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ABSTRACT 
 Peristaltic pumping of a Jeffrey fluid in a porous tube is studied under long wavelength and low Reynolds number 
assumptions. Solutions are obtained by using Beavers- Joseph and Saffman boundary conditions. The effect of various 
parameters on the pumping characteristics is studied and discussed through graphs. Comparison of various wave forms 
(namely sinusoidal, triangular and trapezoidal) on the flow is discussed. 
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1. INTRODUCTION 
 A peristaltic pump is a device for pumping fluids 
generally from a region of lower to higher pressure by 
means of a contraction wave traveling along a tube like 
structure. This travelling - wave phenomenon is referred to 
as peristaltic Pumping. It is a mechanism of pumping 
fluids in ducts when a progressive wave of area 
contraction or expansion propagates along the length of a 
distensible tube containing fluid. In general it induces 
propulsive and mixing movements and pumps the fluids 
against pressure rise. Peristalsis is used by a living body to 
propel or to mix the contents of the tube such as, in 
transport of urine from the kidney through the ureter to the 
bladder, food through the digestive tract, bile from the 
gall- bladder into the duodenum, movement of ovum in 
the fallopian tube etc. 
 Porous tube wall and deformable porous layer 
have been observed in many physiological applications 
such as the gastrointestinal tract, intra- pleural membranes, 
capillary walls etc. The gastrointestinal tract is surrounded 
by a number of heavily innervated muscle layers having 
smooth muscle. These muscle layers consist of many folds 
and there are pores through the tight junctions of them 
(Keener and Sneyd [1]). 
 It has now been accepted that most of the 
physiological fluids behave like a non-Newtonian fluids. 
This approach provides a satisfactory understanding of the 
peristaltic mechanism involved in small blood vessels, 
lymphatic vessels, intestine, ductus efferentes of the male 
reproductive tract and in transport of spermatozoa in the 
cervical canal. 
 The flow of non-Newtonian fluids is widely 
observed in industry and physiology, e.g. enhanced oil 
recovery, chemical processes such as in distillation towers 
and fixed bed reactors and, in the applications of pumping 
fluids such as synthetic lubricants, colloidal fluids, liquid 
crystals and biofluids ( e.g. animal and human  blood). 
 Most of the theoretical investigations have been 
carried out by assuming that blood and most of the 
physiological fluids behave like non- Newtonian fluids. 
Peristaltic transport of blood in small vessels was 
investigated using the viscoelastic, power- law, Casson, 
micropolar fluids by Bohme and Friedrich [2], 

Radhakrishnamacharya [3], Srivastava and Srivastava [4], 
Srinivasacharya and Rao [5], respectively. Srivastava and 
Srivastava [6] studied the peristaltic transport of a power-
law fluid with an application to ductus effernetus of the 
male of the reproductive tract. The non-Newtonian effects 
of Maxwell fluid on the peristaltic transport have been 
studied by Tsikdauri and Bresnev [7]. El Naby and El 
Misiery [8] have investigated the peristaltic transport of 
Carreu fluid in a tube, while Johnson- Segalman fluid has 
been used for studies by Hayat et al., [9]. 
 Beavers and Joseph [10] were the first to 
investigate the fluid flow at the interface between a porous 
medium and fluid layer in an experimental study and 
proposed a slip boundary conditions at the interface. The 
theoretical justification of the boundary conditions of 
Beavers - Joseph was given by Saffman [11] and proposed 
an improved boundary condition. 
 In this paper our concern is to investigate the 
peristaltic transport of a non- Newtonian fluid in a porous 
tube. A simplest linear non- Newtonian model namely the 
Jeffrey fluid model is used in this paper. The Jeffrey type 
model is relatively simpler linear model using time 
derivatives instead of convicted derivatives for example 
Oldroyd - B model does. 
 
2. MATHEMATICAL FORMULATION  
 Consider the peristaltic transport of an 
incompressible Jeffrey fluid in an axisymmetric tube as 
shown in Figure-1. 
 

 
Figure-1. Physical model. 
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 The mean radius of the tube is “a”. The wall of 
the tube is flexible, which is an interface of the fluid and 
porous medium. The wall is subjected to a periodic 
peristaltic wave movement with wave speed “c”, 
wavelength λ and amplitude “b” given by  
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 The constitutive equations for an incompressible 
Jeffrey fluid are 
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where T  and S are Cauchy stress tensor and extra stress 

tensor respectively, P is the pressure, I is the identity 

tensor, 1λ is the ratio of the relaxation to retardation times, 

2λ  is the retardation time, µ  is the dynamic viscosity 

and  γ  is the shear rate. 

 In the fixed frame of reference ( ),ZR   the flow 
is unsteady. However, in a coordinate frame moving with 

the wave speed c, ( ),zr is stationary. The transformation 
from fixed frame to wave frame is given by  
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The governing equations in the wave frame are given as 
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Now introducing the non-dimensional quantities, 
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and defining the Reynolds number and wave number as 
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The equations of motion reduces to 

)()(1]11Re[ 23
rzrr S

z
rS

rrr
p

zrzrrrzr ∂
∂

+
∂
∂

+
∂
∂−

=
∂
∂

∂
∂

∂
∂

−
∂
∂

∂
∂ δδψψψδ

   (7) 
reduces to                                                                          
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 Using the long wave length approximation and 
neglecting the wave number along with low Reynolds 
number, we get 
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Boundary conditions 
 The boundary is an interface which separates the 
Jeffrey fluid and the porous medium. The problem is 
solved by using two types of slip boundary conditions and 
tries to compare the effects of these conditions on the flow 
characteristics. 
 
Beavers - Joseph boundary conditions 
 Beavers-Joseph boundary conditions for Jeffrey 
fluid are given by (in a wave frame of reference) 
w = -1 + wB at r = h (z)                                             (15) 
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where wB is the slip velocity at the boundary r = h (z), α is 
dimensionless Beavers - Joseph constant which depends 
on the nature of the porous medium but not the fluid 
viscosity. 
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Saffman boundary conditions 
 The boundary conditions corresponding to 
Saffman are given by  
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 where ‘Da’ is the Darcy number given by 
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  is the amplitude ratio. 

 
3. SOLUTION OF THE PROBLEM 
 
Beavers-Joseph solutions 
 Solution of equations (12) and (14) together with 
boundary conditions (15) - (17) is given by 

                     (20) 
where 

                             (21)     
 The solutions in terms of stream function is 

obtained from equation (20) by using the condition 0ψ =  
at r = 0 as  

           (22) 
 The non dimensional flow rate q across any cross 
section of the tube is independent of z is  
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Saffman solutions 
 Solving equations (12) and (14), together with 
boundary conditions (18) and (19), we get 
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and the solution in terms of the stream function is  
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Corresponding flow rate q is given by  
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The dimensionless time averaged flux  

=

                                                       (29)                     
 
4. RESULTS AND DISCUSSIONS  

 The variation of Q  with  is given by 
evaluating the integral (29) for both Beavers - Joseph or 
Saffman models for different parameters. 

p∆

 In Figures 2 and 3, the variation of Q  with p∆  
is shown for different values of Jeffrey parameter of λ1 by 
fixing the other parameters for Beavers - Joseph and 
Saffman models. It is observed that the pumping rate 

decreases with the increase of λ1 for pumping ( p∆  >0) 

and as well as for free pumping A (  =0). Pumping is 
more for a Jeffrey fluid when compared with a Newtonian 
fluid. 

p∆

 The variation of Q  with  for different 
amplitude ratios is shown in Figures 4 and 5. We observe 
that the larger the amplitude ratio, the greater the pressure 

rise against which the pump works. For a given 

p∆

p∆ , the 

flux  Q   for a Jeffrey fluid in a tube depends on and it 

increases with increase in and also it is observed that 
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Beavers - Joseph model gives a better pumping 
performance than Saffmann model. 
 

 
 

Figure-2. The variation of  with p∆ Q  for different 
values of λ1 with φ = 0.6, d = 2, α = 1 Da = 0.00001 

 

(Beavers and Joseph solutions). 
 

 

Figure-3. The variation of  with p∆ Q  for different 
values of λ1 with φ = 0.6, d = 2, α = 0.1, Da = 0.00001 

 

(Saffmann solutions). 
 

 
 

Figure-4. The variation of  with p∆ Q  for different 
values of φ with λ1 = 0.1, d = 2, α = 0.1, Da = 0.0001 

 

(Beavers and Joseph solutions). 
 

 
 

Figure-5. The variation of  with p∆ Q  for different 
values of α with λ1 = 0.1, d = 2, α  = 0.1, Da = 0.0001 

 

(Saffman  solutions). 
 
 The effect of Darcy number ‘Da’ on the pumping 
performance is shown in Figures (6) and (7). It is observed 
that the smaller the Darcy number, the greater the pressure 

raise against which the pump works. For a given p∆  , the 

flux Q   with p∆  depends on ‘Da’ and it decreases with 
the increase in ‘Da’. 
 

 
 

Figure-6. The variation of  with p∆ Q  for different 
values of Da with λ1 = 1, φ = 0.60, α = 0.5. 

 

( Beavers and Joseph solutions). 
 

 
 

Figure 7. The variation of  with p∆ Q  for different 
values of Da with λ1 = 1, φ = 0.60, α = 0.1. 

 

(Saffmann solutions). 
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 Figures 8 and 9 are drawn to study the effect of 
the parameter α  on the pumping characteristics. It is 
observed that the increasing α  increases the pumping as 
well as free pumping.  
 

 
 

Figure-8. The variation of  with p∆ Q  for different 
values of α with λ1 = 1, φ = 0.60, Da = 10 

 

(Beavers and Joseph solutions). 
 

 
 

Figure-9. The variation of  with p∆ Q  for different 
values of α with λ1 = 1, φ = 0.60, Da = 10 

 

(Saffman solutions). 
 

 The variation of flux  with p∆ Q   for the 
following wave forms (in non-dimensional form) is 
presented graphically in Figure-10.  
 

1. Sinusoidal wave: )(.1)( xSinxh φ+=  
 

2. Triangular wave:  
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3. Trapezoidal wave:  
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It is observed that the trapezoidal wave gives the best 
pumping characteristics among the three wave forms 
whereas the triangular wave has the worst pumping 
characteristics. 
 

 
 

Figure-10. The variation of  with p∆ Q  for different 
wave forms with λ1 = 0.1, φ = 0.60, Da = 0.001, α = 1. 
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