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ABSTRACT 

In this paper, we analyzed the flow of combined two-phase motion of viscous-ideal medium through a parallel 
plate channel under the influence of an imposed pressure gradient and a periodic body acceleration. We elucidate the 
development of laminar flow in such a medium, starting from the unsteady equations of incompressible two-phase of 
viscous-ideal fluid. The velocities in both the media and the shear stresses on the boundary plates are analytically evaluated 
and their behavior with reference to variations in the governing parameters is computationally discussed. 
 
Keywords: Reynolds number, interaction parameter, imposed pressure gradient, viscous-ideal fluid. 
 
1. INTRODUCTION 

The study of two-phase fluid flow has gained 
immense importance in view of its applications in a wide 
variety of practical and technological problems. Many 
natural phenomena involve simultaneous flow of several 
phases of matter [21]. Some occurring in nature such as 
smog, fog, smoke, rain, dust storm, etc., are examples of 
two phase flows. A few mechanisms like boiling water, 
flow of decoction through coffee percolator, preparation of 
Martin, Bread, Cake, Spaghetti etc, experienced in our 
daily life, are also examples of two-phase flows. Body 
fluids like blood and semen are multiphase containing 
variety of cells. Examples are equally profuse Engineering 
and Industrial fields. Industrial process such as power 
generation, refrigeration and distillation depend on 
evaporation and condensation cycles. The performance of 
desalination plants is limited by the ‘stat of art’ in two-
phase technology. Steel making, Paper manufacturing, 
Food processing all containing critical steps which depend 
on the proper functioning of multiphase devices. The main 
problem of mathematical modeling of multiphase mixtures 
consists on setting up the closed system of equations of 
motion with given physico-chemical properties of each 
phase and with a given original structure of the mixture 
[14, 17 and 20]. The mathematical analyses of two-phase 
flow involves framing the closed system of equation i.e., 
in finding the equations of simultaneous deformation of 
the different phased and the equations for interphase and 
interphase interactions [1, 2, 3, 10-16, 18, 19]. There are 
two methods of solving the closing problem. In the first, 
the so called phenomenological method the closing 
relationships between macro variables are postulated on 
the basis of macroscopic experiments and intuitive 
considerations. The second method is the Kinetic one in 
which the closing relation are derived proceeding from an 
analyses of micro processes around drops etc., with the use 
of time, spatial and ensemble averaging. 

The pioneering work, in which the closed system 
of equations for a multiphase mixture of compressible 

phases with barotropic properties determining the common 
pressure in the mixture was suggested by Rakhmtulin [19]. 
Rakhmatulin scheme neglects the nonlinear dependence of 
interphase force F on the relative motion of the phases.  
Infact this approach differs from the others in that the 
interphase force is linearly proportional to the relative 
velocity of the phases. Here each phase is considered 
continuous and its motion is examined as motion in the 
moving and changing porous medium formed by the other 
phase. Based on Rakhmatulin [19] approach, Faizullaev 
[6] developed the theory of interpenetrating motion of 
multiphase media consisting of incompressible (or 
barotropic) and viscous (or ideal) fluids and solved several 
problems related to unidirectional flows in channels or 
pipes. One of the important common two-phase flow 
model is the combined viscous ideal flow. For example 
natural gas with water or petroleum may be considered as 
viscous ideal two-phase medium [5, 6, 8 and 9]. 
Applications of gas liquid flow are also found in boilers, 
condensers, refrigerating and also conditioning equipment. 
In most of these engineering applications we consider that 
the liquid and the gas are not of the same substance as is 
the case between air and water or between oil and natural 
gas. We assume two substances under certain temperature 
and pressure one being in its liquid state while the other is 
in its gaseous state. Also we may consider both the gas 
and the liquid as continuous media. Because of the 
complicated flow patterns, most of the treatments of two-
phase flow of gas and liquid for engineering applications 
are semi empirical [2, 4, 7, 10, 16 and 17]. One of the 
cases of two-phase flow of mixture of gas and liquid 
where reasonable analytic treatment can be carried is the 
case of froth flow in which gas to liquid volume ratio is of 
the order of unity and the gas and the liquid are mixed 
together homogeneously [7, 8]. In considering the viscous 
ideal two-phase flows in non uniform channels, we would 
like to know the flow rate and pressure drop as affected by 
the fluid properties, channel geometry. Faizullaev [6] 
studied the combined two-phase motion of a viscous and 
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an ideal medium in finite and infinite planes. As is known, 
gases are considered ideal in aerodynamics, many 
theoretical results and deductions obtained under such an 
assumption agree with experiment. 

In situations like travel in vehicles, aircraft, 
operating jackhammer and sudden movements of body 
during sports activities, the human body experiences 
external body acceleration. Prolonged exposure of a 
healthy human body to external acceleration may cause 
serious health problem like headache, increase in pulse 
rate and loss of vision on account of disturbances in blood 
flow Majhi and Nair [12]. It has been established that the 
biological systems in general are greatly affected by the 
application of external magnetic field. So far, the 
theoretical studies dealing with the influence of applied 
magnetic field on blood flow have received very little 
attention Ramachandra Rao and Deshikachar and 
Ramachandra Rao [5]. Many researchers have studied 
blood flow in the artery by considering blood as either 
Newtonian or non-Newtonian fluids, since blood is a 
suspension of red cells in plasma; it behaves as a non-
Newtonian fluid at low shear rate. Chaturani and 
Palanisamy [4] studied pulsatile flow of blood through a 
rigid tube under the influence of body acceleration as a 
Newtonian fluid.  
 
2. FORMULATION AND SOLUTION OF THE 
    PROBLEM 

Consider a two-phase incompressible viscous-
ideal two phase fluid flow through a parallel plate channel 
moving under a pulsatile pressure gradient and subjected 
to body acceleration.  

Choosing Cartesian frame of reference O (x.y, z). 
Let z=0 and h be the upper and lower plates bounding the 
two phase fluid.  Initially the fluid is rest and at time t �0, 
the fluid is subjected to pulsatile pressure gradient and 
periodic body acceleration given by 

1
p

1ACos t
x

ω∂
− =
∂

 and 0 2PG a Cos tω=    

Where 1A is the amplitude of the oscillatory apart 

1 2 1fω π=  where 1f  is the pulse frequency,  is the 

amplitude of body acceleration, 
0a

2 22 fω π=  where 2f  is 
the body acceleration frequency. 

The channel extends to infinity along (x,y) 
directions and the two phase flow takes place between the 
parallel channel walls, since the flow is slowly due to axial 
pressure gradient and the body acceleration parallel to the 
direction of the flow, the flow is unidirectional and hence 
the velocity field is ( ,0,0)u and in view of the continuity 

equation 0u u u x( )
x
∂

= ⇒ ≠
∂

and the motion being two 

dimensional ( )u u y≠  and hence ( , )u u z t= . 
The two phase mixture being incompressible the 

density may assume to be constant in each phase. 
Assuming 1f and 2f to be the porosities of the two phases 

to be constants. Let 1ρ  and 2ρ  be the reduced densities of 

the two phases. Let 2µ  be the coefficients of viscosities of 
the two phase of the medium.  
The equations governing the flow of the two phases are  
 

1 1 1 1 0( )v k u v f ACos t a Cos t
t 2ρ ω ρ ω∂
= − + +

∂
 ….. (1) 

2

2 2 2 2 1 2 02 ( )u u
2f k v u f ACos t a Cos t

t z
ρ µ ω∂ ∂

= + − + +
∂ ∂

ρ ω ….. (2) 

 

Whereu ,  are the axial velocities of the two phases? K 
is the interaction parameter of the two-phases. 

v

The relevant boundary conditions are (dimensional) 
 

0 0u z and z h= = =                               …... (3) 
 

We introduce the following the following non-dimensional 
variables. 

* zz
h

=  *

2

hu v
µ

=  *

2

hv u
µ

=  

*
1t tω=  

3
*

2
2 2

hA A
ρ γ

=                                         …..  (4) 

 

Substituting these (2.2.4) in equation (2.2.1) to (2.2.2), the 
governing equations reduces to (on dropping the asterisks) 
 

1 0( )vS K u v f ACost a Cos
t

tω∂
= − + +

∂
          ….. (5) 

2

2 22 ( )u u
0R f K v u f ACost a Cos

t z
tω∂ ∂

= + − + +
∂ ∂

  ….. (6) 

 

Where   
 

2
1

2

w hR
ν

=  is the Reynolds Number 

 

2
1 1

1 2

w hS ρ
ν ρ

= is the product of Reynolds number and the 

rate of the densities 
 

2

2

h kK
µ

=  is the interaction parameter of the two-phases 

The non-dimensional boundary conditions relevant to the 
problem are  
 

0 0u z and z 1= = =                                 ….. (7) 
 

Taking Laplace transforms in (2.2.5), we obtain the 
equation for v  
 

01
2 2( )( 1) ( )(

a sKu f Asv
Ss P Ss P s Ss K s 2 )ω

= + +
+ + + + +

 ….. (8) 

Taking transforms in eq. (6) and substituting in eq. (8) for 
v  the equation for u  reduces to 
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2
0

2 2
2 2 2

( ) 0
( 1) ( )

a su Rs K u Kv As
z f f s f s ω
∂ +

− + + +
∂ + 2 2 =

+
   ….  (9) 1 1 2 2

1 2 1 2

Kx yu ACos z BSin z
f f

λ λ
λ λ

= + − −        ….. (10) 

and the relevant boundary conditions are 
The transformed conditions are  

0 0u z and z 1= = =     

0 0u z and z= = 1=    This gives  

Substituting (2.2.8) in (2.2.9) we get  
 

1 1 1 1
2 2 2

1 2 1 2 1 1 2 1 1 2

( ) ( ) ( ) ( )Kx y Cos z Kx y Sin z Px y Cos hSin z Kx yu 2f f Sin f Sin f
λ λ λ λ

λ λ λ λ λ
+ + +

= + − −
λ
+

                                            ….. (11)      

 

Taking laplace inversions 
 

( )

11 11 3 12 4 13 5 14 6[ ]
K tdt it it Su a b Cos e b Cos e b Cos e b Cos eα α α α

−− −= + + + +  
 

( )

13 15 3 16 7 17 8 18 6[ ]
K tdt i t i t Sa b Cos e b Cos e b Cos e b Cos eω ωα α α α

−− −+ + + +   + 
 

14 19 3 20 4 21 5 15 22 3 23 7 24 8[ ] [dt it it dt i t i ta b Cos e b Cos e b Cos e a b Cos e b Cos e b Cos eω ωα α α α α α− − −+ + + + + + ]− + 

( )

13 5 14 612 4
11 2 2

4 5 6

[ ]
( )( 1)( )( 1) ( )( 1)( )( 1)

K t ttitit S

n n

n ne Sin z e Sin zb Sin e b Sin eb Sin e h ha
Sin Sin Sin d S K h d S K h

α βπ π
α αα

α α α α α α β β β

−−

+ + + + +
+ + + − + + + −

+  

 

( )

16 7 17 8 18 6
13 2 2 2 2

7 8 6

[ ]
( )( )( )( 1) ( )( )( )( 1)

K t ttit it S

n n

n ne Sin z e Sin zb Sin e b Sin e b Sin e h ha
Sin Sin Sin d S K h d S K h

α βπ π
α α α
α α α α α ω α β β ω β

−−

+ + + + +
+ + + − + + + −

+  

 

25 4 26 5
14 2 2

4 5

[ ]
( )( 1)( )( 1) ( )( 1)( )( 1)

t t
i t i t

n n

n ne Sin z e Sin zb Sin e b Sin e h ha
Sin Sin d S K h d S K h

α β
ω ω

π π
α α
α α α α α β β β

−

+ + + +
+ + + − + + + −

+  

 

27 7 28 8
15 2 2 2 2

7 8

[ ]
( )( )( )( 1) ( )( )( )( 1)

t t
i t i t

n n

n ne Sin z e Sin zb Sin e b Sin e h ha
Sin Sin d S K h d S K h

α β
ω ω

π π
α α
α α α α ω α β β ω β

−

+ + + +
+ + + − + + + −

−  

 

( )

13 5 5 14 6 612 4 4
11 11 3 2 2

4 5 6

[ ]
( )( 1)( ) ( )( 1)( )

K t ttitit S
dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin eb Cos Sin e h ha b e
Sin Sin Sin d S K h d S K h

α βπ π
α α α αα αα

α α α α α α β β β

−−
−− − − − − −

+ + + + + +
− 

 

( )

16 7 7 17 8 8 18 6 6
13 15 3 2 2 2 2

7 8 6

[ ]
( )( )( ) ( )( )( )

K t tti t i t S
dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin e b Cos Sin e h ha b e
Sin Sin Sin d S K h d S K h

α β
ω ω

π π
α α α α α αα
α α α α α ω α β β ω β

−−
−− − − − − −

+ + + + + +
− 

 

20 4 4 21 5 5
14 19 3 2 2

4 5

[ ]
( )( 1)( ) ( )( 1)( )

t t
i t i t

dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin e h ha b e
Sin Sin d S K h d S K h

α β
ω ω

π π
α α α αα
α α α α α β β β

−
−− − − − −

+ + + + + +
−  

 

23 7 7 24 8 8
15 22 3 2 2 2 2

7 8

[ ]
( )( )( ) ( )( )( )

t t
i t i t

dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin e h ha b e
Sin Sin d S K h d S K h

α β
ω ω

π π
α α α αα

α α α α ω α β β ω β

−
−− − − − −

+ + + + + +
−  

 

( ) ( )

11 29 30 31 32 13 29 32 33 34[ ] [
K Kt tit it dt it it dtS Sa b e b e b e b e a b e b e b e b e

− −− − − −− − − − − − − − ]−  
 

14 36 37 38 15 39 40 41[ ] [it it dt i t i t dta b e b e b e a b e b e b eω ω− − − −− − − − − − ]  
 

( )

41 11 3 12 4 13 5 14 6[ ]
K tdt it it Sv a b Cos e b Cos e b Cos e b Cos eα α α α

−− −= + + + +  

 
3



                                            VOL. 6, NO. 1, JANUARY 2011                                                                                                                 ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
( )

42 15 3 16 7 17 8 18 6[ ]
K tdt i t i t Sa b Cos e b Cos e b Cos e b Cos eω ωα α α α

−− −+ + + + +  
 

( )

13 5 14 612 4
41 2 2

4 5 6

[ ]
( )( 1)( )( 1) ( )( 1)( )( 1)

K t ttitit S

n n

n ne Sin z e Sin zb Sin e b Sin eb Sin e h ha
Sin Sin Sin d S K h d S K h

α βπ π
α αα

α α α α α α β β β

−−

+ + + + +
+ + + − + + + −

+

( )

16 7 17 8 18 6
42 2 2 2 2

7 8 6

[ ]
( )( )( )( 1) ( )( )( )( 1)

K t ttit it S

n n

n ne Sin z e Sin zb Sin e b Sin e b Sin e h ha
Sin Sin Sin d S K h d S K h

α βπ π
α α α
α α α α α ω α β β ω β

−−

+ + + + +
+ + + − + + + −

−

( )

13 5 5 14 6 612 4 4
41 11 3 2 2

4 5 6

[ ]
( )( 1)( ) ( )( 1)( )

K t ttitit S
dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin eb Cos Sin e h ha b e
Sin Sin Sin d S K h d S K h

α βπ π
α α α αα αα

α α α α α α β β β

−−
−− − − − − − −

+ + + + + +

( )

16 7 7 17 8 8 18 6 6
42 15 3 2 2 2 2

7 8 6

[ ]
( )( )( ) ( )( )( )

K t tti t i t S
dt

n ne Sin z e Sin zb Cos Sin e b Cos Sin e b Cos Sin e h ha b e
Sin Sin Sin d S K h d S K h

α β
ω ω

π π
α α α α α αα
α α α α α ω α β β ω β

−−
−− − − − − −

+ + + + + +
−

( ) ( )

41 29 30 31 32 42 35 32 33 34[ ] [
K Kt tit it dt i t i t dtS Sa b e b e b e b e a b e b e b e b eω ω− −− − − −− − − − − − − − +]

( ) ( )

43 42 43 45 44 45 46 47[ ] [ ]
K Kt tit it it itS Sa b e b e b e a b e b e b e

− −− −+ + + + + + 45 48 49 50[ ]it it dta b e b e b e− −− − −  
 
Solve the equation, we get . ,ij ija b
The shear stresses on the lower plate have been calculated 
using 

( )lowerτ = 1
vf
z
∂
∂

 

Solution of the shear stresses on the lower plate is 
( )lowerτ = f1 (G1- G2- G3- G4- G5+ G6+ G7+ G8) 
The shear stresses on the upper plate have been calculated 
using 

( )upperτ = 2
uf
z
∂
∂

 

Solution of the shear stresses on the upper plate is 
( )upperτ

= f2 (-G9- G10- G11- G12- G13+ G14+ G15+ G16) 
Solve the above equations, we get  1 2 3 1, , .....GG G G 6

 
3. DISCUSSION OF THE RESULTS 

We now discuss the behavior of two-phase flow 
(viscous ideal flow) in a parallel plate channel whose 
boundaries are at rest. The flow is taking place under the 
influence of imposed pressure gradient and periodic body 
acceleration. The velocity of the two-phases as well as the 
shear stresses are evaluated numerically for different 
values of the governing parameters S, R, K, fixing 

0 1, ,A a f  and 2f . It is to be noted that one of the phases 
being an inviscid phase, the axial velocity of the inviscid 
phases does not satisfy the any slip condition on the 
boundary, and infact attains its maximum on it. The non 
dimensional variables are so chosen that the non 
dimensional parameters S associated with the inviscid 
phase is always less than the viscous Reynolds number R 
associated with the viscous phase. 

v

The pressure gradient is computationally chosen 
as negative, so that the flow due to the pressure gradient is 

from right to left along the channel. That is the axial 
velocity  triggered due to the imposed pressure gradient 
is negative. However, the body acceleration is chosen 
positive so that the flow caused by the body acceleration is 
in the positive direction along the channel Figures 1 and 2 
correspond to the behavior of the axial velocity of the 
viscous phase with reference to variation in K the 
interaction parameter.   

u

In general u  rises from zero on the lower plate to 
attain its maximum near the upper plate ( ), before 
reducing to rest on the upper plate. Also the magnitude of 

 reduces with increase in K for fixed R and S (Figures 1 
and 2). From Figure-3 fixing S and K, we notice that u  
reduces with increase in R. However we observe that u  
enhances with increase in S fixing R and K (Figure-4). 
Figures 5 and 6 correspond to the behavior of v  w.r.t 
variation in K fixing S and R. In general  enhances from 
its minimum on the lower plate to its maximum on the 
upper plate. The magnitude of v  reduces with increase in 
K (Figures 5 and 6). Fixing S and K, v  reduces with 
increase in R in the entire flow region (Figure-7). From 
Figure-8 we find that the velocity of the inviscid phases 
reduces with increase in S fixing R and K. The shear 
stresses on the lower plate and upper plate have been 
evaluated for variations in K, S and R and tabulated in 
Tables 1 and 2, respectively. On the upper plate the shear 
stress reduces with R for all K fixing S. Also the stresses 
reduce rapidly with increase in K fixing R (Table-2). On 
the lower plate the shear stress shows a declination for 
increase in K (

0.8z =

u

v

0.5≤ ) but latter enhances for K (> ). 
When K and S are fixed we notice the shear stress reduces 
with increase in R (Table-1). 

0.5
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Figure-1. The velocity profile u with K 

1 2 01, 0.4, 0.6, 150, 100, 1A f f R S a= = = = = = . 
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Figure-2. The velocity profile u with K 

1 2 01, 0.4, 0.6, 200, 100, 1A f f R S a= = = = = = . 
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Figure-3. The velocity profile u with R 

1 2 01, 0.4, 0.6, 0.05, 150, 1A f f K S a= = = = = = . 
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Figure-4. the velocity profile u with S 

1 2 01, 0.4, 0.6, 0.05, 250, 1A f f K R a= = = = = = . 
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Figure-5. The velocity profile v with K 

1 2 01, 0.4, 0.6, 100, 100, 1A f f S R a= = = = = = . 
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Figure-6. The velocity profile v with K 

1 2 01, 0.4, 0.6, 100, 200, 1A f f S R a= = = = = = . 
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Figure-7. The velocity profile v with R  

Figure-8. The velocity profile v with S 
1 2 01, 0.4, 0.6, 100, 0.05, 1A f f S K a= = = = = = . 

1 2 01, 0.4, 0.6, 250, 0.05, 1A f f R K a= = = = = = .  
 

Table-1. 
 

I II III IV V 
0.63713 0.538864 0.64189 0.631057 0.535013 

 
 I II III IV V 

K 0.05 0.5 1 0.05 1 

S 100 100 100 100 100 
R 150 150 150 200 200 

 

The shear stresses on the lower plate at z = 0 level.  

1 2 01, 0.4, 0.6, 100, 1, 0.9, 1,
2

A f f R a t h πω= = = = = = = =
, z =0 

 
Table-2. 

 

I II III IV V 
0.618351 0.40133 0.39923 0.61796 0.364202 

 
 I II III IV V 

K 0.05 0.5 1 0.05 1 

S  100 100 100 100 100 

R 150 150 150 200 200 
 

The shear stresses on the lower plate at z = 1 level.  

1 2 01, 0.4, 0.6, 100, 1, 0.9, 1,
2

A f f R a t h πω= = = = = = = =  
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