© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

EFFECT OF CONVEX DIE ANGLE OF PORTHOLE DIE ON PLASTIC DEFORMATION AND EXTRUSION PROCESS IN TUBE EXTRUSION

Rajamamundi Prabhu¹ and V.S. K. Venkatachalapathy²

¹Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Enathur, Kancheepuram Dt., India
²Sri Manakula Vinayagar Engineering College, Madagadipet, Pondicherry, India
E-Mail: r.prabhu1971@gmail.com

ABSTRACT

Port hole die extrusion has a great advantage in the forming of hollow section tubes that are difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of the die assembly, the extrusion of hollow section tubes has been investigated experimentally. During the hot extrusion of aluminum alloy 6061, the change of process parameters will affect the mechanical properties of extruded products. In this study, Taguchi method is applied to optimize the process parameters in hot extrusion of Al 6061 tubes under extrusion ratio of 24.03. The experiments are arranged by orthogonal array method in which Die with three channels and four channels are used as outer arrays, the factors selected as inner arrays are the billet heating temperature, the convex die angle, bearing length and the container temperature. The extrusions are subsequently tested for tensile test, flattening test, expanding test using a conical punch, surface finish and micro-structure. Test results are analyzed by the quality measurement of Taguchi method to find the relationship between the design process parameters and mechanical properties of the products and to acquire the optimal combination of parameter. Then based on the results obtained from the additive model, conformity experiments are performed.

Keywords: port hole die, hot extrusion tube, aluminum alloy, mechanical properties, Taguchi method, orthogonal array.

1. INTRODUCTION

Aluminum alloys, Al 6061 are some of the most widely used materials today which spans the entire range of industries. Due to a low thermal expansion coefficient, high strength to weight ratio, high wear and corrosion resistance this alloy is commonly used in the aerospace and automobile industries. Because of the widespread use of this alloy, it is important to understand their mechanical property and machinability.

The port-hole extrusion process that is called the welding chamber method broadly utilized to produce tubes and hollow sections [1]. Porthole die extrusion has a great advantage in the forming of hollow section products, which are difficult to produce by conventional extrusion. A product of hollow section can be extruded using special dies based on a welding chamber with a spider die, a porthole die, a bridge die, etc. The billet in the container flows through the porthole and welds by high pressure in the welding chamber. There have been several experimental studies conducted before 1970s to explore the mechanical properties of this alloy. In this stage, it is worth to present a brief review on efforts that were undertaken during the last decades on port-hole extrusion process.

The single hole extrusion process is commonly adopted in industry to produce circular tubes. However, in order to increase the productivity the multi hole extrusion process is also considered to design an efficient extrusion tooling. Most multi-hole extrusion processes are applied to produce seemed hole hollow section tubes using the porthole die [2] in which the divided bars are welded in the welding chamber before being extruded to the exit. In the multi-hole extrusion, most research efforts are usually aimed to search for an optimum die by design to achieve a

balanced flow at the die exit to avoid any bending of extruded tubes. Analytical approach such as upper-bound method has been applied by many researchers to study, the effect of the process variables of the extrusion pressure and extruded product shape (Ulysse and Johnson, 1998). The finite element analysis was also applied to examine the complex material flow in the flat-die hot extrusion process (Lee *et al.*, 2002; Lee and Lm 2002); and in the extrusion for various numbers and locations of the holes (Peng and Sheppard, 2004). The effects of process parameters involved in the multi hole extrusion were investigated by researchers using the finite element analysis as well (Li *et al.*, 2004).

K.J. Kim, C.H. Lee, D.Y. Yang, Who have investigated, Investigation into the improvement of welding strength in three-dimensional extrusion of tubes using porthole dies. The information gathered from the paper is the height of the chamber is bigger, the welding pressure increases. S.H. Hsiang, Y.W. Lin who have investigated, Investigation of the influence of process parameters on hot extrusion of magnesium alloy tubes. The information gathered from the paper is the change of process parameters will affect the mechanical properties of extruded products. H.H. Jo, C.S. Jeong, S.K. Lee, B.M. Kim, Who have investigated, Determination of welding pressure in the non-steady-state porthole die extrusion of improved Al7003 hollow section tubes. The information gathered from the paper is welding strength is affected by many parameters, such as extrusion ratio, extrusion speed, die shape, bearing length, billet and container temperature. K.J. Kim, C.H. Lee, D.Y. Yang, Who have investigated, Investigation into the improvement of welding strength in three-dimensional extrusion of tubes using porthole dies. The information gathered from the paper is the welding

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

pressure in the chamber of the modified porthole die is higher than that of the conventional porthole die.

In porthole extrusion, the welding pressure that was developed between neighboring streams determines the strength of the tube. The welding strength is affected by many parameters, such as extrusion ratio, extrusion speed, die shape, bearing length, billet and container temperature, etc. [2-6]. The objective of this study is to analyze the behavior of metal flow and to optimize the process parameters such as billet temperatures, bearing lengths, convex die angle and container temperature to yield good mechanical properties. Also, in the present work an extensive FEA simulation has been experimented to predict the extrusion load. Jung Min Lee et al. investigated the effects of chamber shapes of porthole die on elastic deformation and extrusion process in condenser tube extrusion. The findings revels that application of lubrication while extrusion affects the self welding process of the extruded aluminum.

Several of the process parameters involved are the extrusion temperature, the extrusion speed, the friction, the extrusion reduction ratio, and the eccentricity of holes. It is then necessary to build up the relations of the interactive influence among these process parameters to design effective dies. During continuous extrusion, the mandrel that is chosen to balance the material flow causes material wastage and defective tubes. The flow has also been controlled by varying the cone angle which reduces the friction and adding of dead metal zone over the die that improves life of the die by reducing the extrude pressure. For the present work, Taguchi design of experiments were employed to study and analyze the effects of the process parameter on the multi-hole extrusion of aluminum alloy Al 6061 by the forward extrusion process using three channel die. This die is used to carry out hot extrusion using aluminum alloy billets 6061, which is extruded into form a tube of 2 mm thickness. The process parameters of hot extrusion are optimized with 3 channels die for optimum load and tensile strength. Analysis of variance (ANOVA) is also carried out in order to find out the significant factors and their contribution to the response parameter. Finally the effects of the billet heating temperature, container temperature, convex die angle, bearing length on the mechanical properties such has tensile strength have been investigated and reported.

2. EXPERIMENTAL PROCEDURE

An experimental program of forward hot extrusion was under taken in the present investigation. The aim of the present work is to study the effect of geometrical variables such as convex die angle, number of port holes, and mandrel length on the extrusion forces. Experiments were conducted using Al 6061 as billet material. The material was cast and pre-extruded into a rod with a diameter of 50 mm and the rod was subsequently used as a billet for further extrusion into a circular hollow profile with an outside diameter of 40 mm and wall thickness of 2 mm. Each billet had a length of 70 mm. The extrusion tooling comprised of ram, container, die (with

convex angle and split webs), mandrel, and welding chamber was made of the EN31 tool steel. The container has diameter of 60 mm and thereby a clearance of 5 mm was left for easy loading of the pre-heated billet into the container. Because of this clearance, upsetting took place prior to extrusion to fill the container completely. In order to study the influence of metal flow and therefore on weldability of metal and final microstructure, the die with three convex angles were introduced. Since the use of convex die angle allow an advantage change in the metal flow made within the deformation zone resulting in the imposing metal flow in the radial directions towards the die opening. This flow pattern allows higher extrusion exit speed, influences the extrusion pressure and results in a fine final microstructure, because of the change in the deformation route for the extruded metal. The geometrical features of the die land are a critical feature in obtaining defect free extruded parts. As the die land length (mandrel length) directly influences the amount of friction at the die-billet interface extrusion, die designers use this geometrical parameter to control the metal flow from the die. Appropriate die land geometrical features will allow uniform distribution of residual stresses in the extrude part as it emerges from the die. In the present investigation, mandrel length of 5, 8 and 11mm were chosen. The magnitude of the extrusion force was determined experimentally by means of force transducer. The tooling temperature was set at 10°C lower than that of the billet temperature in order to allow part of the heat generated during extrusion to dissipate into the tooling. Extrusion ratio was kept at 24.03 and ram speeds were set at 2 mm/s. The processing of hot extrusion of Al 6061 alloy tubes using port hole die is illustrated in Figure-1.

3. TAGUCHI APPROACH FOR EXPERIMENTAL DESIGN

The experiments can be planned in four ways: (1) trial-and error; (2) one-factor-at-a-time experiments; (3) full-factorial experiments; and (4) Taguchi's orthogonal arrays (OA) [8] Table-1. Orthogonal arrays can eliminate the bias produced by one-factor at a time experiments, and improve the experimental efficiency of full-factorial experiments. Based on the principle of maintaining the accuracy of experiment results, the use of orthogonal arrays, can considerably reduce the time required to perform the experiments, due to non-availability of press, difficult to conduct an experiment due to the high temperature and pressure inherent in hot extrusion. Further, die design using trial error experiment in production presses is extremely expensive owing to the high cost of die manufacturing and lost production and increases the reproducibility of the experiment results. In the present work the Design of Experiments procedure using Taguchi approach is implemented to study the effects of convex die angle on the hot extruded Al alloy tubes by using port hole die with three channels. In the present scenario of hot extrusion research, selection of optimum process parameters is highly essential to achieve the highest possible load and strength. The optimum

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved

www.arpnjournals.com

combinations of process parameters (control factors) that will give maximum tensile strength and load can be determined by following the Taguchi's approach. Taguchi suggested the use of orthogonal arrays, which are the shortest possible matrix of permutations and combinations of the controlling parameters. The main aim of this method is that when all the parameters are varied at the same time their effects on the strength and on the interactions can be studied simultaneously. The orthogonal array is selected based on the number of degrees of freedom, which is determined from the number of factors, number of selected interactions, and the number of levels of each factor. Once the appropriate OA has been selected, the main factors and interactions, if any, can be assigned to the various columns. Finally, the test results are analyzed to determine the influence of individual factors at the optimum condition.

3.1 Selection of control factors

The objective of the present work is to identify the effect of convex die angle which would optimize the load and tensile strength of hot extruded tubes. The process parameters generally considered for hot extrusion process of Al 6061 alloy tubes using port hole die method include extrusion speed, die shape, billet temperature, mandrel length, convex angle, tooling temperature, extrusion ratio, port hole number and mandrel shape, etc in Table-2. In Taguchi method, the selection of influential parameters for analysis is a critical issue. For the present case, the most influential process parameters for the analysis are selected based on studies reported in literature [7, 16-18] with main focus on tensile strength and load characteristics and they are listed in Table-3. These four input parameters are taken as control factors and each factor has been considered with three levels as shown in Table-3. Since the number of degrees of freedom is 8, an orthogonal array (inner array) L9 has been found suitable for the present design.

3.2 Signal-to-noise ratio

The control factors that may contribute to decreased deviation (improved quality or performance) can be quickly identified by looking at the amount of variations present as a response. Though the analyses of the test results addressed the factors which might affect the average response, yet there is interest in the effect on variation as well. Taguchi has created a transformation of the repetition data to another value which is a measure of the variation present. The transformation is the signal to noise ratio (SNR). The SNR consolidates several repetitions (at least two data points are required) into one value which reflects the amount of variations present. There are different SNR available depending on the type of characteristic, such as Lower-the-better (LTB), nominal-the-best (NTB), or higher-the-better (HTB). In the present work lower-the-better and higher-the- better (HTB) quality characteristics have been used for load and tensile strength respectively. The SNR values are

computed by using the following equations (1) and (2) respectively for HTB and LTB quality characteristics.

$$SNR = -10\log_{10}\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{y_{i}^{2}}\right]$$
 (1)

$$SNR = -10\log_{10} \left[\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} \right]$$
 (2)

Where n is the number of levels of indicative factor (noise factor), in the present work it is equal to the number of repetitions at each trial run condition and y_i is the response variable, in the present work it is the load and tensile strength from the measurements.

4. RESULTS AND DISCUSSIONS

Experiments were undertaken according to the trial run conditions shown in Table-3. The extrusion force and tensile strength are considered as the response variables while computing the signal to noise ratio in the optimization procedure and hence the extrusion force and tensile strength are measured and recorded for each trial run. The results are then analyzed by means of the Taguchi's signal to noise ratio (SNR) for maximizing the tensile strength and minimizing extrusion force (responses) of the extrusion process while minimizing the noise effects. Using Eq. (1 and 2) the SNR values were computed for all the 9 trial run conditions and the values are tabulated in Table-4. The control factors and their significant effects on the response parameters were also verified by analysis of variance (ANOVA), which is performed separately for the individual response variables. These are illustrated in the following section.

4.1 Extrusion force (load)

Analysis of variance, ANOVA was carried out based on signal to noise ratio data from Table-4 in order to determine the significance of the control factors on extrusion force and tensile strength. The average SNR values at low, medium and high levels for each response are illustrated in Table-5. In the present investigation ANOVA is used to determine the significance of control factors and also to find out percentage contribution of the factors to the total variation of responses. The main effects of the control factors in terms of SNR are shown in Figure-2. The average effect of each parameter on the response variables based on SNR can be seen from this Figure, when the control parameters change from one level to another. It is clear from the Figure-2 that process parameter convex angle (C) has more strong effect on extrusion force (load) than the rest of the parameters. Levels A2, B2, C3 and D1 appear to be the best choice in terms of mean response and variation. The SNR for parameters suggest that levels A3, B2, C3, and D1 are better than any other levels of the parameters A, B, C and D respectively.

Tables 6 and 7 show the summary of ANOVA results indicating the percentage contributions of the control factors to the SNR concerning with the extrusion

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

force and tensile strength. The factors with significant percentage of contribution are shown. Insignificant factors are shown as residuals (error term) in the above Tables. The tabulated values indicate that the most significant parameter on extrusion force is convex die angle (C) as also observed from Taguchi analysis. The other significant factors are observed to be in the same order as predicted by the Taguchi method with 95% confidence intervals. Figure-2 shows the main effect plot of the control factors for the extrusion force experiment using the average SNR values from Table-5. It is seen from Figure-2 that as the control factor C (convex die angle) increases from low level to high level, the average SNR value also increases. The average SNR value is the index of the output or response parameter (extrusion force). Hence, the effect of convex die angle on extrusion force is the most significant as indicated by the steep slope of the line C. In addition to line C, Figure-2 indicates that the factor A is also significant because its slope is substantial. However, the most dominant factor is the convex die angle, followed by billet temperature and mandrel length. Thus the present optimization procedure has correctly predicted these parameters as expected based on the physics underlying the problem.

4.2 Tensile strength

The main effects of the control factors on tensile strength in terms of SNR are shown in Figure-3. The average effect of each parameter on tensile strength based on SNR can be seen from this Figure, when the control parameters change from one level to another. It is clear from the Figure-3 that the process parameter mandrel length (B) has more strong effect on tensile strength than the rest of the parameters. The sequence of parameters in the order of significant effects are B, A, D and C. Levels A2, B3, C3 and D1 appear to be the best choice in terms of mean response and variation as shown in Table-5 and Figure-3. Table-7 shows the summary of ANOVA results indicating the percentage contributions of the control factors to the SNR concerning with the tensile strength. The factors with significant percentage of contribution are shown. Insignificant factors (C) are pooled down as

residuals (error term) in the above Table. The tabulated values indicate that the most significant parameter for tensile strength is mandrel length (B) as also observed from Taguchi analysis. The other significant factors are observed to be in the same order as predicted by the Taguchi method with 95% confidence intervals. Figure-3 shows the main effect plot of the control factors for the tensile strength experiment using the average SNR values from Table-5. It is seen from Figure-3 that as the control factor B (mandrel length) increases from low level to high level, the average SNR value of tensile strength also increases. The average SNR value is the index of the output or response parameter (tensile strength). Hence, the effect of mandrel length on tensile strength is the most significant as indicated by the steep slope of the line B. In addition to line B, Figure-3 indicates that the factor A and D are also significant because their slopes are substantial. However, the most dominant factor is the mandrel length (B), followed by billet temperature (A) and tooling temperature (D).

4.3 Optimal factor level settings and confirmation run

It is observed from Table-6 that the significant factors which are responsible for lower extrusion load, in the order of their percentage contribution, are convex die angle (97.83%), billet temperature (1.62%) and mandrel length (0.28%). And from Table-7 these corresponding values in the order of percentage contribution which are responsible for improving tensile strength are mandrel length (81.16%), billet temperature (11%) and tooling temperature (6.72%). Percent contribution of pooled error as shown in Tables 6 and 7 were found to be less than 1% and therefore it can be claimed that the analysis could effectively identify the significant control factors. Once the significant parameters and their levels are identified, the predicted average optimum values of the response variables (extrusion load, tensile strength) are computed at 95% confidence interval and they were summarized and listed in Table-8 with their optimal factor level settings. Also one can note from Table-8 that the confirmation run values of the response variables are well within the predicted ranges.

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

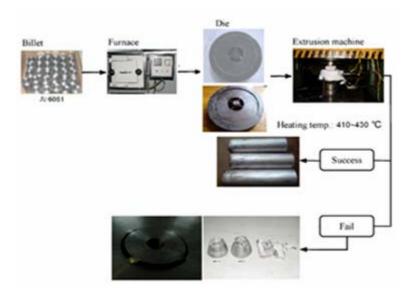


Figure-1.

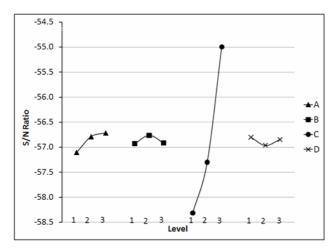


Figure-2.

Figure-3.

Table-1. Composition of aluminum alloy 6061.

Composition (% wt)									
Al	Zn	Si	Fe	Mn	Cu	Cr	Mg	Ti	
97.70	0.10	0.65	0.23	0.03	0.22	0.22	0.84	0.01	

Table-2. Control parameters and levels.

Sl. No.	Control factor	Label	Level 1	Level 2	Level 3
1	Billet temperature (°C)	A	400	410	420
2	Mandrel length (mm)	В	5	8	11
3	Convex angle (°)	C	45	75	105
4	Tooling temperature (°C)	D	400	405	410

Table-3. Taguchi's experimental layout (L₉ OA).

Run	1	.9 OA (I	nner arra	y)	L2 OA (Outer array)					
		(Control factors)				Load (kN)		Tensile strength (kN/mm2)		
	A	В	В С		1	2	1	2		
1	1	1	1	1	844.95	845.05	292.74	292.84		
2	1	2	2	2	751.95	752.00	302.17	302.27		
3	2	3	1	2	829.00	829.05	341.46	341.56		
4	2	2	3	1	546.05	545.95	336.75	336.85		
5	2	1	2	3	729.00	729.05	300.12	300.22		
6	3	3	2	1	717.95	717.95	346.85	346.95		
7	3	1	3	2	562.05	561.95	293.46	293.56		
8	1	3	3	3	579.05	579.05	334.75	334.85		
9	3	2	1	3	797.00	796.95	325.39	325.49		

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Table-4. SNR table.

Run	1	2	3	4	5	6	7	8	9
SNR (load)	-58.5371	-57.5241	-58.3714	-54.7439	-57.2548	-57.1219	-54.9947	-55.2543	-58.0289
SNR (tensile strength)	49.3311	49.6065	50.6681	50.5474	49.5473	50.8041	49.3525	50.4957	50.2494

Table-5. Average SNR Table.

Load						Ter	sile streng	gth	
Factor	A	В	C	D	Factor	A	В	C	D
SNR ₁	-57.1052	-56.9289	-58.3125	-56.8010	SNR_1	57.1052	56.9289	58.3125	56.8010
SNR ₂	-56.7900	-56.7656	-57.3003	-56.9634	SNR ₂	56.7900	56.7656	57.3003	56.9634
SNR ₃	-56.7152	-56.9159	-54.9976	-56.8460	SNR ₃	56.7152	56.9159	54.9976	56.8460

Table-6. ANOVA Table (load).

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F	% Contribution
A	1746	2	873	6.01	0.1427	1.62
В	304.67	2	152.33	1.05	0.4882	0.28
С	1.06E+05	2	52821.33	363.45	0.0027	97.83
Residual	290.67	2	145.33			0.27
Total	1.08E+05	8				100

Table-7. ANOVA Table (tensile strength).

Source	Sum of Squares	DF	Mean Square	F Value	Prob > F	% Contribution
A	425.24	2	212.62	9.86	0.0921	11
В	3136.87	2	1568.44	72.7	0.0136	81.16
D	259.55	2	129.78	6.02	0.1425	6.72
Residual	43.15	2	21.57			1.12
Total	3.86E+03	8				100

Table-8. Optimum factor level settings.

Parameter	Label	Extrusion load	Tensile strengt	
raiametei	Label	(kN)	(kN/mm2)	
Billet temperature (°C)	A	420	410	
Mandrel length (mm)	В	8	11	
Convex angle (°)	C	105		
Tooling temperature (°C)	D		400	
Duadiated source		-58.2354	44.5874	
Predicted range		-58.9745	45.2546	
Confirmation run		-58.6912	44.9945	

5. CONCLUSIONS

The effect of extrusion process parameters (billet temperature, mandrel length, convex die angle, tooling temperature) on extrusion load and tensile strength of porthole-die hot extruded Aluminium alloy (6061) tubes were experimentally investigated using Taguchi design of experiments and analysis methods. The significance of effects of control parameters and their levels in addition to percentage contribution of these effects to response variables variation were determined and quantified using ANOVA. The extrusion load increases with the increase in convex die angle and billet temperature. The extrusion load has little effect with regard to mandrel length within the range of 5 to 11 mm. However, the effect of convex die angle on the extrusion load is dominant among all factors considered. The effect of change of mandrel length is predominantly significant as far as the tensile strength is concerned. However, the effects of billet temperature and tooling temperature are relatively small. And it is worth to note that the effect of increase in convex die angle on tensile strength is insignificant but for reducing the extrusion load its contribution is 97.83%. As far as mandrel length is concerned, it contributed 81.16% for maximizing the tensile strength and very meager 0.28% for minimizing the extrusion load. The optimal control factor level settings for lowest extrusion load and highest tensile strength of hot extruded porthole-die Aluminium alloy (6061) tubes with 95% confidence intervals are (A3, B2, C3) and (A2, B3, D1) respectively. The average values of the response parameters from confirmation experiments are found to be well within the confidence interval of predicted optima of these response parameters.

ACKNOWLEDGEMENTS

The authors would like to thank Mr. V. Ramasubbu (Scientific Officer-C) and Dr. Utpal Borah of Indira Gandhi Center for Atomic Research, Kalpakam, India for carrying out this research work at IGCAR, Laboratory.

© 2006-2010 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

REFERENCES

- [1] Takahashi H, Murakami T, Xie J X. 1990. Determination of welding pressure in the non-steady-state porthole die extrusion of improved Al7003 hollow section tubes, Advance Technol. Plasticity. pp. 323-328.
- [2] Lee J M, Kim B M, Kang C G. 2005. Effects of chamber shapes of porthole-die on elastic deformation and extrusion process in condenser tube extrusion, Materials and Design. 26: 327-336.
- [3] Ulysse P A, Johnson R E. 1998. A study of the effect of the process variables in un-symmetrical single hole and multi-hole extrusion processes, J. of Mat. Proc. Tech. 73: 213-225.
- [4] Kim K J, Lee C H, Yang D Y. 2002. Investigation into the improvement of welding strength in three dimensional extrusion of tubes using porthole-die, J. of Mat. Proc. Tech. 130-131, 426-431.
- [5] Hsiang S H, Lin Y W. 2007. Investigation of influence of process parameters on hot extrusion of magnesium alloy tubes, J. of Mat. Proc. Tech. 192-193, 292-299.
- [6] Jo H H, Lee S K, Jung C S, Kim B M. 2006. A non steady state FE analysis of Al tubes hot extrusion by a porthole-die, J. of Mat. Proc. Tech. 173: 223-231.
- [7] Lee H H. 2000. Taguchi methods: Principles and practices of quality design, Gaulih Book Co. Ltd., Taiwan.
- [8] Ross P J. 1988. Taguchi techniques for quality engineering. New York: McGraw-Hill.
- [9] Sahin B, Yakut K, Kotiioglu I, Celik C. 2005. Optimum design parameters of a heat exchanger, Appl. Energy. 82: 90-106.
- [10] Yakut K, Alemdaroglu N, Sahin B, Celik C. 2006. Optimum design parameters of a heat exchanger having hexagonal fins, Appl. Energy. 83: 82-98.
- [11] Ganapathy T, Murugesan K, Gakkhar R P. 2009. Performance optimization of Jatropha biodiesel engine model using Taguchi approach, Appl. Energy. 86: 2476-2486.
- [12] Lee G A, Kwak D Y, Kim S Y, Im Y T. 2002. Analysis and design of flat-die hot extrusion process Three dimensional finite element analysis, Int. J. Mech. Sci. 44: 915-934.
- [13] Lee G A, Im Y T. 2002. Analysis and design of flatdie hot extrusion process - Numerical design of bearing length, Int. J. Mech. Sci. 44: 935-946.

- [14] Peng Z, Sheppard T. 2004. Simulation of multi hole die extrusion, Mat. Sci. Engg. 367: 329-342.
- [15] Li L, Zhou J, Duszczyk J. 2004. Prediction of temperature evolution during the extrusion of 7075 Aluminium-alloy at various ram speeds by means of 3D FEM simulation. J. of Mat. Proc. Tech. 145: 360-370.