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ABSTRACT 

The problem of steady, viscous, incompressible fluid flow in a tube of slowly varying cross-section with 
absorbing wall is studied. For the mathematical formulation of the problem the effect of fluid absorption through 
permeable wall is accounted by prescribing flux as a function of axial distance and the fluid is considered as a Newtonian 
fluid. The nonlinear equations of motion are linearized by perturbation method by assuming δ (ratio of inlet radius to 
wavelength) as a small parameter and the resulting equations are solved by numerical methods. The effects of reabsorption 
coefficient (α), slope parameter (k) and amplitude ratio (ε) on the velocity profiles mean pressure drop and wall shear stress 
are presented graphically. Results indicate that the variation of slope parameter and reabsorption coefficient influences the 
flow field considerably. 
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INTRODUCTION 

One of the most useful and important organ of a 
human body is kidney, which excrete end products of 
body metabolism and controls concentrations of most of 
the constitutes of body fluids. Each kidney encloses over a 
million tiny units called Nephrons, which are the basic 
functional unit of kidney. Nephrons consist of glomerulus 
and renal tubules which are originating from the tuft of the 
glomerulus. Renal tubules are involved in one of the most 
important and final stage of the nephron function, in 
clearing the end products of metabolism and in 
maintaining the volume of the body fluids. The major 
portion of the tubular function is being carried out by the 
proximal renal tubule, which is highly permeable to water 
and small solutes, to facilitate their reabsorption from 
glomerular filtrate. The proximal renal tubules are not 
uniform all along their length. It is therefore suitable to 
consider a mathematical model for renal flow with non-
uniform tube of varying cross-section with reabsorption at 
the wall. 

Flow in renal tubule has been studied by various 
authors. Macey [1] was the first to study the mathematical 
modeling of the flow in proximal renal tubule. He 
formulated the problem as the flow of an incompressible 
viscous fluid through a circular tube with linear rate of 
reabsorption at the wall. Kelman [2] noted that the bulk 
flow in the proximal tubule decays exponentially with the 
axial distance. Later, Macey [3] used this condition and 
solved the equations of motion to find average pressure 
drop. Marshall and Trowbridge [4] and Palatt et al [5] 
used physical conditions existing at the permeable wall 
instead of prescribing the flux/radial velocity at the wall. 

In all the above analysis the renal tubule is 
assumed as cylindrical tube of uniform cross-section, 
while in general such tubes may not have uniform cross-
section throughout their length. Radhakrishnamacharya et 
al. [6] made an attempt to understand the flow through the 
renal tubule by studying the hydrodynamical aspects of an 
incompressible viscous fluid in a circular tube of varying 

cross-section with reabsorption at the wall. Chandra and 
Prasad [7] analyzed flow in rigid tubes of slowly varying 
cross-section with absorbing wall. Chaturani and 
Ranganatha [8] considered fluid flow through a 
diverging/converging tube with variable wall permeability. 

In this study we have made an attempt to 
understand the flow through renal tubule by studying the 
hydrodynamical aspect of an incompressible viscous fluid 
in a rigid converging/diverging tube of varying cross-
section with reabsorption at the wall. The boundary of the 
tube wall varies with . It is taken as 
 

                    (1) 
 

where  is the radius of the tube at the inlet (at  
),   is a constant whose magnitude depends on 

the length of the tube exit and inlet dimensions and which 
is assumed as << 1 ,   is the amplitude and   is the 
wave length (Figure-1). 
 

 
 

Figure-1. Geometry of 3 dimensional renal tubules. 
 
MATHEMATICAL FORMULATION 

Consider an incompressible fluid flows through a 
tube with slowly varying cross-section as given by 
equation (1). The motion of the fluid is assumed to be 
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laminar, steady and symmetric. The tube is long enough to 
neglect the initial and end effects. The governing 
equations of such fluid motion are given by 
 

                                                   (2)                    
 

 
                                                                            (3) 
 

    (4) 
 

where  and   are the velocity components along the 
axial and radial axes respectively,   is the pressure,   

density of the fluid and   is kinematic viscosity. 
The boundary conditions are taken as follows: 

The tangential velocity at the wall is zero. That is, 
 

  at            (5) 
 

The regularity condition requires 
 

   at   
                                                                            (6) 
 

The reabsorption at the wall has been accounted for by 
considering the bulk flow as a function of axial 
distance  , which is decreasing with  . That is, the flux 
across a cross-section is given as 
 

       (7) 
 

Where  when  and decreases 
with  ,   is the reabsorption coefficient and is a 
constant, and  is the flux across the cross-section 
at . 

The relation between stream function   and 
velocity components is given as 
 

                   (8) 
 

Using the following non-dimensional quantities 
 

  
 

   
 

and equation (8), the equations (2), (3) and (4) are 
transformed to the non-dimensional form as (after 
dropping the primes) : 

 

                                                                                                                                                                                                                 (9) 
 

Where,  and . 
 

Further the boundary conditions (5), (6) and (7) become 
 

    
 

at                 (10) 
 

  at                  (11) 
 

      
 

at      (12) 
 

Where ,    ,    
 

The parameter   is the Reynolds number and 
  is the wave-number (the ratio of inlet width to the 

wavelength).   is amplitude ratio (the ratio of amplitude 
to the inlet width) and   is slope parameter. In this 
problem, we consider exponentially decaying bulk flow 
[3]. That is, in equation (7),  is taken as 
 

       (13) 
ANALYSIS 

It may be noted that the flow is quite complex 
because of nonlinearity of governing equation and the 
boundary conditions. Thus to solve equation (9) for 
velocity components, in the present analysis we shall seek 
a solution for stream function  in the form of a 
power series in terms of   (assuming   as small 
parameter), as 
 

  (14) 
 

Substituting equation (14) in equations (9), (10), (11) and 
(12) and collecting coefficients of various like powers of 

 , we get the following sets of equations for , , 
,  …   . 

 
 Case: 

 

        (15) 
 

where .  
 

The boundary conditions are: 
 

   at                              (16) 
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    at                  (17) 
 

     at                    (18) 
 
 

 Case: 
 

                                                                                                    
                                                                                       (19) 
 

where .  
 

The boundary conditions are: 
 

       at        (20) 
 

  at                                (21) 
 

   at               (22) 
 

Similar expressions can be written for higher 
order of   cases. However, since we are looking for an 
approximate analytical solution for the problem, we 
consider up to order of  equations. 

The solution of equation (15) together with 
equations (16) to (18) is 
 

                                (23) 
 

where  and . 
 

The solution of equation (19) together with 
equations (20) to (22) is 
 

               (24) 
 

where 
 

 
 
 

 
 

 
 
 

 
 

Hence, substituting  and   in equation (14), we get 
that 
 

     
    (25) 

 

Now, the non-dimensional pressure  can be 
obtained by using equations (3), (8) and (25). It is given as 
 

                                  (26) 
 

The mean pressure is given as 
 

   (27) 
Further, the mean pressure drop between  and  

   is 
 

                                  (28) 
 

The wall shear stress  is defined as 
 

   at 
                                                            (29) 

 

where ,     ,    

 . 
 

Using the non-dimensional quantity , the 
wall shear  becomes (after dropping the primes), 
 

                                                             (30) 
 

It may be noted that in equation (26), the 
integrations are difficult to evaluate analytically to get 
closed form expression for . Therefore, they are 
calculated by numerical integration. 
 
RESULTS AND DISCUSSIONS 

The objective of this analysis is to study the 
behavior of an incompressible fluid flow through a tube of 
converging/diverging and slowly varying cross-section 
with absorbing wall. It may be recalled that    
characterize the slope of the converging/diverging wavy 
wall.  represents a rigid channel of slowly 
varying cross-section (sinusoidal channel).   and   
represents amplitude and reabsorption coefficient of wavy 
wall. 

We discuss the effects of these parameters on the 
radial velocity ( ), mean pressure drop ( ) and 
wall shear stress ( ) quantities. In all our numerical 
calculations, the following parameters are fixed as   

 and . We take  to 
consider low Reynolds number flow. 
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The velocity : 

The radial velocity profile of the flow is obtained 
by taking different values of   at different cross-
sections of the tube  ,    and   .  The 
values of  are taken as    for convergent tube, 

  for normal tube (sinusoidal tube) and    for 
divergent tube. 

It can be observed from Figures 2(a) - 2(c), that 
the radial velocity is less for the convergent tube and more 
for the divergent tube than the normal tube case. However, 
in the downstream of the flow, though there is no 
significant change in the behavior of radial velocity, the 
quantity of the velocity decreases. 
Figures 3(a) - 3(c) show the effects of   on the 
radial velocity at  ,    and   .  Though 
the overall qualitative behavior is similar to the case 
of , we observe a significant change in the 
qualitative nature of  at   . It may be noted 
that at , wavy nature of wall is narrowing 
symmetrically and this brings negative values of radial 
velocity near center of the tube. 

Figure-2(a) is compared with Figure-1 of 
Radhakrishnamacharya et al [6] paper. They studied the 
radial velocity at the entrance while we presented our 
results for the entire length of tube. So, we compare both 
results at the entrance  for the limiting 
case . It can be observed from these two Figures 
that at , the distribution of velocity with radial 
coordinates (  ), is the same. 
 
Mean pressure drop  : 

The values of the mean pressure drop (equation 
(28)) over the length of the tube are calculated for 
different values of  ,  and . It can be observed from 
Figures 4(a) and 4(b) that the mean pressure drop is more 
for the convergent tube than the normal tube and it is less 
for divergent tube. It may also be noted that as the values 
of   changes from  to , the values of the mean 
pressure drop changes significantly. Further, as the 
reabsorption coefficient  increases the mean pressure 
drop for converging/normal/diverging tubes decreases 
(Figures 5(a) - 5(c)). 
 
Magnitude of wall shear stress  : 

The effects of  ,  and  on the magnitude of 
wall shear stress  are studied and presented graphically 
in Figures 6(a) - 7(c).  It may be remarked from Figures 
6(a) and 6(b) that the magnitude of wall shear stress is 
more for the convergent tube and less for the divergent 
tube than the normal tube. It can also be noted that as the 
values of   changes from  to , the values of the 
magnitude of wall shear stress changes considerably. 
Moreover, as the reabsorption coefficient   increases, 
the magnitude of wall shear stress for 

converging/normal/diverging tubes decreases (Figures 7(a) 
to 7(c)). 
 
CONCLUSIONS 

The main contribution of this study is to see the 
effect of wavy nature of walls on the flow of 
incompressible fluid in a rigid tube of slowly varying 
converging/diverging walls with possible applications to 
the flow in renal tubules. It is observed that the radial 
velocity is less for the convergent tube and more for the 
divergent tube than the normal tube. The mean pressure 
and the magnitude of the wall shear stress are more for the 
convergent tube and less for the divergent tube than the 
normal tube. Moreover, as the reabsorption coefficient   
increases, the magnitude of wall shear stress and the mean 
pressure drop for converging/normal/diverging tubes 
decreases. 
 

 
 

Figure-2(a). Distribution of radial velocity ( ) with . 
 

 

 
 

Figure-2(b). Distribution of radial velocity ( ) with . 
. 

 

 
18



                                           VOL. 5, NO. 11, NOVEMBER 2010                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
 

Figure-2(c). Distribution of radial velocity ( ) with . 
. 

 

 
 

Figure-3(a). Distribution of radial velocity ( ) with . 
. 

 

 
 

Figure-3(b). Distribution of radial velocity ( ) with . 
. 

 

 
 

Figure-3(c). Distribution of radial velocity ( ) with . 
. 

 

 
 

Figure-4(a). Distribution of mean pressure drop ( ) 
with . . 

 

 
 

Figure-4(b). Distribution of mean pressure drop ( ) 
with . . 
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Figure-5(a). Distribution of mean pressure drop ( ) 
with . . 

 

 
 

Figure-5(b). Distribution of mean pressure drop ( ) 
with . . 

 

 
 

Figure-5(c). Distribution of mean pressure drop ( ) 
with . . 

 

 
 

Figure-6(a). Distribution of wall shear stress ( ) 
with . . 

 

 
 

Figure-6(b). Distribution of wall shear stress ( ) 
with . . 

 

 
 

Figure-7(a). Distribution of wall shear stress ( ) 
with . . 
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Figure-7(b). Distribution of wall shear stress ( ) 
with . . 

 

 
 

Figure-7(c). Distribution of wall shear stress ( ) 
with . . 
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