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ABSTRACT 

This research deals with the linear elastic behavior of curved deep beams resting on elastic foundations with both 
compressional and frictional resistances. Timoshenko’s deep beam theory is extended to include the effect of curvature and 
the externally distributed moments under static conditions. As an application to the distributed moment generations, the 
problems of deep beams resting on elastic foundations with both compressional and frictional restraints have been 
investigated in detail. The finite difference method was used to represent curved deep beams and the results were compared 
with other methods to check the accuracy of the developed analysis. Several important parameters are incorporated in the 
analysis, namely, the vertical subgrade reaction, horizontal subgrade reaction, beam width, and also the effect of beam 
thickness to radius ratio on the deflections, bending moments and shear forces. The computer program (CDBFDA) 
(Curved Deep Beam Finite Difference Analysis Program) coded in fortran-77 for the analysis of curved deep beams on 
elastic foundations was formed. The results from this method are compared with other methods exact and numerical and 
check the accuracy of the solutions. Good agreements are found, the average percentages of difference for deflections and 
moments are (5.3%), and (7.3%), respectively which indicate the efficiency of the adopted method for analysis.  
 
Keywords: curved deep beam, finite differences, elastic foundations. 
 
INTRODUCION 

The object of the paper is to analyze curved deep 
beam using finite difference method. The beam is resting 
on elastic foundation with Winkler frictional and 
compressional resistances, and loaded generally (both 
transverse distributed load and distributed moment), and 
include the effect of transverse shearing deformations. 

The linear elastic behavior of curved deep beams 
on elastic foundations is studied. The governing 
differential equations of curved deep beams (in terms of w 
andΨ) are developed and converted into finite differences. 
A computer program in (FORTRAN language) is 
developed. This program assembling the finite difference 
equations to obtain a system of simultaneous algebraic 
equations and than solved by using Gauss elimination 
method. The deflections and rotations for each node are 
obtained. The shear and moment are obtained by simply 
substitutions of the deflections and rotations into the finite 
difference equations of moment and shear. The obtained 
solution compared with available results to check the 
accuracy of this method. Curved beams are one 
dimensional structural element that can sustain transverse 
loads by the development of bending, twisting and 
shearing resistances in the transverse sections of the beam. 
It’s extensively used in engineering and other fields since 
such beams have many practical applications. The curved 
beam elements on elastic foundation would be helpful for 
the analysis of ring foundation of structures such as 
antennas, water towers structures, transmission towers and 
various other possible structures and superstructures. Deep 
beam model is based on the Timoshenko theory. This 
theory considers the effect of transverse shearing 
deformations. Thus, the cross sections of the beam remain 
plane but not normal to the axis of bending. 

These are review of early studies on curved 
beams: 

Volterra (1952) analyzed the deflections of 
circular beams resting on elastic foundations. The beam 
was loaded by symmetric concentrated forces acting in a 
plane perpendicular to the plane of the original curvature 
of the beam. The foundation is supposed to react following 
the classical Winkler and Zimmermann hypotheses, i.e., 
the reaction forces due to the foundation are proportional 
at every point to the deflection of the beam at that point. 

Rodriguez, (1959), solved the three dimensional 
bending of a ring (curved beam in the form of a complete 
circle) of uniform cross sectional area and supported on a 
transverse elastic foundation. 

Close, (1964), presented a mathematical analysis 
for determining the vertical deflection at the free end of a 
circular cantilever I-beam (curved in the horizontal plane). 
Chaudhuri and Shore, (1977), worked on thin walled 
curved beam finite elements, they presented a procedure 
for the consistent matrix formulation of a thin walled 
circularly curved beam element. 

Yoo, (1979), presented matrix formulation for the 
static analysis of the spatially curved beams of thin walled 
members. This formulation was quite general and 
consistent. 

Fukumoto and Nishida, (1981), derived a 
fundamental equations of a single curved I-beam subjected 
to the action of bending and torsional moments. They 
investigated the behavior of curved flexural members 
under large torsional deflection. 

Dasgupta and Sengupta, (1988), suggested a 
formula for the analysis of a horizontal curved beam by 
using three node isoparametric finite elements. The 
formulation presented was general and the method, 
therefore, may be utilized for straight beams as well. The 
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beam was with or without an elastic base throughout its 
length. 
 
FORMULATION  
 According to the small deflection theory and 
linear stress-strain relationships, a formulation for the 
bending of curved deep beams is presented herein, and 
based on the following assumptions: 
 

a) Plane cross-section before bending remains plane 
after bending. 

b) The cross-section will have additional rotation due to 
transverse shear warping of the cross-section by 
transverse shear will be taken into consideration by 
introducing a shear correction factor (c2).  

 
Kinematics considerations  

A cross section in θz plane is considered. The 
deflection w and the rotation of transverse section ψ in θ 
direction are shown in Figure-1. 

 

 
 

Figure-1. Deformations of a beam section. 
 

A normal line to the neutral plane has two 
degrees of freedom (deflection w and rotationψ). The 
displacement in θ-direction (v) at a point at distance z 
above the neutral plane will be:   
  

v = z. ψ                                                                             (1) 
 

where  
 

v = v(θ) is the displacement at neutral plane. 
 

w = w(θ) (independent of z),  
 

ψ = ψ(θ) (positive when in clockwise direction)  
 

u = 0                                                                                 (2)                                                                                                                           
 

The mathematical expressions of strains are: 
 

εθ = 
R
u)

θd
dv(

R
1

+  

 

εθ =  )
θd

dψ(
R
z                                                                     (3) 

 

Also, the engineering shearing strains are:  
 

)
θd

dw(
R
1)

dz
dv( +=zθγ                                                                                         

 

αψγθ +=z                                                                    (4) 
 

α = )
θd

dw(
R
1                                                               (5) 

 

where α is the slope of the deflection curve.    

 

The non-zero stresses are :   
  

)
θd

dψ(
R
zEE == θθ εσ                                                 (6) 

 

( ) ⎥⎦
⎤
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                    (7) 

 

 

 
 

Figure-2. Arbitrary cross section of a curved deep beam. 
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From Figure-2, the bending moment is:   
 

∫ ⋅⋅=
A

dAzM θσ                                                          (8) 

 

Using equation (6): 
 

∫=
A

zdA
d
dz

R
EM

θ
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)(
θ
ψ

d
d

R
EIM =                                                                 

(9) 
 

Where I = ∫Α z2dA is the second moment of area of the 
cross-section. Also, using equation (7), the transverse 
shearing force is:  
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θ

ψ
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R
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Where c2 is numerical factor representing the restraint of 
the cross section against warping, commonly assumed to 
be (5/6) for rectangular sections.                
 
Static considerations  

Figure-3 shows the vertical and moment 
equilibrium. 
 

 
 

Figure-3. Curved beam under applied loadings. 
 

By equilibrium of forces in z-direction:   
 

Q + dQ - Q + q. R. dθ = 0  
 

or 
 

q.R
θd

dQ
−=                                                                  (11) 

 

Equilibrium of moments in θΖ- plane, gives:  
 

M + dM - M - Q.R. dθ + µ.R. dθ + q. 
2

2
θ)(Rd  = 0 

 

The last term will be ignored (very small), thus  
 

θd
dM  = Q.R − µ.R                                                          

(12) 
 

where µ = µ(θ) is the distributed moment (per unit length).   
 

By substituting equation (10) into equation (11), 
and both equations (9) and (10) into equation (12), then :  
 

q.R)]
θd
wd(
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dψ([AGc 2

2
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R
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Equations (13) and (14) are the governing 
differential equations of curved deep beams in terms of 

two deformation functions (w andψ). These equations are 
coupled through the deformation functions. 
 
Governing equations of curved deep beams on elastic 
foundations 

The governing equations of curved deep beams 
on elastic foundations characterized by Winkler model for 
both compressional and frictional resistances are given: 
  

 0w.RKqR]
θd
wd

R
1

θd
dψ[AGc z2

2
2 =−++                 (15) 
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FINITE DIFFERENCE ANALYSIS 

The governing differential equations for curved 
deep beams on elastic foundations represented by a 
Winkler model for frictional restraints can be rewritten 
using finite differences equations for an interior node (i): 
  

0Rq]w
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APPLICATIONS  
 
Ring beam on Winkler foundation under four 
concentrated loads 

A ring foundation of (E = 20.7 kN/mm2,           
ν = 0.15), having a radius of (R = 7629.45 mm), width    
(b = 762 mm), thickness (h = 762mm). The ring beam 
carries four equal column loads (perpendicular to the ring), 
each column load (P = 667.5 kN). The ring beam is resting 

on an elastic foundation which is represented by Winkler 
model for compressional restraint with the coefficient   
(K

   

The figures show acceptable agreement. The 
percentage of the difference between the maximum 
deflections and bending moments for Dasgupta and 
Sengupta,(1988) solution and the present study is equal to 
(4.3%), (1.48%), respectively.  

Z = 0.135*10-4 kN/mm3), as shown in Figure-4. This 
problem was solved by Dasgupta and Sengupta, (1988). In 
the present study, the same problem is solved by using the 
finite difference method. The results of deflections and 
bending moments are plotted with the results of Dasgupta 
and Sengupta, (1988) as shown in Figures 5 and 6.  

 

 
 

Figure-4. Ring beam on an elastic foundation under four concentrated loads. 
 

 
 

Figure-5. Deflection curves for free curved beam resting on an elastic foundation. 
 

 
 

Figure-6. Bending moment diagrams for free curved beam resting on an 
elastic foundation. 
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Fixed ends curved deep beam resting on an elastic 
foundation under uniform loading   

A fixed curved deep beam with Young’s modulus 
of (E = 25 kN/mm2), Poisson’s ratio (ν = 0.15), radius    
(R = 1000 mm), width (b = 100mm), and thickness          
(h = 400 mm), and loaded by a uniform load                      
(q = 0.025 kN/mm) is considered. The load is acting in a 
plane perpendicular to the plane of the original curvature 
of the beam and at a total angular distance (θ = 180°). The 
beam is resting on an elastic foundation which is 
represented by Winkler model for compressional restraint 

with coefficient (KZ = 0.1*10-4 kN/mm3) and by Winkler 
friction model with spring coefficient (Kθ = 0.2*10-4 
kN/mm3), as shown in Figure-7. This problem was solved 
by using Plate Foundation Analysis Program (PFAP)    
[Al-Allaf, (2005)]. In the present study, the problem is 
solved by using the finite difference method. The results 
of deflections obtained from present study are plotted with 
the results of (PFAP) as shown in Figure-8. The Figure 
shows acceptable agreement. The percentage of the 
difference between the maximum deflections for (PFAP) 
solution and the present study is (9.4%).  

 

 
 

Figure-7. Fixed ends curved deep beam resting on an elastic foundation 
Under uniform distributed load (q). 

 

 
 

Figure-8. Deflection curves for fixed ends curved deep beam 
resting on an elastic foundation. 

 
PARAMETRIC STUDY 

A parametric study is performed to show the 
influence of several important parameters on the 
behavior of free curved beam. The values of the vertical 
and horizontal subgrade reactions (0.13577*10-3 
kN/mm3 and 0.2*10-3 kN/mm3) are considered.   

The effect of increasing the thickness to radius 
ratio (h/R) is shown in Figure-9. From this Figure the 
maximum deflection will decrease at decreasing rate as 
the beam thickness increased. It was found that by 
increasing the ratio of (h/R) from (0.1 to 1), the 
maximum deflection for the free curved beam under four 
concentrated loads are decreased by (63.522%). 

The effect of increasing the beam width is 
shown in Figure-10. From this Figure the maximum 
deflection will decrease at decreasing rate as the beam 
width increased. It was found that by increasing the 

width of the free curved beam from (762 to 3048 mm), 
the maximum deflection for the curved beam under four 
concentrated loads are decreased by (75%). 

The effect of increasing the vertical and 
horizontal subgrade reactions (Kz) and (Kθ) are shown in 
Figures 11 and 12. From these Figures, the maximum 
deflection will decrease at a decreasing rate as the 
vertical subgrade reaction is increased. While the 
maximum deflection will decrease almost linearly as the 
horizontal subgrade reactions is increased. It was found 
that by increasing the vertical and horizontal subgrade 
reactions for the free curved beam from (0.135*10-3 
kN/mm3 to 0.6*10-3 kN/mm3) for the vertical, and from 
(0.2*10-3 kN/mm3 to 0.1*10-2 kN/mm3) for the 
horizontal, the maximum deflection decreased by 
(65.3%), (7.184%), respectively.  
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Figure-9. Effect of (h/R) on the maximum deflection for free curved beam 
under four concentrated loads. 

 

 
 

Figure-10. Effect of beam width on the maximum deflection for free curved 
beam under four concentrated loads. 

 

 
 

Figure-11. Effect of vertical subgrade reaction on maximum deflection for 
free curved beam under four concentrated loads. 

 

 
 

Figure-12. Effect of horizontal subgrade reaction on maximum deflection for 
free curved beam under four concentrated loads.
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CONCLUSIONS 
 

a) Original Timoshenko’s deep beam theories are 
extended to include the effects of externally 
distributed moments along the curved deep beam 
and modeled by finite difference; 

b) The benefit of including the externally distributed 
moments to the original theories for beams is to 
increase the domain of applications. The distributed 
moments can be generated from various problems; 
externally applied distributed moments, the 
problems of curved deep beams on elastic 
foundations with frictional restraints, curved deep 
beam subjected to temperature gradients, prestressed 
curved deep beams and the problem of shrinkage in 
concrete in reinforced concrete curved deep beams; 

c) In the problems of curved deep beams on elastic 
foundations, various models can be suggested to 
represent both the compressional and frictional 
restraints. The frictional component can be 
represented by Winkler model (proportional to the 
horizontal displacements) or by Coulomb model 
(proportional to the transverse displacements) or by 
a constant value (independent of horizontal and 
transverse displacements); 

d) The numerical techniques of the finite-difference 
method are used to solve the problem of curved deep 
beams resting on elastic foundations. The 
formulations in finite-difference method are based 
on the governing equations; and 

e) When the width of the beam increases, the 
deflection will decrease. 

 
REFERENCES  
 
Al-Allaf M.H. 2005. Three Dimensional Finite Element 
Analysis of Thick Plates on Elastic Foundations. M. Sc. 
Thesis. Faculty of Engineering, Nahrain University, Iraq. 
 
Al-Jubori A. A. 1992. Deep Beams and Thick Plates 
under Generalized Loading. M. Sc. Thesis. Faculty of 
Engineering, Nahrain University, Iraq. 
 
Al-Musawi A. N. 2005. Three Dimensional Finite 
Element Analysis of Beams on Elastic Foundation. M. 
Sc. Thesis. Faculty of Engineering, Nahrain University, 
Iraq. 
 
Bowles J. E. Foundation, Analysis and Design. 
 
Chaudhuri S. K. and Shore S. 1977c. Thin-Walled 
Curved Beam Finite Element. Journal of Mechanic 
Engineering Division, ASCE. 103(ST5): 921-937. 
 
Dasgupta S. and Sengupa D. 1988. Horizontally Curved 
Isoparametric Beam Element With or With Out Elastic 
Foundation Including Effect of Shear Deformation. 
Comp. and Struct. 29(ST (6): 967-973.  
 

Fukumoto Y. and Nishida S. 1981. Ultimate Load 
Behavior of Curved I-Beams. Journal of Mechanic 
Engineering Division, ASCE. 107(ST2): 367-385. 
 
Ross A. Close. 1964. Deflection of Circular Curved I-
Beams. Journal of Structural Division, ASCE. 93(ST1): 
203-207. 
 
Volterra E. 1952. Bending of a Circular Beam Resting 
on an Elastic Foundation. Journal of Applied Mechanic, 
Trans. ASME. 74: 1-4. 
 
Yoo C. H. 1979. Matrix Formulation of Curved Girders. 
Journal of Mechanic Engineering Division, ASCE. 
105(ST6): 971-998. 
 
 

 
48


