volume fraction of dust particles(φ ), 
porous parameter ( 3ε ), and  an external magnetic field on 
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the unsteady laminar flow of dusty, incompressible, 
Newtonian, electrically conducting  viscous fluid with a 
volume fraction are presented. The velocities of the fluid 
and velocities of the particles are obtained. It is found that 
both the velocity of the liquid and dust particles decreases 
with the increase in the porous parameter ( )3ε . 
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