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ABSTRACT 

The present paper concerns with a model of two mutually interacting species with limited resources for first 
species and unlimited resources for second species. The model is characterized by a coupled system of first order non-
linear ordinary differential equations. In this case, we have identified two equilibrium points and described their stability 
criteria. Solutions for the linearized perturbed equations are also found and explained their significance. Under the limited 
and unlimited resources for first and second species respectively, if the death rate is greater than the birth rate for both the 
species, it is found that there are two equilibrium points. The stability criteria for these equilibrium points are derived and 
further the solutions of the linearized perturbed equations are found and illustrated. 
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1. INTRODUCTION 

Mathematical modeling of ecosystems was 
initiated by Lotka [1] and by Volterra [2]. The general 
concept of modeling has been presented in the treatises of 
Meyer [3], Cushing [4], Paul Colinvaux [5], Freedman [6], 
Kapur [7, 8]. The ecological interactions can be broadly 
classified as prey-predation, competition, mutualism and 
so on. N.C. Srinivas [9] studied the competitive eco-
systems of two species and three species with regard to 
limited and unlimited resources. Later, Lakshmi Narayan 
[10] has investigated the two species prey-predator 
models. Recently stability analysis of competitive species 
was investigated by Archana Reddy [11]. Local stability 
analysis for a two-species ecological mutualism model has 
been presented by the present authors [12, 13]. Mutualism 
is any relationship between two species of organisms that 
benefits both species. Pollination (flowers and insects), 
seed dispersal (berries and fruit eaten by birds and 
animals), and lichens (fungus and algae) are examples for 
mutualism. 

The present investigation is devoted to the 
analytical study of a model of two mutually interacting 
species with limited resources for first species and 
unlimited resources for second species. The model is 
characterized by a coupled pair of first order non-linear 
ordinary differential equations. Only two equilibrium 
points of the system are identified and the stability 
analysis is carried out. In case when death rate is greater 
than the birth rate for both the species, only two 
equilibrium points are identified and their stability criteria 
are derived. Solutions for the linearized perturbed 
equations are also found and explained their significance. 
Before describing a model, first we make the following 
assumptions: 

1N  is the population of the first species, , the 

population of the second species,
2N

1a  is the rate of natural 

growth of the first species,  is the rate of natural growth 

of the second species,
2a

11α  is the rate of decrease of the 

first species due to insufficient food, 12α  is the rate of 
increase of the first species due to interaction with the 
second  species, 21α  is the rate of increase of the second 
species due to interaction with the first species. Further 
note that the variables ,  and the model 

parameters , ,
1N 2N

1a 2a 11α , 12α , 21α  are non-negative and that 
the rate of difference between the death and birth rates is 
identified as the natural growth rate with appropriate sign. 
The model equations for a two species mutualising are 
governed by a system of non-linear ordinary differential 
equations. 
 
 2. BASIC EQUATIONS 

The equation for the growth rate of first species 
( ) under limited resources is given by                                                 1N
 

1dN
dt

= 1 1a N − 2
11 1Nα + 12 1 2N Nα                           (2.1) 

 

The equation for the growth rate of second species ( ) 
under unlimited resources is given by                                                       

2N

 

2dN
dt

=  2 2 21 1 2a N N Nα+                                          (2.2) 

 

Before establishing the stability criteria, we shall 
make the distinction between various equilibrium states. 
The system under investigation has two equilibrium states. 
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I. 21 0; 0N N= = , the state in which both the species 
are washed out. 

II. 1
1

11

a
N

α
= ; 2 0N = , the state in which the first 

species ( ) survives and the second species (N1N 2) is 
washed out. 

Now we study the stability of these equilibrium 
states. Let us write 
 

N = (N1, N2)   =  N U+      
 

Where U =  is a small perturbation over the 

equilibrium state
1 2( ,  )u u

,1 2(N N N= ) .                                  
The basic equations (2.1), (2.2) are linearized to 

obtain the equations for the perturbed state,    
 

dU AU
dt

=                                                            (2.3)     

 

Where 
 

121 21 11 12 1

221 12 21

2 Na N N
A

N a N

αα α

α α

⎤⎡ − +
= ⎥⎢

+ ⎥⎢⎣ ⎦
      (2.4)                                                  

 

The characteristic equation for the system is 
 

[ ] 0det A Iλ− =                                                        (2.5) 
 

The equilibrium state is stable, if both the roots of 
the equation (2.5) are negative in case they are real or have 
negative real parts in case they are complex.  
 
Equilibrium state I (fully washed out state): 

To discuss the stability of equilibrium 

state 1 0N = ; 2 0N = , we consider small perturbations 

and from the steady state, i.e. we write 1 ( )u t 2 ( )u t
 

1 1 ( )N N u t= + 1 ,                                                      (2.6) 
 

2 2 ( )N N u t= + 2 .                                                     (2.7) 
 

Substituting (2.6) and (2.7) in (2.1) and (2.2), we get 
 

21
1 1 11 1 12 1 2

du a u u u u
dt

α α= − +                          

 

2
2 2 21 1 2

du a u u u
dt

α= +     

 

After linearization, we get 
 

1
1 1

du
a u

dt
=                                                                   (2.8) 

 

and 

2
2 2

du
a u

dt
=                                                                 (2.9)   

The characteristic equation is          
(λ -  )(λ - ) =0,                                     1a 2a
 

whose roots ,  are both positive. Hence the 
equilibrium state is unstable. 

1a 2a

The solutions of equations (2.8) and (2.9) are  
 

1
1 10=  a tu u e                                                             (2.10)                     

 

2
2 20 =  a tu u e                                                                                           (2.11)                                

 

Where ,  are the initial values of and10u 20u 1u 2u . The 
solution curves are illustrated in Figures 1 to 4 
Case 1: and  i.e. the second species 
dominates the first species in the natural growth rate as 
well as in its initial population strength.                                                    

1  < a a2

2

10u < 20 u

In this case, the second species continues out 
numbering the first species as shown in Figure-1. 
Case 2:  and  i.e. the second species 
dominates the first species in the natural growth rate but 
its initial strength is less than that of first species.                                   

1 < a a 10 20> u u

In this case, the first species out numbers the 
second species till the time,  
 

  / 10 20

2 1

{ }
= * = 

( - )
ln u u

t t
a a

                            

 

after that the second species out numbers the first species.  
Case 3:  and  i.e. the first species 
dominates the second species in the natural growth rate but 
its initial strength is less than that of second species.  

1 > a a2 10 20< u u

In this case, the second species out numbers the 
first species till the time, 
 

  / 10 20

2 1

{ }
= * = 

( - )
ln u u

t t
a a

                       
 

after that the first species out numbers the second species.  
Case 4:  and  i.e. the first species 
dominates the second species in the natural growth as well 
as in its initial population strength.                                       

1 > a a2 10 20> u u

In this case, the first species continues out 
numbering the second species as shown in Figure-4. 
Further the trajectories in the  plane are given by 1 2( , )u u
 

2
1

10

a
u
u
⎡ ⎤
⎢ ⎥
⎣ ⎦

=
1

2

20

a
u
u
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                                            

 

and these are illustrated in Figure-5.                                             
 

Equilibrium state II (  exists while  is washed out): 1N 2N
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We have     

1
1

11

a
N

α
= ; 2 0N =  

 

Substituting (2.6) and (2.7) in (2.1) and (2.2), we get 
 

21 1
1 1 11 1 12 1 2

11

du a ua u u u u
dt

12 2αα α
α

= − − + +                                                       

 

2
2 2 21 1 2

11

du a ua u u u
dt

1 21 2αα
α

= + +                                                                         

 

After linearization, we get 
 

1 1
1 1

11

du a ua u
dt

12 2α
α

= − +                                            (2.12) 

 

and     
 

2 1 21 22
11

du aa
dt

α
α

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

u                              (2.13) 

 

The characteristic equation is 
 

1( + )aλ  1 21
2

11

{ -[ ]}aa αλ
α

+                                           

 

One root of this equation is 1 a1λ = −  which is negative 
while the other root is 

2λ = 1 21
2

11

aa α
α

+  which is positive. Hence the 

equilibrium state is unstable. 
The trajectories are given by 
 

1

1

1=
γ

u  2 1
20 1 12 10 20 1 121

-λ { γ - } a ttu a e u u a eα α⎡ +⎢ ⎥⎣ ⎦
⎤ (2.14) 

 

2
 2 20

λ= tu u e                                                               (2.15) 
 

Where        
 

1 212 2
11

λ aa α
α

= +  ;  
1
γ = 2 11a α + 1 11 21[ ]a α α+  

   

The solution curves are illustrated in Figures 6 
and 7 
CASE 1:  i.e. the second species dominates the 
first species in its initial strength.                                    

10 20< u u

We notice that the second species is going away 
from the equilibrium point while the first species would 
become extinct at the instant  
 

t1*   =  20 12 1 10 1
 20 12 12 1

1
(λ )

u a uln u aa
α

α
⎡ ⎤
⎢
⎢
⎣ ⎦

−
+

γ ⎥
⎥

= * =

                          

 

As such the state is unstable.  
CASE 2:  i.e. the initial strength of first species 
is greater than that of the second species.                                       

10 20> u u

Initially the first species out numbers the second 
species and this continues up to the time instant,                  
 

t t  
2 1λ a+
1 ln

210 11 1 20 1 12

220 11 1 1 12

(λ )
[ (λ ) ]

u a u a
u a a
α α
α α

⎧ ⎫+ −
⎨ ⎬+ −⎩ ⎭

               

 

there after the second species out numbers the first 
species. And also the second species is noted to be going 
away from the equilibrium point while the first species 
would become extinct at the instant  
 

t1*   =  20 12 1 10 1
 20 12 12 1

1
(λ )

u a uln u aa
α

α
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
+

γ               

 

As such the state is unstable. Also the trajectories in the 
 plane are given by 1 2( , )u u

 

1 1( 1)q u− = 1
2

qcu −  1 2p u     
 

Where 
 

1
p = 1 12

1 21 2 11

a
a a

α
α α+

 ;            

 

1
q = 1 11

1 21 2 11

-a
a a

α
α α+

  

 

and  is an arbitrary constant.      c
The solution curves are illustrated in Figure-8.           
 
3. THE DEATH RATE IS GREATER THAN THE 
    BIRTH RATE FOR BOTH THE SPECIES 

The basic equations governing the system are                            
 

1dN
dt

 = 1 1a N− − 2
11 1Nα + 12 1 2N Nα                      (3.1)                     

 

2
2 2 21 1 2

dN a N N N
dt

α= − +                                        (3.2) 

 

Here we come across two equilibrium states:  
 

I.  21 0; 0N N= =                                                    (3.3) 
The state in which both the species are washed out . 
 

II. 2
1

21

aN
α

= ; 1 21 2 11
2

12 21

a aN α α
α α
+

=                         (3.4) 

 

The state in which both the species co-exist.  
 
Equilibrium state I (fully washed out state): 
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To discuss the stability of equilibrium 

state 1 0N = ; 2 0N = , we consider small perturbations 

and from the steady state, i.e. we write 1 ( )u t 2 ( )u t

1 1 ( )N N u t= + 1 ,                                                      (3.5) 
 

2 2 ( )N N u t= + 2 .                                                     (3.6) 
 

Substituting (3.5) and (3.6) in (3.1) and (3.2), we get 
 

21
1 1 11 1 12 1 2

du a u u u u
dt

α α= − − +           

 

2
2 2 21 1 2

du a u u u
dt

α= − +             

 

After linearization, we get 
 

1
1 1

du a u
dt

= −                                                                 (3.7) 

 

and                                           
 

2
2 2    du a u

dt
= −                                                           (3.8) 

 

The characteristic equation is   
(λ +  )(λ + ) =0                                  1a 2a

The roots of this equation, λ1=  and λ1a− 2= 2a−  
are both negative. Hence the equilibrium state is stable. 
The solutions of equations (3.7) and (3.8) are  
 

1
1 10 =  a tu u e−                                                            (3.9)                                                                                                                           

 

2
2 20 =  u u e a t−

2

2

                                                                                      (3.10)                                                                                                                                                                        
 

Where ,  are the initial values of and10u 20u 1u 2u . The 
solution curves are illustrated in Figures 9 to 12. 
CASE 1: and u1  > a a 10>u20 i.e., the first species 
dominates the second species in the natural growth rate as 
well as in its initial population strength.  

In this case the first species continues out 
numbering the second species as shown in Figure-9. It is 
evident that both the species converging asymptotically to 
the equilibrium point. Hence the equilibrium state is 
stable. 
CASE 2:  and u1  > a a 10 < u20 i.e., the first species 
dominates the second species in the natural growth rate but 
its initial strength is less than that of second species. 

In this case, initially the second species out 
numbers the first species and this continues up to the time, 
 

  / 10 20

1 2

{ }= * = 
( - )

ln u ut t
a a

                                         

after that the first species out numbers the second species. 

As t → ∞ both and approach to the equilibrium 
point. Hence the state is stable.                                       

1u 2 u

CASE 3:  and  i.e. the second species 
dominates the first species in the natural growth rate as 
well as   in its initial population strength.  

1 < a a2

2

10 20< u u

In this case the second species always out 
numbers the first species. It is evident that both the species 
converging asymptotically to the equilibrium point. Hence 
the state is stable.   
CASE 4:  and  i.e., the second species 
dominates the first species in the natural growth rate but 
its initial strength is less than that of first species.  

1 < a a 10 20> u u

In this case, the first species dominates the 
second species till the time,  
 

  / 10 20

1 2

{ }= * = 
( - )

ln u ut t
a a

      

 

after that the second species out numbers the first species. 

As t → ∞ both and approach to the equilibrium 
point. Hence the state is stable. Also the trajectories in the 

 plane are given by 

1u 2 u

1 2( , )u u
 

2
1

10

a
u
u

−
⎡ ⎤
⎢ ⎥
⎣ ⎦

=
1

2

20

a
u
u

−
⎡ ⎤
⎢ ⎥
⎣ ⎦

                               

 
Equilibrium state II (coexistence state): 
 

We have     
 

2
1

21

aN
α

= ; 2 11 1 21
2

12 21

a aN α α
α α
+

=   

 

Substituting (3.5) and (3.6) in (3.1) and (3.2), we get 
 

21
111 1 12 1 2 11 1 12 21

du u u u N u N
dt

α α α α= − + − + u                              

 

2
221 1 21 1 2

du u N u u
dt

α α= +                                                                     

 

After linearization, we get                                                     
 

1
111 1 12 21

du N u N u
dt

α α= − +                                   (3.11)     

 

and   
 

2
221 1

du u N
dt

α=                                           (3.12)    

 

The characteristic equation is 
 

2λ + 111 Nα λ 12 21α α−  1 2N N                          0=
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One root of this equation is positive and the other 

root is negative. Hence the equilibrium state is unstable. 
In this case the second species dominates the first 

species till the time,                   
The trajectories are given by 

= * =t t  
2 1

1
λ λ−

 ln  2 1 10 3 1 20
 2 2 10 4 1 20

( - ) ( )
( ) ( )

b u a b u
b u a b u

λ
λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ −
− + −

                           

1u = 110 1 20 12

1 2

u u Nλ α
λ λ

⎡ ⎤+
⎢ ⎥−⎣ ⎦

 1 teλ   

+ 110 2 20 12

2 1

u u Nλ α
λ λ

⎡ ⎤+
⎢ −⎣ ⎦

⎥
 2 teλ    

  

Where         
 

11 12b Nα= ;    22 21b Nα= ; 
 

3 1 11 1a Nλ α= + ;   4 2 11 1a Nλ α= +   
  

2 =u 1 220 1 11 10 21

1 2

( )u N u N 1 teλ α α
λ λ

⎡ ⎤+ +
⎢ ⎥−⎣ ⎦

λ
  +

1 220 2 11 10 21

2 1

( )u N u Nλ α α
λ λ

⎡ ⎤+ +
⎢ ⎥−⎣ ⎦

 2 te 
λ

    

after that the first species dominates the second species 
and grows indefinitely while the second species 
asymptotically approaches to the equilibrium point. Hence 
the state is unstable. Further the trajectories in the 

 plane are given by 1 2( , )u u
 

1
1 2 11 2

2 2
1 2 2

( )( ) ( )1[ ]
( )

avu u va v vu d avu v u
=

−

−− −
                           

 

The curves are illustrated in Figures 13 and 14. 
Case 1:  i.e. initially the first species dominates 
the second species.  

10u > 20u
 

In this case, the first species is noted to be going 
away from the equilibrium point while the second species 
approaches asymptotically to the equilibrium point. Hence 
the state is unstable.  

where 1v  and  are roots of the quadratic equation 

 with 

2v
2 +bv+ =0av c 221=a Nα ; 111=b Nα ; 

112=c Nα−  and d  is an arbitrary constant. Case 2:  i.e., initially the second species 
dominates the first species.         

10u < 20u

 
4. TRAJECTORIES 
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