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ABSTRACT 

In this paper, we discuss the two phase viscous-ideal flow taking place in the space between any two cylindrical 
pipes which approximate to an annular region bounded internally by a rigid pipe. The external boundary is coaxial non- 
uniform gap with no axial flow across the boundary in conformity with the symmetry. The governing nondimensional 
equations are solved using perturbation method with the slope of the non-uniform outer boundary very small. The velocity 
components both axial and radial in both the phases are evaluated and their behavior is discussed for variations in the 
governing parameters. 
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1. INTRODUCTION 

Flows of two immiscible liquids are encountered 
in a diverse range of processes and equipment. In 
particular in the petroleum industry, where mixtures of oil 
and water are transported in pipes over long distances. 
Accurate prediction of oil-water flow characteristics, such 
as flow pattern, water holdup and pressure gradient is 
important in many engineering applications. However, 
despite of their importance, liquid-liquid flows have not 
been explored to the same extent as gas-liquid flows. In 
fact, gas-liquid systems represent a very particular extreme 
of two-fluid systems characterized by low-density ratio 
and low viscosity ratio. in recent years; Paras and 
Karabelas [1] have reported local velocity data inside the 
liquid layer; Paras et al., [2] have presented detailed 
measurements of liquid layer thickness, including its wave 
characteristics; Vlachos et al., [3] have measured the 
liquid/wall shear stress distribution; Paras et al., [2] have 
reported local velocity profiles inside the gas phase. 
Similar measurements and observations in the gas phase 
have recently been presented by Dykhno et al., [4] and 
Flores et al., [5]. During the last few decades, there has 
been considerable growth of interest among researchers in 
Fluid Mechanics to understand the two phase flow 
involving gas-liquid or liquid-liquid mixture which has 
several applications in petroleum and Reservoir 
engineering. The effect of the presence of a second phase 
in any flow phenomenon has been discussed by several 
authors notably Govier. G.W, Griffith. P, Rakhmathulin 
Kh. A and Faizullae D.F et al., [6,7,8,9,10,11, 
12,13,14,15,16]. 

Gas-liquid flow is encountered in oil and gas 
wells, in chemical processing plants and in Nuclear 
reaction system. In the petroleum industry the production 
of gas oil through wells almost invariably involves the 
flow of mixed fluid phases. In the case of will producing 
gas, frequently at least small amounts of water in the 
liquid phase or light liquid hydrocarbons are produced 

simultaneously and the flow mixture is one of two or even 
three phases the gas-liquid ratio is high but the presence of 
even a small amount of liquid has significant effect on the 
flow. In many oil wells gas is produced simultaneously 
and often water is present resulting in a mixture of two or 
three phases. Two phase transportation in oil and gas 
fields in addition to offering economies in pipeline 
construction permits the centralization of gas processing 
and crude oil usually resulting in both improved 
processing economies and improved conservation. In the 
production of oil from deep reservoirs in order to avoid 
solidification of petroleum long small pipes are inserted in 
uniformly which are heated to suitable temperatures such 
that the flow to be place smoothly in the space between 
these rods. Each of such space approximates to annular 
space bounded internally by a rigid cylinder. The flow is 
identical in all such annular spaces in a reservoir. 
 
2. FORMULATION AND SOLUTION OF THE  
    PROBLEM 

We consider the steady axisymmetric flow of a 
two-phase liquid -gas flow in an annular space bounded 
internally by a rigid pipe. The outer boundary is coaxial 
variable gap cylindrical shape and in view of identical 
condition with other consecutive spacing there is no radial 
flow across as well as the radial variation of axial velocity 
is zero. The cylindrical polar system (r, z) is chosen with 
z-axis along the axis of the pipe. The variable outer 

boundary is assumed to be ( )zr af
a
δ

=  where a is its 

mean depth and δ  the slope assumed to be small. F is an 
arbitrary function twice differentiable. The governing 
equations of motion for the steady axisymmetric two-
phase liquid-gas flow are: 
 

2 2
11 1 1 1 1( ) ( ) (1 1 1 1 1 1 2 12 2

W W W W WpU W f f k W W
r z z r rz r

ρ µ
∂ ∂ ∂ ∂ ∂∂

+ = − + + + + −
∂ ∂ ∂ ∂∂ ∂

)
  

(2.1) 
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2 2
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U U U W UpU W f f k U U
r z r r rz r
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+ = − + + + + −
∂ ∂ ∂ ∂∂ ∂

)
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2 2( ) (2 2 2 2 1 2
W W pU W f k W

r z z
ρ

∂ ∂ ∂
+ = − + −

∂ ∂ ∂
)W

  
(2.3) 

 

2 2( ) (2 2 2 2 1 2
U U pU W f k U U

r z r
ρ

∂ ∂ ∂
+ = − + −

∂ ∂ ∂
)

  
(2.4) 

 

The equation of continuity are  
 

11 01
U W

U
r r z

∂ ∂
+ + =

∂ ∂
1                                    (2.5)                         

 

12 02
U W

U
r r z

∂ ∂
+ + =

∂ ∂
2                                           (2.6) 

 

Where 
1 2( , ) & ( ,1U W U W 2 )  are velocity components of 

liquid and gas phases along (r, z) direction respectively. 

1ρ
,

2ρ
are the densities of liquid and gas, respectively. P 

is the pressure; K is the interaction coefficient of the two 
phases. 

The boundary conditions of the relevant problem 
are  
 

01U = 01W = on r                                (2.7) a=
 

1 0U =  1 0W
r

∂
=

∂  
on ( )r af z=  

 

We introduce the following the non-dimensional variables 
are 
 

*1
1

1
W w

a
µ
ρ

=
 , 2 *

1
0 2

1

p PP
z a

µ
ρ

∂ ,= =
∂

'1 *

2
1

W w
a
µ
ρ

=  '1
2

*

1
U u

a
µ
ρ

=   ,                                               *r ar=                                            

 

 
*a zz

δ
= , *1

1

1
U u

a
µ
ρ

= , 2 *
1

2

1

p P
z a

µ
ρ

∂
=

∂
                    

(2.8) 

 

Substituting these (2.8) in equations (2.1) to (2.6) 
the governing non-dimensional equations reduces to (on 
dropping the asterisks) 
 

2 '
0

2 21( ) ( ) (1 1 2 2
w w w w ww u f P f K w
z r r rz r

δ δ∂ ∂ ∂ ∂ ∂
+ = − + + + + −

∂ ∂ ∂∂ ∂
)w
  

(2.9) 

 

2 '
1 2

2 21( ) ( ) (1 1 2 2
u u u u u uu w f P f K u
r z r r rz r

δ δ∂ ∂ ∂ ∂ ∂
+ = − + + + − + −

∂ ∂ ∂∂ ∂
)u
  

(2.10) 

 

' '
' ' '1 1

2
2 2

( ) ( ) ( ) (w w pu w f K w
r z z

ρ ρδ δ
ρ ρ

∂ ∂ ∂
+ = − + −

∂ ∂ ∂
)w
   

(2.11) 

 

' '
' ' '1 1

2
2 2

( ) ( ) ( ) ( )u u pu w f K u u
r z r

ρ ρδ
ρ ρ

∂ ∂ ∂
+ = − + −

∂ ∂ ∂

   (2.12) 

0u u w
r r z

δ∂ ∂
+ + =

∂ ∂
                                              (2.13) 

 
' ' '

0u u w
r r z

δ∂ ∂
+ + =

∂ ∂
                                             (2.14) 

 

Where 
2

1

kaK
µ

=  is the interaction parameter? 

The non-dimensional boundary conditions are        
 

0u =  and 0w =     on    1r =                               (2.15) 
 

0u =  and 0w
r

∂
=

∂
on  ( )r f z=                            (2.16) 

 

Making use of regular perturbation techniques with 
δ (<<1), the slope of the variable boundary as much 
small, and expanding , 'u , ,  in terms of u w 'w δ  
 

2
1 20 w wδ δ= + +

2
1 2uw w  u uδ δ= +  

 

'' ' 2 '
1 20w w w wδ δ= + +

' ' 2 '
1 2uδ δ= + u u     

 

The equations corresponding to the zeroth order are 
 

2
'0 01

0 1 02 (1
w wf

0 )f P f K w
r r r
∂ ∂

− + + + −
∂ ∂

w
            

(2.17)           

 
2

'1 1 1 1
1 1 12 2 (f u u uf f K u

r r r r
∂ ∂

1 )u+ − + −
∂ ∂            

(2.18) 

 

'1
0 0 0 2 0

2 2

( ) ( ) ( )K w w f P1ρ ρ
ρ ρ

− =                            (2.19) 

 

'
1 1 2 1( )K u u f P 0− − =                                             (2.20) 

 

Corresponding boundary conditions are 
 

0 0w = 1r =                                                             (2.21) 
 

0w
r

0∂
=

∂
r f     ( )z=                                           (2.22) 

 

Adding (2.17) and (2.18) we obtain  
 

0 2
0

1

2
0

0 11

( ) ( 1)

( 1)

2

w fr P
r r f

f P r
w Cf
r r

r∂∂
= +

∂ ∂

+
∂

= +
∂

                           (2.23) 

 

Integrating (4.2.20) we obtain  
 

22
0

1
0 1

( 1)
log

4

f P r
fw C
+

2r C= + +                        (2.24)    

 

Where  and C  are the arbitrary constants to be 
determined using the conditions (2.21) and (2.22) on 
solving for and C   we obtain  

1C 2

1C 2
 

22 2 2
0 0

1 1 1
0

( 1) ( 1) ( 1)
log

2 2 4

f f f
0P P s P

f f fw r
+ + +

= + +       (2.25) 

 

Substituting for (2.25) in (2.19) we get  
 

2 22 2 2
0 0

' 2 1 1 1
0 0

( 1) ( 1) ( ) ( 1)
log

4 2

f f fP r P s z P
f f f fw P r

0

4K

+ + +
= − + − −

    
(2.26) 

 

Adding (2.18) and (2.19) we obtain 
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2 1 1 2

1 1
1

2
( )2

u u fr r u
r fz

∂ ∂
+ − =

∂∂
P r                            (2.27) 

 

Corresponding boundary conditions are 
 

1 0, 1, ( )u r r f= = = z                                           (2.28)                              
 

Integrating (4.2.26) we obtain  
 

2 2
1 1 1

1

( ) ( log
2 4

C f r ru C r P r
r f

= + + − )                  (2.29) 

 

Where 1 andC 2C  are the arbitrary constants to be 
determined using the conditions (2.28) 
We obtain, 
 

3
2 22 1 2 1 2 1

1 1

( ) (1 ( ) ) ( ) ( ( )) ( )
8 8 1 8

f P f P fu s z r s z
f f r

= − + + −
Pr

f    
(2.30) 

 

Substituting for u  in (4.2.20) we get  1
 

3
' 22 2 1 2 1 2 1

1
1 1

( ) (1 ( ) ) ( ) ( ( )) ( )
8 8

2

1 8
f f P f P f Pru P s z r s z
K f f r f

= − + + − −
   

(2.31) 

 

The equations corresponding to the first order are 
 

2
'0 0 1 1 1

1 2 (0
w w f w ww u f K w1 1)w
z r r r r

∂ ∂ ∂ ∂
+ = + + −

∂ ∂ ∂ ∂    
(2.32) 

 
' '

'' 2
1

1

0 0 ( ) (0
w w

u w K w
r z

ρ
ρ

∂ ∂
+ = −

∂ ∂
'

1 1 )w                   (2.33) 

 

Adding (4.2.32) and (4.2.33) we obtain 
 

' '2
'' 0 01 1 2

1 12 2
1

1 0 0{( )( )}0 0
w w w ww w u w w u

r r r r z z r
ρ
ρ

∂ ∂ ∂ ∂∂ ∂
+ = − + − −

∂ ∂ ∂ ∂ ∂ ∂
   (2.34) 

 

The corresponding boundary conditions are 
 

 
1 0, 1w r= =  

1 0, ( )w r f z
r

∂
= =

∂
                                (2.35) 

 

Solving (4.2.34) subject to (4.2.35) we get 
 

1 1 logw rI C r C= + + 2                                   (2.36) 
 
Where

1C  and 
2C are the arbitrary constants to be 

determined using the conditions (2.15) on solving forC  
and C we obtain 

1

2
 

1C =

2 22
0

1

( 1) ((1 ) ) [ ]r

2

zf P e Log
f

β −+ +
−

2
 C  =

2
0

1

( 1 )

4

f P
f

+
−          

 

22
0

2

1 1
1

2
( 1) ((1 ) ) [ ] ( 1)

2 4

zf fP e Log r P
f fw rI

β −+ + +
= + − −

0
 

 

25 26 27 28 29 30 31 32 33 34w G G G G G G G G G G= + + − + − + + − +  
 

The expressions for 25 26 27 34G   are 
mentioned in the appendix. 

, G , G .....G

 

Substituting (2.36) in (2.33) we get  
 

'
1 35 36 37 38 39 40 41 42 43 44 45 46 4w G G G G G G G G G G G G G= + + − + + − + + + + − + 7  

 

The expressions for 
3 5 3 6 3 7 4 7G , G , G . . . . .G  are 

mentioned in the appendix. 
 
3. DISCUSSION OF THE RESULTS 

The axial and radial velocity components related 
to the viscous and ideal fluid phases in the axisymmetric 
region between the rigid pipe and the variable cylindrical 
gap enclosing the rigid pipe have been evaluated at 
different axial positions and for different amplitudes of the 
variable boundary. It is to be noted that the external non 
uniform boundary is non rigid although we assume that 
there is neither radial velocity, nor radial variation of the 
axial velocity of the viscous fluid phase across the 
boundary. This is in par with the mechanism of petroleum 
extraction through Oil reservoirs, wherein the rigid pipes 
are inserted into the reservoirs which are used as heaters to 
avoid the solidification of the petroleum product.  

For computational purpose, the variable gap is 
assumed to 

2

( ) 1 zf z β −= + e  Figures (1 to 12) 
correspond to the axial and radial velocity profiles for 
variation in K at different amplitudesβ .When β  is small 
( β = 0.5), the axial velocity different axial positions 0 and 

4
π  is negative and hence is in the downward direction. 

Whereas when β  is ( ) it is positive and hence in the 
upward direction (Figures 1 to 6). At the axial position z = 
0 the radial gap is 1.5, 2, and 2.5 (Figures 1 to 3) while in 

the axial position 

1≥

4
z π
=  it is 1.26, 2.85 and 3.78 

according as β  is 0.5, 1 and 1.5 (Figures 4 to 6). In 
general, the axial velocity gradually rises from 0 on the 
inner rigid boundary to a maximum on the outer boundary. 
At any given axial position the magnitude of the velocity 
reduces with increase in K at all radial positions. We also 
observe that the magnitude of W at  is sufficiently 
larger than its corresponding magnitude at 

0z =

4
z π

=
 at all 

radial positions and this is true even for β  =1 or 1.5. The 
radial velocity profiles are drawn in Figures (7 to 12) with 
reference to variation in K at differenceβ . We find that 
irrespective ofβ  a radial velocity is always towards the 
inner cylinder and in view of the symmetrical conditions 
the radial velocity of viscous phase is zero on either of the 
internal and external boundaries and hence in general u  
rises from zero on the inner cylinder to attain maximum 
near the outer boundary before reducing to rest on the 
outer boundary (Figures 7 to 12). 
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The magnitude of u  enhances with K at all radial 
positions. This is true at axial position 

4
z π
=  (Figures 10 

to 12). We may also observe that, this behavior of u  with 
reference to K persist for all values ofβ , amplitude of the 
variable gap (Figures 7 to 12). The behavior of the axial 
velocity of the in viscid phase  with reference to K, 'w β  
may be observed from are plotted in Figures 13-18. 
Taking zeroth and first order approximations in equations 
(2.33) governing  we obtain the equations (2.19) 
relating the zeroth order axial velocity of the viscous phase 

 with the zeroth order axial velocity of the in viscid 

phase '  and equations (2.31) relating the first order 

axial velocity of the viscous phase  with the first orders 

axial velocity of the in viscid phases . Combining (2.19 

and 2.31) together gives the relation between  and   
to the first order. This relationship decides the behavior 
of  , since the behavior of for different sets of 
parameters is known fully. We observe that the behavior 
of  is very much similar to that of w for variations is 
the governing parameters. However in view of the fact that 
the satisfies the no slip conditions on the boundary and 
in view of the relation (2.19) the maximum  is attained 
in the vicinity of the outer cylinder and attains almost 
fixed values on the inner and outer cylinders, and 
enhancements in K fixing the other values reduces the 
magnitude of 

'w

0w

0w

1w
'
1w

w 'w

'w w

'w

w
'w

'w  at all radial positions under different 
axial positions along the cylindrical gap (Figures 13 to 
18). Also the magnitude of 'w at axial position 0z =  is 
sufficiently large in comparison to corresponding 
magnitude at

4
z π
= . The radial velocity of the in viscid 

phase is governed by (2.12) and at the first order  is 
related to the first order radial velocity of the viscous 
phase   through the equation (2.20). Thus at this order 
radial velocities differ by a constant. Hence the behavior 
of 'u  is similar to that of   except that on the boundaries 
it takes a constant values which differs with K.  We also 
know that the radial velocity enhances with K and its 
magnitude at  is larger them corresponding 
magnitude at 

'
1u

1u

1u

0z=

4
z π
=  at all radial positions. 

We now discuss the resultant flow pattern of the 
in viscid phase for different β  and K. In general, we 
conclude that at the boundaries, the in viscid phases move 
towards the mid region for all β  and K. With in the 
region both the ideal and viscous phases moves upwards 
for β  > 1 and downwards for β <1   
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Figure-1. The velocity profile w with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5f f P Pρ ρ β  
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Figure-2. The velocity profile w with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1f f P Pρ ρ β  
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Figure-3. The velocity profile w with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1.5f f P Pρ ρ β  
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Figure-4. The velocity profile w with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5
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Figure-5. The velocity profile w with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =1
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f f P Pπ ρ ρ β  
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Figure-6. The velocity profile w with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =1.5
4

f f P Pπ ρ ρ β  
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Figure-7. The velocity profile u with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5f f P Pρ ρ β  
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Figure-8. The velocity profile u with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1f f P Pρ ρ β  
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Figure-9. The velocity profile u with K 
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1.5f f P Pρ ρ β  
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Figure-10. The velocity profile u with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5
4
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Figure-11. The velocity profile u with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =1
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f f P Pπ ρ ρ β  
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Figure-12. The velocity profile u with K 

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.001, =1.5
4

f f P Pπ ρ ρ β  
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Figure-13. The velocity profile  with K 'w
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5f f P Pρ ρ β  
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Figure-14. The velocity profile  with K 'w
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1f f P Pρ ρ β  
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Figure-15. The velocity profile  with K 'w
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1.5f f P Pρ ρ β  
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Figure-16. The velocity profile  with K 'w
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Figure-17. The velocity profile  with K 'w

1 2 1 2 0 1z = , =0.4, =0.6, =1.5, =1, =1, =0.01, =1
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Figure-18. The velocity profile  with K 'w
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Figure-19. The velocity profile  with K 'u
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =0.5f f P Pρ ρ β  
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Figure-20. The velocity profile  with K 'u
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1f f P Pρ ρ β
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Figure-21. The velocity profile  with K 'u
1 2 1 2 0 1z = 0, =0.4, =0.6, =1.5, =1, =1, =0.01, =1.5f f P Pρ ρ β  
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