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ABSTRACT 

In this paper, we studied the effects of heat transfer and magnetic field on the peristaltic flow of a Jeffrey fluid 
through a porous medium in an asymmetric channel under the assumptions of long wavelength and low Reynolds number. 
Expressions for the velocity and pressure gradient are obtained analytically. The effects of Hartmann number, Darcy 
number, phase shift, Jeffrey fluid parameter and upper and lower wave amplitudes on the pumping characteristics and the 
temperature field are discussed through graphs   in detail.  
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1. INTRODUCTION  

During the last five decades researchers have 
extensively focused on the peristaltic flow of Newtonian 
fluids. Especially, peristaltic pumping occurs in many 
practical applications involving biomechanical systems 
such as roller and finger pumps. In particular, the 
peristaltic pumping of corrosive fluids and slurries could 
be useful as it is desirable to prevent their contact with 
mechanical parts of the pump. In these investigations, 
solutions for peristaltic flow of the fluid, the geometry of 
the channel and the propagating waves were obtained for 
various degrees of approximation. 

Many researchers considered the fluid to behave 
like a Newtonian fluid for physiological peristalsis 
including the flow of blood in arterioles. But such a model 
cannot be suitable for blood flow unless the non - 
Newtonian nature of the fluid is included in it. Also the 
assumption that the chyme in small intestine is a 
Newtonian material of variable viscosity is not adequate in 
reality. Chyme is undoubtedly a non-Newtonian fluid. 
Provost and Schwarz [1] have explained a theoretical 
study of viscous effects in peristaltic pumping and 
assumed that the flow is free of inertial effects and that 
non-Newtonian normal stresses are negligible. Moreover, 
the Jeffrey model is relatively simpler linear model using 
time derivatives instead of convected derivatives for 
example the Oldroyd-B model does, it represents rheology 
different from the Newtonian. In spite of its relative 
simplicity, the Jeffrey model can indicate the changes of 
the rheology on the peristaltic flow even under the 
assumption of long wavelength, low Reynolds number and 
small or large amplitude ratio. Hayat et al. [2] investigated 
the effect of endoscope on the peristaltic flow of a Jeffrey 
fluid in a tube. Nagendra et al. [3] Peristaltic flow of a 
Jeffrey fluid in a tube. Furthermore, the MHD effect on 
peristaltic flow is important in technology (MHD pumps) 
and biology (blood flow). Such analysis is of great value 
in medical research. Mekheimer [4] studied the MHD 

peristaltic flow of a Newtonian fluid in a channel under 
the assumption of small wave number.           

Therefore, at least in an initial study, this 
motivates an analytic study of MHD peristaltic non-
Newtonian tube flow that holds for all non-Newtonian 
parameters. By choosing the Jeffrey fluid model it become 
possible to treat both the MHD Newtonian and non-
Newtonian problems analytically under long wavelength 
and low Reynolds number considerations considering the 
blood as a MHD fluid, it may be possible to control blood 
pressure and its flow behavior by using an appropriate 
magnetic field. The influence of magnetic field may also 
be utilized as a blood pump for cardiac operations for 
blood flow in arterial stenosis or arteriosclerosis. Hayat 
and Ali [5] studied peristaltic flow of Jeffrey fluid under 
the effect of a magnetic field in tube. An effect of an 
endoscope and magnetic fluid on the peristaltic transport 
of a Jeffrey fluid was analyzed by Hayat et al. [6].  

The investigations of blood flow through arteries 
are of considerable importance in many cardiovascular 
diseases particularly arteriosclerosis. In some pathological 
situations, the distribution of fatty cholesterol and artery 
clogging blood clots in the lumen of coronary artery can 
be considered as equivalent to a porous medium. El 
Shehaway and Husseny [7] and El Shehaway et al. [8] 
studied the peristaltic mechanism of a Newtonian fluid 
through a porous medium. Hayat et al. [9] investigated the 
MHD peristaltic flow of a porous medium in an 
asymmetric channel with heat transfer. Sudhakar Reddy et 
al. [10] studied the Peristaltic motion of a carreau fluid 
through a porous medium in a channel under the effect of 
a magnetic field. 

Much attention had been confined to symmetric 
channels or tubes, but there exist also flows which may not 
be symmetric. Mishra and Rao [11] studied the peristaltic 
flow of a Newtonian fluid in an asymmetric channel in a 
recent research. In another attempt, Rao and Mishra [12] 
discussed the non-linear and curvature effects on 
peristaltic flow of a Newtonian fluid in an asymmetric 
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channel when the ratio of channel width to the wave 
length is small. An example for a peristaltic type motion is 
the intra-uterine fluid flow due to momentarily 
contraction, where the myometrial contractions may occur 
in both symmetric and asymmetric directions. An 
interesting study was made by Eytan and Elad [13]   
whose results have been used to analyze the fluid flow 
pattern in a non-pregnant uterus. In another paper, Eytan et 
al. [14] discussed the characterization of non-pregnant 
women uterine contractions as they are composed of 
variable amplitudes and a range of different wave lengths. 
Elshewey et al. [15] studied peristaltic flow of a 
Newtonian fluid through a porous medium in an 
asymmetric.  Peristaltic transport of a power law fluid in 
an asymmetric channel was investigated by Subba Reddy 
et al. [16]. Ali and Hayat [17] discussed peristaltic flow of 
a Carreau fluid in an asymmetric channel.  

The study of heat transfer analysis is another 
important area in connection with peristaltic motion, 
which has industrial applications like sanitary fluid 
transport, blood pumps in heart lungs machine and 
transport of corrosive fluids where the contact of fluid 
with the machinery parts are prohibited. There are only a 
limited number of research available in literature in which 
peristaltic phenomenon has discussed in the presence of 
heat transfer (Mekheimer, Elmaboud, [18]; Vajravelu et 
al., [19]; Radhakrishnamacharya, Srinivasulu, [20]; 
Srinivas, Kothandapani, [21] ). 

However, the influence of magnetic field with 
peristaltic flow of a Jeffrey fluid through a porous medium 
in an asymmetric channel has received little attention. 
Hence, an attempt is made to study the MHD peristaltic 
flow of a Jeffrey fluid through a porous medium in an 
asymmetric channel under the assumptions of long 
wavelength and low Reynolds number. Expressions for the 
velocity and pressure gradient are obtained analytically. 
The effects of Hartmann number M , Darcy number Da , 
phase shiftθ , Jeffrey fluid parameter 1λ  and wave 

amplitudes 1φ and 2φ  on the pumping characteristics are 
studied in detail. 
 
2. MATHEMATICAL FORMULATION 

We consider the flow of an incompressible 
electrically conducting Jeffrey fluid through a porous 
medium in a two-dimensional asymmetric channel 
induced by sinusoidal wave trains propagating with 
constant speed c along the channel walls. A rectangular 
co-ordinate system (X, Y) is chosen such that X-axis lies 
along the centre line of the channel in the direction of 
wave propagation and Y-axis transverse to it, as shown in 
Figure-1.  
 

 
 

Figure-1. The physical model. 
 
The channel walls are characterized by 
 

( )1 1 1
2, cos (Y H X t a b X ctp
l

= = + - )
   

(Upper wall) (2.1a) 

 

( )2 2 2
2, cos (Y H X t a b X ctp q
l

æ
)

ö÷ç= = - - - + ÷ç ÷çè ø   
(Lower wall)(2.1b) 

where  are the amplitudes of the waves, l  is the 

wavelength,  is the width of the channel, 
1 2,b b

1a a+ 2 q  is the 

phase difference which varies in the range 0 , 
 corresponds to a symmetric channel with waves 

out of phase and 

q p£ £
0q =

q p=  defines the waves with in phase 
and further  and 1 2 1 2, , ,a a b b q  satisfies the condition 

.  ( )22 2
1 2 1 2 1 22 cosb b b b a aq+ + £ +

 

A uniform magnetic field B0 is applied in the 
transverse direction to the flow. The electrical 
conductivity of the fluid is assumed to be small so that the 
magnetic Reynolds number is small and the induced 
magnetic field is neglected in comparison with the applied 
magnetic field. The external electric field is zero and the 
electric field due to polarization of charges is also 
negligible. Heat due to Joule dissipation is neglected. 

In fixed frame ( , )X Y , the flow is unsteady but 

if we choose moving frame ( , )x y , which travel in the X-
direction with the same speed as the peristaltic wave, then 
the flow can be treated as steady.  
The transformation between two frames are related by 
 

, , ,x X ct y Y u U c v V= - = = - =  and ( ) ( , )p x P X t=        (2.2) 
 

Where  and (  are the velocity components, 
 and  are the pressures in wave and fixed frames of 

reference respectively. 

( , )u v , )U V
p P

The pressure  remains a constant across any 
axial station of the channel, under the assumption that the 

p
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wavelength is large and the curvature effects are 
negligible. 

The constitutive equation for stress tensor in 
Jeffrey fluid is  

t
 

1

(
1

mt g
l

= +
+

& &&)l g

is

                                              (2.3) 

 

Where the ratio of relaxation time to retardation time is, 

2l  the retardation time, m  - the dynamic viscosity, g
1l

 & 
the shear rate and dots over the quantities indicate 

differentiation with respect to time t. 
- 

In the absence of an input electric field, the 
equations governing the flow field in a wave frame are 
 

0u v
x y
∂ ∂

+ =
∂ ∂

                  (2.4) 

 

( ) (2
0

0

xyxxu u pu v u c B u
x y x x y k

ττ µρ σ
∂⎛ ⎞ ∂∂ ∂ ∂
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)c (2.5) 

yx yyv v pu v
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τ τ
vµρ

∂ ∂⎛ ⎞∂ ∂ ∂
+ = − + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.6) 

 
2 22
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(2.7) 

 

where ρ  is the density, µ  is the co-efficient of viscosity 

of the fluid,  is the permeability of the porous medium, 0k
σ  is the electrical conductivity of the fluid, ζ  is the 
specific heat at constant volume,  is kinematic viscosity 
of the fluid, k  is thermal conductivity of the fluid and T  
is temperature of the fluid and 

v

0B -magnetic field 
strength. 

In order to write the governing equations and the 
boundary conditions in dimensionless form the following 
non - dimensional quantities are introduced. 

 
2
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1
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1
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2

0

1 0 1 0

,Pr ,
( )

T T cE
T T k T T

ρνζ
ζ

−
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(2.8) 

 

Where δ is the wave number and 1φ  and 2φ  are 
amplitude ratios. 

In view of (2.8), the Equations (2.4) - (2.7), after 
dropping bars, reduce to 
 

0u v
x y
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                                                 (2.9) 
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Where 1Re a cρ
µ

=  is the Reynolds number, 

2 2
2 1 0a BM σ

µ
= is the Hartmann number. 
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Under the assumptions of long wave length 
( )1d < < and low Reynolds number , the 
Equations (2.10) - (2.12) become 
 

(Re 0)®

( )
2

2
2

1

1 1 1
1
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x y Daλ
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1 0uE
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The non-dimensional boundary conditions are  
 

1u = -  at                              (2.16) 1 2,y h h=
 

0Θ =   at                 (2.17) ( )1y h x=
 

1Θ =    at                              (2.18) ( )2y h x=
 

Equation (2.14) implies that , hence ( )p p y¹
p  is only function of x.  

Therefore, the Equation (2.13) can be rewritten as 
 

(
2

2
2

1

1 1 1
1

dp u M u
dx y Daλ

∂ ⎡ ⎤= − +⎢ ⎥+ ∂ ⎣ ⎦
)+             (2.19) 

 

The rate of volume flow rate through each section 
in a wave frame, is calculated as 
 

1

2

h

h
q udy= ∫                                            (2.20) 

 

The flux at any axial station in the laboratory frame is 
 

( ) ( )
1

2

1, 1
h

h

Q x t u dy q h h= + = + −∫ 2          (2.21) 

 

The average volume flow rate over one period 
(T= / cλ ) of the peristaltic wave is defined as 
 

0

1 1
T

Q Q d t q
T

d= = + +∫              (2.22) 

 

The dimensionless pressure rise per one 
wavelength in the wave frame is defined as 
 

1

0

dpp d
dx

∆ = ∫ x                 (2.23) 

 
3. SOLUTION OF THE PROBLEM  

Solving Equation (2.19) using boundary 
conditions (2.16), we get 
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1 22
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-
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Substituting Equation (3.1) in the Equation (2.15) 
and Solving Equation (2.15) using the boundary 
conditions (2.17) and (2.18), we obtain 
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given by 

. 
 

The volum q

 

( ) ( ) ( ) ( )1 2 1 2 2 11
3

2 1

2 2cosh sinh1
sinh ( )

N h h N h h N h hdpq
N dx N h h

l é ù- - - -+ ë - û=
-

 

 
( )1 2h h- -                                                            (3.3) 

 

From (3.3), we have  
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The heat transfer coefficient at the upper wall is defined 
by 
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( ) ( )2 2 2 2

7 1 2 1 1 2 1 2 12 sinh 2 4 cosh 2 4c N c c Nh c c N Nh c c= + + + − 1h  

 
4. RESULTS AND DISCUSSIONS 

In order to get the physical insight of the 
problem,  pumping characteristics and temperature field 
are computed numerically for different values of various 
emerging parameters, viz., phase shift θ , Darcy number 
Da , Hartmann number M , amplitude ratios 1 2,φ φ , 

channel width and Jeffrey fluid parameterd 1λ and are 
presented in Figures 2-16. 

The variation of pressure rise with time 

averaged flux 

p∆
Q  for different values of phase shift θ  

with 1 0.6,φ =  2 0.9φ = , 1 0.3λ = , 1,M =  

0.1Da =  and  is depicted in Figure-2. It is 

found that, the 

2d =
Q  decreases with increasing phase shift 

θ  in all the three regions, viz., pumping 
region ( )0p∆ > , free pumping region  ( )0p∆ =  and 

co-pumping region ( )0p∆ < . Moreover, the Q  

increases with increasing θ  for appropriately 
chosen .  ( )0p∆ <

Figure-3 shows the variation of pressure rise p∆  

with time averaged flux Q  for different values of 

Hartmann number M with 1 0.6,φ =  2 0.9φ = , 1 0.3λ = , 

,
4
πθ = 0.1Da =  and . It is observed that, any 

two pumping curves intersect in first quadrant to the left of 
this point of intersection the 

2d =

Q  increases with 
increasing M and to the right side of this point of 
intersection theQ  decreases with increasing M .  

The variation of pressure rise with p∆ Q  for 

different values of Darcy number Da  with 1 0.6,φ =  

2 0.9φ = , 1 0.3λ = , 1,M =
4
πθ = and 2d =  is 

presented in Figure-4. It is noted that, in the pumping 

region ( )0p∆ > , the Q  decreases with 

increasing Da whereas it increases with Da  in both free 
pumping ( )0=  and pumping p∆  co-

( )0 regions. 
Figure-5 depicts the variation of pressure ri

p∆

p∆ <
se 

with time averaged flux Q  for different values of 1λ  

with 1 2.6, 0.90φ φ= = 0.1Da = , ,
4
πθ =  1M =  

and 2d = . It is observed that, the  Q  dec ases with 

increases 1

re

λ in th tbo h d free pu  

regi e 

e pumping an mping

ons, while in the co-pumping region, th Q  increases 

with increasing 1λ .  

avera

The variation of pressure rise  with time 

ged fl

p∆
ux Q  for diffe t values of ren 1φ  

2 10.9, 0.3,withφ λ= = 0.1Da = , ,
4
πθ = 1M = a  

2d

nd

=  is shown in Figure-6. It is found that, the Q  

increases with an increase in 1φ  in both pumping and free 

pumpin  Bug regions. t in th pumping ree co- gion, the Q  

decreases with increasing 1φ , for an appropriately 

enchos ( )0p∆ < .  
Figure-7 represents the variation of pressure rise 

p∆ with time averaged flux Q  for differen  values oft   

2φ  with 1 10.6, 0.3,φ λ= =  10.Da = , ,
4
πθ =  

1M = and 2d = . It is noted that, as 2φ  increases, the 

Q ncreases in both pumping and free pu ion i mping reg s, 

while in co-pumping region, the Q  decrea  

as 2

ses

φ increases, for an appropriately chosen ( )0p∆ < . 

riatFigure-8 shows the va ion of pressure rise p∆  

with time raged ave flux Q for different values of 
d with

1 20.6, 0.9,φ φ= = 0.1Da = , 

,
4
πθ = 1M = and 1 0.3λ = . It is noted that, as d  increases, 

 the Q  decreases in both pumping and ee pumping 

regions, 

fr

but in co-pumping region, the Q  increases as 

d increases, for an appropriately chosen ( )0p∆ < . 

valu hase shi
Figure-9 shows the temperature profiles for 

different es of p ft θ   
with 1 20.6, 0.9, 1, 1, 0.2q M xφ φ= = = − = = ,

0.1Da = ,   0.3,1 2dλ = = and 2PrE = . It is 

found that, as increasing in θ  decrea es plitude f 
the temperature at the inlet. 

s  the am o

Effect of Hartmann number M on 
temperature field for different fo

the 
r 1 0.6,φ =   2 0.9,φ =  
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1,q = − ,

4
πθ = 0.2x = , 0.1Da = , 1 0.3, 2dλ = = and 

2  is shown in Figure-10. It is observed that, the 
temperature profiles are all most parabolic 
temp

PrE =
and 

nerature Θ   decreases with increasi g M . 
eratureFigure-11 depicts the temp  profiles for 

different values of Hartmann number M  

with 1 20.6, 0.9, 1,qφ φ= = = − ,
4
πθ = 0.2x = , 0.1Da = , 

1 0.3,λ =  2d = 2 and PrE = . It is found that, the 

perature decreases with increasintem  Θ  g M . 
Effect of Darcy number Da  on the temperature profiles 

for 1 0.6,φ = 2 0.9, 1,qφ = = − ,
4
πθ = 0.2x = , 1M = ,

1 0.3, 2dλ = = and 2PrE =  is presented in Figure-

12. It is ob  
increasing

served that, the Θ  increases with
Da  . 

nt 

f 1

Figure-13 represents the temperature profiles for differe

values o λ  with 1 0.6,φ = 2 0.9,φ = ,
4
πθ =  

0.2x = , 0.1Da = , and 1,q = −  
2PrE = . It is noted that, the Θ decreases with an 

1, 2M d= =

increase 1λ  . 

Temperature profiles for different value  ofs  1φ  with  

1 0.3,λ =  2 0.9,φ =  1,q = −  ,
4
πθ =

 
0.2x = , 0.1Da = , 1, 2M d= =  and 2PrE =  is 

temperatureΘ inc ases with an in
shown in Figure-14. It is observed that, the 

re crease in 1φ  
Figure-15 depicts the t perature rofiles for diffe

values 

em  p rent 

of 2φ  with 1 0.6,φ =  ,
4
πθ =  

1 0.3, 1,qλ = = − 20.x = , 0.1Da = , 1, 2M d= =  and 

2PrE = . It is found that, the temperatureΘ   increases 
with an increase in 2φ .  Further it is observed that the 

significant variation in Θ  occurs only near the lower 
wall. 
Temperature profiles fo ifferent values   with r d  of d

1 0.6,φ =  2 0.9,φ =  

1,q = − ,
4
πθ = 0.2x = , 0.1Da = , 

11, 0.3M λ= = and 

2PrE =  is presented in Figure-16. It is noted that, the 
 temperature Θ  decreases with an increase in 2φ .  

Figure mperature profiles for different values of 

 with 

-17. Te

1 6,Pr E 0.φ =  q2 1,0.9,φ = = −  ,
4
πθ =  

0.2x = , 0.1Da = , 11, 0.3M λ= = and 2d = . It 

increases with an is observed that, the temperature Θ
increase in Pr E . 

In order to see the effects of ,Pr , ,E M Daθ  

and 1φ  on the heat transfer coefficient Z  at the upper 
wall we have compute numerically and are presented in 
Tables 1-5. Table-1 shows that, the heat transfer 

fficient coe Z increases with incr  phase shifteasing θ . 
From Table-2, we found that the heat tra sfer coefficient n
Z increases with an increase in Pr E . Table-3 shows   
that, the heat trans  coefficient fer Z increases  
increasing

with
M . From Table-4, we noted that the heat 

sfer coefficient tran Z decreases with increasing Da . 
From Table-  we co ude th oefficient 5, ncl at heat transfer c
Z increases with increasing 1φ
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Figure-2. The variation of pressure rise p∆ with Q  for different 

values of phase shift θ  with 1 20.6, 0.9φ φ= = , 1 0.3λ = , 

1, 0.1M Da= =  and 2d = . 
 

 
 

Figure-3.   The variation of pressure rise p∆ with Q  for different 

values of Hartmann number M  with 1 20.6, 0.9φ φ= =  

1 0.3, , 0.1
4

Daπλ θ= = =  and 2d = . 
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Figure-4. The variation of pressure rise p∆ with Q  for different 

values of Darcy number Da  with 1 20.6, 0.9φ φ= =  

1 0.3, , 1
4

Mπλ θ= = = and 2d = . 

 

 
 

Figure-5. The variation of pressure rise p∆ with Q  for different 

values of 1λ  with 1 20.6, 0.9φ φ= =   0.1Da = , ,
4
πθ =  

1M = and 2d = . 
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Figure-6. The variation of pressure rise p∆ with Q  for different 

values of 1φ with 2 10.9, 0.3,φ λ= =  0.1Da = , ,
4
πθ =  

1M = and 2d = . 
 

 
 

Figure-7. The variation of pressure rise p∆ with Q  for different 

values of 2φ with 1 10.6, 0.3,φ λ= =  0.1Da = , ,
4
πθ =  

1M = and 2d = . 
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Figure-8. The variation of pressure rise p∆ with Q  for different 

values of with d 1 20.6, 0.9,φ φ= =  0.1Da = , ,
4
πθ =  

1M = and 1 0.3λ = . 
 

 
θ

 

Figure-9. Temperature profiles for different values of phase shift θ  
with 1 20.6, 0.9, 1, 1, 0.2q M xφ φ= = = − = = , 0.1Da = , 

1 0.3, 2dλ = = and Pr 2E = . 
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Figure-10. Temperature profiles for different values of hartmann 

number M with 1 20.6, 0.9, 1,qφ φ= = = − ,
4
πθ =  

0.2x = , 0.1Da = , 1 0.3, 2dλ = = and Pr 2E = . 
 

 
 

Figure-11. Temperature profiles for different values of hartmann 

number M  with 1 20.6, 0.9, 1,qφ φ= = = −  ,
4
πθ =  

0.2x = , 0.1Da = , 1 0.3, 2dλ = = and Pr 2E = . 
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Figure-12. Temperature profiles for different values of darcy 

number Da  with 1 20.6, 0.9, 1,qφ φ= = = −  ,
4
πθ =  

0.2x = , 1M = , 1 0.3, 2dλ = = and Pr 2E = . 
 

 
 

Figure-13. Temperature profiles for different values of 1λ with 

1 20.6, 0.9, 1,qφ φ= = = −  ,
4
πθ =  0.2x = , 0.1Da = , 

1, 2M d= = and Pr 2E = . 
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Figure-14. Temperature profiles for different values of 1φ  with 

1 20.3, 0.9, 1,qλ φ= = = −  ,
4
πθ =  0.2x = , 0.1Da = , 

1, 2M d= = and Pr 2E = . 
 

 
 

Figure-15. Temperature profiles for different values of 2φ  with 

1 10.6, 0.3, 1,qφ λ= = = −  ,
4
πθ =  0.2x = , 0.1Da = , 

1, 2M d= = and Pr 2E = . 
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Figure-16. Temperature profiles for different values of with d

1 20.6, 0.9, 1,qφ φ= = = −  ,
4
πθ =  0.2x = , 0.1Da = , 

11, 0.3M λ= = and Pr 2E = . 
 

 
 

Figure-17. Temperature profiles for different values of Pr  with E

1 20.6, 0.9, 1,qφ φ= = = −  ,
4
πθ =  0.2x = , 0.1Da = , 

11, 0.3M λ= = and 2d = . 
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Table-1. The variation of heat transfer coefficient Z with θ   for 1 0.6,φ =  

2 0.9φ = , 1 0.3λ = , 1, 0.1,Pr 2M Da E= = =  and 2d = . 
 

θ  
x  

0  
4
π

 
2
π

 π  

0.1x =  0.5681 0.7941 3.0724 4.7120 

0.2x =  1.7148 7.3121 19.0337 5.5256 

0.3x =  12.2184 38.1826 38.1826 3.7062 
 

Table-2. The variation of heat transfer coefficient Z with   for Pr E

1 0.6,φ = 2 0.9φ = , 1 0.3λ = , 1, 0.1,
4

M Da πθ= = =  and . 2d =
 

Pr E  x  
1  2  3 

0.1x =  0.6721 0.7331 0.7941 

0.2x =  3.2981 5.3051 7.3121 

0.3x =  13.9151 26.0489 38.1826 
 

Table-3. The variation of heat transfer coefficient Z with M   for 

1 0.6,φ = 2 0.9φ = , 1 0.3λ = , Pr 2, 0.1,
4

E Da πθ= = =  and . 2d =
 

M  x  
0  1  2  

0.1x =    0.7294 0.7331 0.7436 

0.2x =  5.2074 5.3051 5.5872 

0.3x =  25.7210 26.0489 27.1061 
 

Table-4. The variation of heat transfer coefficient Z with Da   for 

1 0.6,φ = 2 0.9φ = , 1 0.3λ = , 1, 0.1,
4

M Da πθ= = =  and 2d = . 

 

Da  x  
0.01 0.1  10  100  

0.1x =  0.9089 0.7331 0.6944   0.6944 

0.2x =    10.3682 5.3051 4.6215 4.5878 

0.3x =  49.8039 26.0489 27.5832 27.0021 
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Table-5. The variation of heat transfer coefficient Z with 1φ   for 

1 0.6,φ = 2 0.9φ = , 1 0.3λ = , 1, 0.1,
4

M Da πθ= = =  and 2d = . 

 

1φ  x  
0.3  0.6  0.9  

0.1x =    0.5229 0.7331   0.8785 

0.2x =  3.1946 5.3051 6.6179 

0.3x =  10.6273 26.0489   48.1259 
 
 
5. CONCLUSIONS 

In this paper, we investigated the effects of Heat 
transfer and MHD on the peristaltic flow of a Jeffrey fluid 
in asymmetric channel under lubrication approach. The 
expressions for the velocity filed and temperature field are 
obtained. It is found that, in the pumping region the time 

averaged flux Q  increases with increasing 1,M φ  and 

2φ  while it decrease with increasing 1,θ λ and . It is 

observed that the temperature field  increases with 
increasing

d
Θ

Da , 2 ,φ θ  and , while it decreases with 

increasing

Pr E
M , 1λ , 1φ  and d . The heat transfer 

coefficient Z increases with increasingθ , M ,  
and 

Pr E
1φ , while it decreases with increasing Da . 
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Nomenclature 
 

1a a+ 2  width of the channel 

1 2,b b      amplitudes of the lower and upper waves 

0B          uniform magnetic field strength                

 c             speed of the wave/constant speed          
 d             channel width  
Da         Darcy number 
δ             the wave number 

p∆          the dimensionless pressure rise per one 
wavelength in the wave frame 
g&            the shear rate with respect to time t 
k              thermal conductivity of the fluid 

0k             the permeability of the porous medium 

l              wavelength 

1λ              ratio of relaxation time to retardation time  

2l             the retardation time  
µ              the dynamic viscosity /the co-  efficient of 
viscosity of the fluid  
M            Hartmann number 

1φ              amplitude ratio of the upper wave     

2φ              amplitude ratio of the lower wave     
p             pressure in wave frame of reference 
P               pressure in fixed frame of reference q               volume flow rate in a wave frame  
Q(x, t)        the flux at any axial station in the laboratory 
frame 

Q              the time-averaged volume flow rate  

1Re a cρ
µ

=    the Reynolds number 

ρ              the density 
σ              the electrical conductivity of the fluid 
ζ               the specific heat at constant volume 
θ               phase shift / phase difference :   0 q p£ £
T               temperature of the fluid. 
t               stress tensor  
v                kinematic viscosity of the fluid 
( , )u v  and (  velocity components in wave and fixed 
frames 

, )U V

( , )x y       moving frame of reference  

( , )X Y     fixed frame of reference  
Z              the heat transfer coefficient at the upper wall 
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