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ABSTRACT 

The objectives of the present study are to investigate the radiation effects on unsteady heat and mass transfer flow 
of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation. The method of solution can be 
applied for Finite element technique. Numerical results for the velocity, the temperature and the concentration are shown 
graphically. The expressions for the skin-frication, Nusselt number and Sherwood number are obtained. The results show 
that increased cooling (Gr>0) of the plate and the Eckert number leads to a rise in the velocity. Also, an increase in the 
Eckert number leads to an increase in the temperature, whereas increase in radiation parameter lead to a decrease in the 
temperature distribution when the plate is being cooled. 
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INTRODUCTION 

For some industrial applications such as glass 
production and furnace design in space technology 
applications, cosmial flight aerodynamics rocket, 
propulsion systems, plasma physics which operate at 
higher temperatures, radiation effects can be significant. 
Soundalgekar and Takhar [1] considered the radiative free 
convection flow of an optically thin grey-gas past a semi-
infinite vertical plate. Radiation effects on mixed 
convection along an isothermal vertical plate were studied 
by Hussian and Takhar [2]. Raptis and Perdikis [3] have 
studied the effects of thermal radiation and free convection 
flow past a moving vertical plate. 

Chamkha et al. [4] analyzed the effects of 
radiation on free convection flow past a semi-infinite 
vertical plate with mass transfer. Kim and Fedorov [5] 
studied transient mixed radiative convection flow of a 
micro polar fluid past a moving, semi-infinite vertical 
porous plate. Prakash and Ogulu [6] have investigated an 
unsteady two-dimensional flow of a radiating and 
chemically reacting fluid with time dependent suction.  

In many chemical engineering processes, there 
does occur the chemical reaction between a foreign mass 
and the fluid in which the plate is moving. These processes 
take place in numerous industrial applications viz., 
Polymer production, manufacturing of ceramics or 
glassware and food procession. Das et al. [7] have studied 
the effects of mass transfer on flow past an impulsively 
started infinite vertical plate with constant heat flux and 
chemical reaction. 

In all these investigations, the viscous dissipation 
is neglected. The viscous dissipation heat in the natural 
convective flow is important, when the flow field is of 
extreme size or at low temperature or in high gravitational 
field. Gebhar [16] showed the importance of viscous 
dissipative heat in free convection flow in the case of 
isothermal and constant heat flux in the plate. 
Soundalgekar [17] analyzed the effect of viscous 
dissipative heat on the two dimensional unsteady, free 

convective flow past a vertical porous plate when the 
temperature oscillates in time and there is constant suction 
at the plate. Israel Cookey et al [18] investigated the 
influence of viscous dissipation and radiation on unsteady 
MHD free convection flow past an infinite heated vertical 
plate in porous medium with time dependent suction. 

The objective of the present study is to analyze 
the radiation and mass transfer effects on an unsteady two-
dimensional laminar convective boundary layer flow of a 
viscous, incompressible, chemically reacting fluid along a 
semi-infinite vertical plate with suction, by taking into 
account the effects of viscous dissipation. The equations of 
continuity, linear momentum, energy and diffusion, which 
govern the flow field, are solved by using finite 
element technique. The behavior of the velocity, 
temperature, concentration has been discussed for 
variations in the governing parameters. 
 
MATHEMATICAL ANALYSIS 

An unsteady two-dimensional laminar boundary 
layer flow of a viscous, incompressible, radiating fluid 
along a semi-infinite vertical plate in the presence of 
thermal and concentration buoyancy effects is considered, 
by taking the effect of viscous dissipation into account. 
The x′ -axis is taken along the vertical infinite plate in the 
upward direction and the -axis normal to the plate. The 
level of concentration of foreign mass is assumed to be 
low, So that the Soret and Dufour effects are negligible. 
Now under Boussinesq’s approximation, the flow field is 
governed by the following equations: 
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Where are the velocity components in 
directions respectively? 

vu ′′,
yx ′′, t ′  -the time, ρ -the fluid 

density, ν  -the kinematic viscosity, 
 
-the specific heat 

at constant pressure,  -the acceleration due to gravity, 
pc

g
β and  -the thermal and concentration expansion 
coefficient respectively, 

∗β
T  -the dimensional temperature, 

 -the dimensional concentration, C α  -the fluid thermal 
diffusivity, µ - coefficient of viscosity,  - the mass 

diffusivity,  -the chemical reaction parameter.  

D

rk ′
The boundary conditions for the velocity, 

temperature and concentration fields are 
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Where 
 
is the scale of free stream velocity,  and 

 are the wall dimensional temperature and 

concentration respectively, ∞T  and ∞  are the free 
stream dimensional temperature and concentration 
respectively, - the constant. 
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By using Rosseland approximation, the radiative heat flux 
is given by                                
 

y
T

K
q

e

s
r ′∂

∂
−=

4

3
4σ

                                                         (6)         

 

Where sσ  - the Stefan-Boltzmann constant and - the 
mean absorption coefficient. It should be noted that by 
using Rosseland approximation, the present analysis is 
limited to optically thick fluids. If temperature differences 
within the flow are sufficient, small, then equation(6) can 
be linearised by expanding 

eK

4T  in the Taylor series about 

, which after neglecting higher order terms take the 

form 
∞T
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In view of equations (6) and (7), equation (30 reduces to  
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From the continuity equation (1), it is clear that 
suction velocity normal to the plate is either a constant or 
function of time. Hence, it is assumed in the form 
 

( )tnAeVv ′′+−=′ ε10                                                    (9) 
 

Where A is a real positive constant, ε and εA are small 
values less than unity and V0 is scale of suction velocity at 
the plate surface. 

In order to write the governing equations and the 
boundary condition in dimension less form, the following 
non- dimensional quantities are introduced. 
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In view of the equations (6) - (10), Equations (2) 
- (4) reduce to the following dimensionless form.    
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Where and  are the thermal 
Grashof number, solutal Grashof number, Prandtl number, 
radiation parameter, Eckert number, Schmidt number and 
chemical reaction parameter respectively.  

ScEcRGmGr ,,Pr,,, rk

The corresponding boundary conditions are 
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OLUTION OF THE PROBLEM 
or the differential 

equation

S
The Galerkin equation f
 (11) becomes 
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Neglecting the first term in Equation (16) we gets 
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Where   and dot denotes the 
differentiation with respect to . 
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assemble three 

element equations, we obtain   
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Now put row corresponding to the node i to zero, 
from Equation (16) the difference schemes is 
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Applying Crank-Nicholson method to the above equation 
(10), then we gets 
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Applying similar procedure to equation (11) and (12) then 
we gets 
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the mesh sizes along 

kh,

−y direction and time −t direction 
respectively. Index  refers to the space and refers to 
the time. In Equations (17)-(19), taking i =1(1) n and using 
initial and boundary conditions ( , the following system 
of equations are obtained: 

i j
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Where ’s are matrices of order  and ’s column 
matrices having 

iA n ii BX ,
−n components. The solutions of above 

system of equations are obtained by using Thomas 
algorithm for velocity, temperature and concentration. 
Also, numerical solutions for these equations are obtained 
by C-program. In order to prove the convergence and 
stability of Galerkin finite element method, the same C-
program was run with slightly changed values of and  
and no significant change was observed in the values of 

h k

θ,u andφ . Hence, the Galerkin finite element method is 
stable and convergent.   

The skin-friction, Nusselt number and Sherwood 
number are important physical parameters for this type of 
boundary layer flow. 
  

The skin-friction at the plate, which in the non-
dimensional form is given by 
 

000 =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
′

=
y

w
f y

u
VU

C
ρ
τ

                     (21) 

 

The rate of heat transfer coefficient, which in the 
non-dimensional form in terms of the Nusselt number is 
given by   
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The rate of heat transfer coefficient, which in the 

non-dimensional form in terms of the Sherwood number, 
is given by                                                   
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Where  
ν

xV
x

0Re =   is the local Reynolds number.  

 
RESULTS AND DISCUSSIONS 

In the preceding sections, the problem of an 
unsteady free convective flow of a viscous, 
incompressible, radiating and dissipating fluid past a semi- 
infinite plate with chemically reacting was formulated and 
solved by finite element technique. The expressions for the 
velocity, temperature and concentration were obtained. To 
illustrate the behavior of these physical quantities, numeric 
values were computed with respect to the variations in the 
governing parameters viz., the thermal Grashof number 

, solutal Grashof number Gm ,  Eckert number Gr Ec , 
radiation parameter R , Prandtl number Pr , Schmidt 
number  and chemical reaction parameter .  Sc rk

The velocity profiles for different values of the 
thermal Grashof number Gr  are described in Figure-1. It 
is observed that an increase inGr , leads to arise in the 
values of velocity. Hence the positive values of Gr  
corresponds to cooling of the plate. In addition, it is 
observed that the velocity increases rapidly near the wall 
of the plate as Grashof number incrases and then decays to 
the free stream velocity. 
 

 
 

For the case different values of the solutal 
Grashof number , the velocity profiles in the 
boundary layer are shown in Figure-2. It is noticed that an 
increase inGm , leads to a rise in the values of velocity.  

Gm

 
 

Figures 3(a) and 3(b) shows the velocity and 
temperature profiles for different values of the Radiation 
parameter R  , it is noticed that an increase in the radiation 
parameter results decrease in the velocity and temperature 
with in boundary layer, as wellas decreased the thickness 
of the velocity and temperature boundary layers.  
 

 
 

 
 

The effects of the viscous dissipation parameter 
i.e., Eckert number on the velocity and temperature are 
shown in Figure-4(a) and Figure-4(b). Greater viscous 
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dissipative heat causes a rise in the temperature as well as 
the velocity.  
 

 
 

 
 

The effect of the Prandtl number on the velocity 
and temperature are shown in Figures 5(a) and 5(b). As the 
Prandtl number increases, the velocity and temperature 
decreases.  
 
 

 
 

 
 

The effect of the Schmidt number on the velocity 
and concentration are shown in Figures 6(a) and 6(b). As 
the Schmidt number increases, the velocity and 
concentration decreases. This causes the concentration 
buoyancy effects to decrease yielding a reduction in the 
fluid velocity. Reductions in the velocity and 
concentration distributions are accompanied by 
simultaneous reductions in the velocity and concentration 
boundary layers.  
 

 
 

 
 

Figures 7(a) and 7(b) illustrates the behavior 
velocity and concentration for different values of chemical 

 
44



                                           VOL. 5, NO. 11, NOVEMBER 2010                                                                                                            ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2010 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
reaction parameter . It is observed that an increase in 
leads to a decrease in both the values of velocity and 
concentration.  

rk

 

 
 

 
 

Tables 1-5 present the effects of the thermal 
Grashof number, solutal Grashof number, radiation 
parameter, Schmidt number and Eckert number on the 
skin-frication coefficient, Nusselt number and Sherwood 
number. From Tables 1 and 2, it is observed that as Gr  or 

 increases, the skin –friction coefficient increases. 
However, from Table-3, it can be seen that as the radiation 
parameter increases, the skin-friction coefficient increases 
and Nusselt number decreases. From Table-4, it is noticed 
that an increase in the Schmidt number reduces the skin-
friction coefficient and increases the Sherwood number. 
Finally, it is observed from Table-5 that as Eckert number 
increases, the skin-friction coefficient increases and the 
Nusselt number decreases. 

Gm

 
 
 
 
 
 
 
 

Table-1. Effect of Gr  on  
 
Reference values fC

as in Figure-1. 
 

Gr  fC  

0.0 
1.0 
2.0 
3.0 

0.8343 
1.6445 
2.4548 
3.2652 

 
Table-2. Effect of Gm  on  

 
Reference values fC

as in Figure-1. 
 

Gm  fC  

0.0 
1.0 
2.0 
3.0 

1.0816 
1.7682 
2.4548 
3.1414 

 

Table-3. Effect of R  on and  Reference values fC Nu
as in Figure-3(a). 

 

R  fC  Nu  
0.0 
0.5 
1.0 
2.0 

2.1664 
2.4548 
2.6536 
2.9037 

0.8365 
0.6139 
0.5032 
0.4010 

 

Table-4. Effect of   on  and  Reference values Sc fC Sh
as in Figure-3(a). 

 

Sc  fC
 Sh  

0.22 
0.60 
0.78 
0.94 

3.1068 
2.4548 
2.2767 
2.1540 

0.4515 
0.8431 
1.0214 
1.1745 

 
Table-5. Effect of Ec on Cf and Nu Reference values 

as in Figure-3(a). 
 

Ec Cf Nu 
0.0 

0.25 
0.50 
0.75 

2.4546 
2.5010 
2.5489 
2.5985 

0.6143 
0.5130 
0.4039 
0.2863 

 
CONCLUSIONS 
 We have formulated and solved approximately 
the problem of two-dimensional fluid flow in the presence 
of radiative heat transfer, viscous dissipation and chemical 
reaction parameter. A finite element technique is 
employed to solve the resulting coupled partial differential 
equations. The conclusions of the study are as follows: 
 

a) The velocity increases with the increase in thermal 
Grashof number and solutal Grashof number; 
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b) An increase in the Eckert number increases the 

velocity and temperature; 
c) An increase in the Prandtl number decreases the 

velocity and temperature; 
d) An increase in the radiation parameter leads to increase 

in the velocity and temperature; 
e) The velocity as well as concentration decreases with an 

increase in the Schmidt number; and 
f) The velocity as well as concentration decreases with an 

increase in the chemical reaction parameter. 
 
REFERENCES 
 
[1] Soundalgekar V.M. and Takhar H.S. 1993. Radiation 

Effects on Free Convection Flow past a Semi-infinite 
Vertical Plate. Modeling Measurement and Control. 
R51. pp. 31-40. 

 
[2] Hossain M.A. and Takhar H.S. 1996. Radiation 

Effects on Mixed Convection along a Vertical Plate 
with Uniform Surface Temperature. Heat and Mass 
Transfer. 31: 243-248.  

 
[3] Raptis A. and Perdikis C. 1999. Radiation and Free 

Convection Flow past a Moving Plate. Appl. Mech. 
Eng. 4: 817-821. 

 
[4] Chamkha A.J., Takhar H.S. and Soundalgekar V.M. 

2001. Radiation Effects on Free Convection Flow Past 
a Semi-infinite Vertical Plate with Mass Transfer. 
Chem. Engg. J. 84: 335-342. 

 
[5] Kim Y.J. and Fedorov A.G. 2003. Transient Mixed 

Radiative Convection Flow of a Micro polar Fluid 
Past a Moving, Semi-infinite Vertical Porous Plate. 
International Journal of Heat and Mass Transfer. 46: 
1751-1758. 

 
[6] Prakash J. and Ogulu A. 2006. Unsteady Two-

dimensional Flow of a Radiating and Chemically 
Reacting MHD Fluid with Time-dependent Suction. 
Indian J. Pure and Applied Physics. 44: 805-810.  

 
[7] Das U.N., Deka R.K. and Soundalgekar V.M. 1994. 

Effects of Mass Transfer on Flow Past an Impulsively 
started Infinite Vertical Plate with Constant Heat Flux 
and Chemical reaction. Forschung in Inge-Engg 
Reseach. 60: 284-287. 

 
[8] Soundagekar. V.M., Gupta. S.K and Birajdar. S.S. 

1979. Effects of mass transfer and free convection 
effects on MHD stokes problem for a vertical plate. 
Nuclear Engineering Design. 53: 339-346. 

 
[9] Gebhar. B. 1962. Effects of viscous dissipative in 

natural convection. J. Fluid Mech. 14: 225-232.  
 
[10] Soundalgekar. V.M. 1972. Viscous dissipative effects 

on unsteady free convective flow past a vertical 

porous plate with constant suction. Int. J. Heat Mass 
Transfer. 15: 1253-1261.  

 
 

 
46


