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ABSTRACT 

This investigation deals with a mathematical model of a four species (S1, S2, S3 and S4) Syn-Ecological system 
(Fully Washed out State). S2 is a predator surviving on the prey S1: the prey is a commensal to the host S3 which itself is in 
mutualism with the fourth species S4. S2 and S4 are neutral. The mathematical model equations characterizing the syn-
ecosystem constitute a set of four first order non-linear coupled differential equations. There are in all sixteen equilibrium 
points. Criteria for the asymptotic stability of one of the sixteen equilibrium points: the fully washed out state is 
established. The linearised equations for the perturbations over the equilibrium point are analyzed to establish the criteria 
for stability. The system is noticed to be locally stable. Trajectories of the perturbations have been illustrated. 
 
Keywords: mathematical model, species, syn-ecological system, mutualism, commensalism, differential equations.  
 
INTRODUCTION 

Mathematical modeling is an important 
interdisciplinary activity which involves the study of some 
aspects of diverse disciplines. Biology, Epidemiodology, 
Physiology, Ecology, Immunology, Bio-economics, 
Genetics, Pharmocokinetics are some of those disciplines. 
This mathematical modeling has raised to the zenith in 
recent years and spread to all branches of life and drew the 
attention of every one. Mathematical modeling of 
ecosystems was initiated by Lotka [8] and by Volterra 
[14]. The general concept of modeling has been presented 
in the treatises of Meyer [9], Cushing [2], Paul Colinvaux 
[10], Freedman [3], Kapur [5, 6]. The ecological 
interactions can be broadly classified as prey-predation, 
competition, mutualism and so on. N.C. Srinivas [13] 
studied the competitive eco-systems of two species and 
three species with regard to limited and unlimited 
resources. Later, Lakshmi Narayan [7] has investigated the 
two species prey-predator models. Recently stability 
analysis of competitive species was investigated by 
Archana Reddy [1]. Local stability analysis for a two-
species ecological mutualism model has been investigated 
by B. Ravindra Reddy et al., [11, 12].  

The present investigation is devoted to an 
analytical study of a four species Syn-Ecological system. 
S2 is a predator surviving on the prey S1: the prey is a 
commensal to the host S3 which itself is in mutualism with 
the fourth species S4; S2 and S4 are neutral. Figure-1 shows 
the Schematic Sketch of the system under investigation. 
The model equations of the system constitute a set of four 
first order non-linear ordinary differential coupled 
equations. In all the sixteen equilibrium points of the 
system are identified and the stability analysis is carried 
out only for the fully washed out state. The linearized 
perturbed equations over the equilibrium states are solved 
and the trajectories illustrated. 
 

 
 

Figure-1. Schematic sketch of the Syn Eco- system. 
 
BASIC EQUATIONS 
 
Notation adopted 
 

N1 (t): The Population of the Prey (S1)   
N2 (t): The Population of the Predator (S2)   
N3 (t): The Population of the Host (S3) of the Prey (S1)  
               and mutual to S4 
N4 (t): The Population of S4 mutual to S3 
t: Time instant 
a1, a2, a3, a4: Natural growth rates of S1, S2, S3, S4 
a11, a22, a33, a44: Self inhibition coefficients of S1, S2, S3, S4 
a12, a21:  Interaction (Prey-Predator) coefficients  
                             of S1 due to S2 and S2 due to S1 
a13:  Coefficient for commensal for S1 due to 
the Host S3 
a34, a43:  Mutually interaction between S3 and S4 
 

31 2 4

11 22 33 44

, , ,aa a a
a a a a

 : Carrying capacities of S1, S2, S3, S4 

 

Further the variables N1, N2, N3, N4 are non-
negative and the model parameters a1, a2, a3, a4; a11, a22, 
a33, a44; a12, a21, a13, a24 are assumed to be non-negative 
constants. 
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The model equations for the growth rates of S1, 
S2, S3, S4 are  
 

21
1 1 11 1 12 1 2 13 1 3

dN a N a N a N N a N N
dt

= − − +    ….     (1) 

 

22
2 2 22 2 21 2 1

dN a N a N a N N
dt

= − +                  ….       (2) 

 

23
3 3 33 3 34 3 4

dN a N a N a N N
dt

= − +        ….       (3) 

 

24
4 4 44 4 43 4 3

dN a N a N a N N
dt

= − +    ….        (4) 

 
EQUILIBRIUM STATES 

The system under investigation has sixteen 
equilibrium states defined by  
 

0, 1, 2,3,4= =idN i
dt

                   ……       (5) 

 

are given in the following table. 
 

 
S. No. Equilibrium States Equilibrium point 

1 Fully Washed out state 1 2 3 40, 0, 0, 0N N N N= = = =  

2 Only S4 survives 4
1 2 3 4

44

0, 0, 0, aN N N N
a

= = = =  

3 Only the host (S3)of S1 survives 3
1 2 3 4

33

0, 0, , 0aN N N N
a

= = = =  

4 Only the predator S2 survives 2
1 2 3 4

22

0, , 0, 0aN N N N
a

= = = =  

5 Only the prey S1 survives 1
1 2 3 4

11

, 0, 0, 0aN N N N
a

= = = =  

6 Prey (S1) and predator (S2) 
washed out 

4 34 3 44 3 43 4 33
1 2 3 4

33 44 34 43 33 44 34 43

0, 0, ,a a a a a a a aN N N N
a a a a a a a a

+ +
= = = =

− −
 

7 Prey (S1) and host (S3) of S1 
washed out 

2 4
1 2 3 4

22 44

0, , 0,a aN N N N
a a

= = = =  

8 Prey (S1) and S4 washed out  32
1 2 3 4

22 33

0, , , 0aaN N N N
a a

= = = =  

9 Predator (S2) and Host (S3) of S1 
washed out 

1 4
1 2 3 4

11 44

, 0, 0,a aN N N N
a a

= = = =  

10 Predator (S2) and S4 washed out 1 33 3 13 3
1 2 3 4

11 33 33

, 0, , 0a a a a aN N N N
a a a
+

= = = =  

11 Prey (S1) and predator 
(S2)survives 

1 22 2 12 1 21 2 11
1 2 3 4

11 22 12 21 11 22 12 21

, , 0, 0a a a a a a a aN N N N
a a a a a a a a

− +
= = = =

+ +
 

12 Only the prey (S1) washed out 4 34 3 44 4 33 3 432
1 2 3 4

22 33 44 34 43 33 44 34 43

0, , ,a a a a a a a aaN N N N
a a a a a a a a a

+ +
= = = =

− −
 

13 Only the predator (S2) washed 
out 

4 34 3 44 4 33 3 431
1 2 3 4

2 33 44 34 43 33 44 34 43

1 13 4 34 3 44 1 33 44 34 43

2 11 33 44 34 43

, 0, ,

( ) ( )
( )

a a a a a a a aN N N N
a a a a a a a a

where
a a a a a a a a a a
a a a a a

α
α

α
α

+ +
= = = =

− −

= + + −
= −
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14 Only the Host (S3) of S1 washed 
out 

1 22 2 12 1 21 2 11 4
1 2 3 4

11 22 12 21 11 22 12 21 44

, , 0,a a a a a a a a aN N N N
a a a a a a a a a

− +
= = = =

+ +  

15 Only S4 washed out  

3 32
1 2 3 4

1 1 33

1 33 11 22 12 21

2 22 1 33 3 13 2 12 33

3 21 1 33 3 13 2 11 33

, , , 0

( )
( )
( )

aN N N N
a

where
a a a a a
a a a a a a a a
a a a a a a a a

ββ
β β

β
β
β

= = = =

= +
= + −
= + +

 

16 
The co-existent state  
(or) 
Normal steady state 

1 13 22 2 4 13 21 2
1 2

3 3

4 34 3 44 4 33 3 43
3 4

33 44 34 43 33 44 34 43

1 1 22 2 12 33 44 34 43

2 3 44 4 34

3 11 22 12 21 33 44 34 43

4 1 21 2 11 33 44 34

, ,

,

( )( )

( )( )
( )(

a a a aN N

a a a a a a a aN N
a a a a a a a a

where
a a a a a a a a
a a a a
a a a a a a a a
a a a a a a a a

γ γ γ γ
γ γ

γ
γ
γ
γ

+ +
= =

+ +
= =

− −

= + −

= +
= + −
= − − 43)

 

 
The present paper deals with the fully washed out 

state only. The stability of the other equilibrium states will 
be presented in the forth coming communications.  
 
STABILITY OF THE FULLY WASHED OUT 
EQUILIBRIUM STATE 
    (Sl. No. 1 in the above Table)   
  To discuss the stability of equilibrium point   

1 2 3 40, 0, 0, 0N N N N= = = =  
Let us consider small deviations u1 (t), u2 (t), u3 

(t), u4 (t) from the steady state  
i.e.,  
 

( ) ( ), 1, 2,3, 4i i iN t N u t i= + =                     .…….    (6) 
 

Where ui (t) is a small perturbations in the species Si. 
 

Substituting (6) in (1), (2), (3), (4) and neglecting products 
and higher powers of u1, u2, u3, u4, we get 
 

1
1 1

du a u
dt

=                                                          ……    (7) 

 

2
2 2

du a u
dt

=                                                     ……..      (8) 

 

3
3 3

du a u
dt

=                                                       ……      (9) 

 

4
4 4

du a u
dt

=                                                ..……   (10) 

 

The characteristic equation of which is   
 

1 2 3 4( )( )( )( ) 0a a a aλ λ λ λ− − − − =         ……..   (11) 
 

the roots a1, a2, a3, a4 of which are all positive. 
Hence the Fully Washed out State is unstable. 
The solutions of the equations (7), (8), (9), (10) are 
 

1
1 10

a tu u e=                                                …………    (12) 
 

2
2 20

a tu u e=                                           …………   (13) 
 

3
3 30

a tu u e=                                             ……….   (14) 
 

4
4 40

a tu u e=                                        ………….    (15) 
 

Where u10, u20, u30, u40 are the initial values of u1, u2, u3, u4 
respectively. 

There would arise in all 576 cases depending 
upon the ordering of the magnitudes of  the growth rates 
a1, a2, a3, a4 and the initial values of the perturbations 
u10(t), u20(t), u30(t),u40(t) of the species S1, S2, S3, S4. Of 
these 576 situations some typical variations are illustrated 
through respective solution curves that would facilitate to 
make some reasonable observations. 
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Case (i): If u10<u20<u30<u40, a1<a2<a3<a4 
In this case prey (S1) has the least natural birth 

rate and S4 dominates the prey (S1), predator (S2) and the 
host (S3) of S1 in natural growth rate as well as in its 
population strength. 
 

 
 

Figure-2 
 
Case (ii): If u10<u20<u30<u40, a2<a1<a3<a4 

In this case predator (S2) has the least natural 
birth rate. Initially the predator (S2) dominates over the 

prey (S1) till the time instant * 20
21

1 2 10

1 log( )ut
a a u

=
−

 and 

there-after the prey (S1) dominated the predator (S2). The 
time *

21t may be called the dominance time of the predator 
(S2) over the prey (S1). 
 

 
 

Figure-3 
 
Case (iii): If u10<u30<u40<u20,   a2<a1<a3<a4 

In this case predator (S2) has the least natural 
birth rate. Initially the predator (S2) dominates over S4, 
host (S3) of S1 and prey (S1) till the time instant 

* * *
24 23 21, ,t t t  respectively and there after the dominance is 

reversed  
 

Here  
 

* * *40 30 20
24 23 21

2 4 20 2 3 20 1 2 10

1 1 1log( ), log( ), log( )u u ut t t
a a u a a u a a u

= = =
− − −

 

 

Case (iv): If u20<u40<u30<u10, a3<a1<a2<a4 
In this case the host (S3) of S1 has the least 

natural birth rate. Initially the host (S3) of S1 dominates 
over S4 and the predator (S2) till the times instant t*

34, t*
32 

respectively. Thereafter the dominance is reversed. 
 

Here * *40 30
34 32

3 4 30 2 3 20

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 

Also the prey (S1) dominates over S4, Predator 
(S2) till the time instant t*

14, t*
12 respectively and thereafter 

the dominance is reversed. 
 

Here * *40 20
14 12

1 4 10 1 2 10

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 

 
 

Figure-4 
 
Case (v): If u20<u30<u10<u40,   a3<a2<a4<a1 

In this case the Host (S3) of S1 has the least 
natural birth rate. Initially it is dominates over the predator 

(S2) till the time instant * 30
32

2 3 20

1 log( )ut
a a u

=
−

 and 

thereafter the dominance is reversed. 
Also S4 dominates over the prey (S1) till the time 

instant * 40
41

1 4 10

1 log( )ut
a a u

=
−

and thereafter the dominance is  

 

 
 

Figure-5 
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Case (vi): If u20<u30<u40<u10,   a1<a4<a3<a2 
In this case the prey (S1) has the least natural 

birth rate. Initially the prey (S1) dominates over its host, S4 
and Predator (S2) till the time instant t*

13, t*
14, t*

12 
respectively and thereafter the dominance is reversed.   

Also S4 dominates over the host (S3) of S1, and 
the predator (S2) till the time instant t*

43, t*
42 and thereafter 

the dominance is reversed. 
Similarly, the host (S3) of S1 dominates over the 

predator (S2) till the time instant t*
32 and the dominance 

gets reversed thereafter. 
Here 
 

* * *30 40 20
13 14 12

1 3 10 1 4 10 1 2 10

1 1 1log( ); log( ); log( )u u ut t t
a a u a a u a a u

= = =
− − −

 

 

* * *40 40 30
43 42 32

3 4 30 2 4 20 2 3 20

1 1 1log( ); log( ); log( )u u ut t t
a a u a a u a a u

= = =
− − −

 

 

 
 

Figure-6 
 
Case (vii): If u30<u20<u10<u40,   a3<a4<a1<a2 

In this case the host (S3) of S1 has the least 
natural birth rate. Initially S4 dominates over both the prey 
(S1) and predator (S2) till the time instant t*

41, t*
42 

respectively and thereafter the dominance is reversed.   
Also the Prey (S1) dominates over the Predator 

(S2) upto the time instant t*
12 and the dominance gets 

reversed after. 

Here * *40 40
41 42

1 4 30 2 4 20

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 

and * 20
12

1 2 10

1 log( )ut
a a u

=
−

 

 

 
 

Figure-7 

Case (viii): If u30<u10<u20<u40,   a2<a1<a4<a3 
In this case the predator (S2) has the least natural 

birth rate. Initially the predator (S2) dominates over the 
prey (S1), host (S3) of S1 till the time instant t*

21, t*
23 

respectively and thereafter the dominance is reversed.   
Also the prey (S1) dominates over its host till the 

time instant t*
12 and thereafter the dominance is reversed.  

Similarly S4 dominates over the host (S3) of S1 till the time 
instant t*

43 the dominance gets reversed after. 
 

 
 

Figure-8 
 
Here 
 

* *20 30
21 23

1 2 10 2 3 20

* *30 40
13 43

1 3 10 3 4 30

1 1log( ); log( )

1 1log( ); log( )

u ut t
a a u a a u

u ut t
a a u a a u

= =
− −

= =
− −

 

 
Case (ix): If u30<u20<u40<u10,    a1<a4<a3<a2 

In this case the prey (S1) has the least natural 
birth rate. Initially the prey (S1) dominates over its host, 
predator (S2) and S4 till the time instant t*

13, t*
12, t*

14 
respectively and there after the dominance is reversed. 
Also S4 dominates over the predator (S2) and the host (S3) 
of S1 till the times instant t*

42 and t*
43 and thereafter the 

dominance is reversed. 
 

Here 
 

* * *30 20 40
13 12 14

1 3 10 1 2 10 1 4 10

1 1 1log( ); log( ); log( )u u ut t t
a a u a a u a a u

= = =
− − −

 

 

and * *40 40
42 43

2 4 20 3 4 30

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 



                                         VOL. 6, NO. 4, APRIL 2011                                                                                                                        ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
47

 
 

Figure-9 
 
Case (x): If u40<u10<u30<u20,   a1<a2<a4<a3 

In this case the prey (S1) has the least natural 
birth rate.  Initially the prey (S1) dominates over S4 till the 
time instant t*

14 and thereafter the dominance is reversed.   
Also the predator (S2) dominates over S3 and S4 

till the time instants t*
23, t*

24 respectively and thereafter the 
dominance is reversed. 
 

Here * *40 40
14 24

2 3 10 2 4 20

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 

and * 30
23

2 3 20

1 log( )ut
a a u

=
−

 

 

 
 

Figure-10 
 
Case (xi): If u40<u10<u20<u30,   a2<a3<a1<a4 

In this case the predator (S2) has the least natural 
birth rate. Initially the predator (S2) dominates over S4 and 
prey (S1) till the time instant t*

24, t*
21 respectively and 

thereafter the dominance is reversed.   
Also the host (S3) of S1 dominates over the prey 

(S1) and S4 till the time instant t*
31, t*

34 respectively and 
thereafter the dominance is reversed. Similarly the prey 
(S1) dominates over S4 till the time instant t*

14 and the 
dominance gets reversed after. 
Here 
 

* *40 20
24 21

2 4 20 1 2 10

* *30 40
31 34

1 3 10 3 4 30

1 1log( ); log( )

1 1log( ); log( )

u ut t
a a u a a u

u ut t
a a u a a u

= =
− −

= =
− −

  

 

and  * 40
14

1 4 10

1 log( )ut
a a u

=
−

 

 

 
 

Figure-11 
 
Case (xii): If u40<u20<u30<u10,   a4<a1<a2<a3 

In this case S4 has the least natural birth rate. 
Initially the prey (S1) dominates over its host and predator 
(S2) till the time instant t*

13, t*
12 respectively and thereafter 

the dominance is reversed. 
 

Here * *30 20
13 12

1 3 10 1 2 10

1 1log( ); log( )u ut t
a a u a a u

= =
− −

 

 

 
 

Figure-12 
 
TRAJECTORIES OF PERTURBATIONS 

The trajectories in the u1-u2 plane given by 

2 11 2

10 20

( ) ( )a au u
u u

=  and are shown in Figure-13. 
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Figure-13 
 
Also the trajectories in the 1 3u u−  plane given by 

3 131

10 30

( ) ( )a auu
u u

=  and are shown in Figure-14. 

Similarly the trajectories in the u1-u4, u2-u3, u2-u4, u3-u4 

planes are 34 1 231 4 2

10 40 20 30

( ) ( ) , ( ) ( ) ,aa a auu u u
u u u u

= =   

34 2 432 4 4

20 40 30 40

( ) ( ) , ( ) ( )aa a auu u u
u u u u

= =  respectively. 

 

 
 

Figure-14 
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