

www.arpnjournals.com

STRESS AND LOAD-DISPLACEMENT ANALYSIS OF FIBER-REINFORCED COMPOSITE LAMINATES WITH A CIRCULAR HOLE UNDER COMPRESSIVE LOAD

Manoharan R. and Jeevanantham A. K. School of Mechanical and Building Sciences, VIT University, Vellore, India E-Mail: mano77 be@yahoo.co.in

ABSTRACT

This paper is focused on the analysis of stress-strain and displacement for compressive load on the fibrereinforced composite laminates. Three different orientations of fibers are analyzed with and without the circular cut-outs. Also different dimensions of circular cut-outs are applied on the laminates at different compressive loading conditions. This analysis is carried out using the finite element software ANSYS. From the result, it is identified that cross-ply composite laminates posses the highest strength as compared to other types of angle orientations. Also it is concluded that the maximum load bearing capacity decreases as the cut-out size increases.

Keywords: fibre-reinforced composite laminate, stress, strain, load displacement analysis, compressive load, ANSYS.

1. INTRODUCTION

Composite laminates are composed of thin layers (plies) consisting of reinforcement and a matrix. The reinforcement is typically a strong, stiff material, in the form of long fibers. The matrix is typically a material that is applied in a liquid form and then cured and hardened. The matrix is applied to support the reinforcement, and to distribute the load through the reinforcement and plies. It is common to have plies with fibers at one direction or several directions in a weave. The orientation of the fibers and stacking sequence has a large effect on the deformation and stress throughout the laminate. Composite laminates have been used increasingly in a variety of industrial areas due to their high stiffness and strength-to-weight ratios, long fatigue life, resistance to electro chemical corrosion, and other superior material properties of composites. A true understanding of their structural behavior is required, such as the deflections, buckling loads and modal characteristics, the throughthickness distributions of stresses and strains, the large deflection behavior and, of extreme importance for obtaining strong, reliable multi-layered structures, the failure characteristics. Finite element method is especially versatile and efficient for the analysis of complex structural behaviour of the composite laminates.

The largest damage feature is usually delamination, which may cause significant reductions in flexural stiffness and buckling loads. The effect of delamination has been a subject of extensive research, and fairly reliable methods are now available for prediction of growth of artificial single delamination [1]. Cut-outs commonly appear in the structures due to the requirement of stability maneuverability, low weight optimization and accessibility of other systems. During operation, these structural elements may experience compressive loads and thus lead to buckling and post buckling. Their buckling and post buckling behaviors play an important role in determining safe operating conditions and effective designs for these structures [2].

Engineers have been in the continuous state of experiments and analysis using woven fabric composites. This is because of light weight of the woven fibers and their higher strength. They have been the subject of research and experiments since their introduction. Work by de Freitas and Reis [3] showed the failure mechanisms on composite specimens subjected to compression after impact. The delaminated area of composite plates due to impact loading depends on the number of interfaces between plies and it influence more on the buckling failure mechanisms than stacking sequences.

An experimental study of the behaviour of woven glass fiber/epoxy composite laminated plates under compression is explained by Hakim S. Sultan Aljibori and W.P. Chon [2]. Compression tests were performed on to 16 fiber-glass laminated plates with and without circular cut-outs using the compressed machine. The maximum load of failure for each of the glass-fiber/epoxy laminated plates under compression has been determined experimentally. According to M. de Freitas and L. Reis [3], impact loading in composite plates lead to damage with matrix cracking, inter-laminar failure and eventually fiber breakage for higher impact energies. Even when no visible impact damage is observed at the surface on the point of impact, matrix cracking and inter-laminar failure can occur, and the carrying load of the composite laminates is considerably reduced.

Another study by Takeda *et al.*, [4] developed the progressive failure methodology for glass/epoxy plain weave fabric reinforced laminates subjected to tensile loading under cryogenic temperatures. Kelkar *et al.*, [5] examined the biaxial braided carbon/epoxy composites with different braid angles i.e., 25°, 30°, 45° carbon/epoxy unstitched, stitched and Z-pinned plain under tension and compression fatigue loading for aerospace applications.

Several investigations have been done by Hilburger *et al.*, [6] and Ghannadpour *et al.*, [7] showed the buckling behavior of composite laminated plates with cut-outs under compression. The buckling behavior is affected by the cut-out size, plate curvature, boundary

www.arpnjournals.com

conditions and ply angles. The laminated fibre-reinforced composite plates are known to be susceptible to damage resulting from accidental impact of foreign objects. Yin *et al.*, [8] conducted compressive after impact test to evaluate mechanical performance of the laminated composites before and after crack healing. High performance composite components often consist of layers (plies) of unidirectional FRP stacked in a specified sequence to form a laminate Construction. Zhu *et al.*, [9] presented an experimental study of in-plane large shear deformation of woven fabric composite. During the test, the cross-sectional profiles of fabric samples were traced, helping to build up a theoretical model of the composite sheets during their large shear deformation.

The findings of this paper give an increased understanding of the behavior of woven glass fiber/epoxy composite laminated plates under compression loading. This knowledge will assist engineers, researchers and composite community to use composite material for automotive and aerospace industry.

2. OBJECTIVES

Composites are found to have great strength to weight ratio. It can be further increased by making use of perforated plate in case of complete composite sheet. This results in the loss of strength but increase in strength to weight ratio. A study of the stress-strain and displacement of woven glass fiber/epoxy composite laminated plates under compression load is presented. The maximum load of failure for each of the glass fiber/epoxy laminated plates under compression load has been determined through simulation software (ANSYS). The effects of varying the centrally located circular cut out sizes and fiber angle ply orientations under the ultimate load has been simulated. The crack propagation in the drilled laminate sheets is focused. The study of stress-strain development and displacement on composite plate with circular hole of three different diameters and three different orientations under varying compression load is performed.

3. STRESS-STRAIN AND DISPALACEMENT ANALYSIS

The finite element analysis (FEA) software ANSYS is used to simulate and analyze stress-strain and displacement behaviour of glass fiber/epoxy composite laminated plates. The laminates of the composite plates is designed and analysed under gradually varying compression load. Proper element type is chosen to design our composite laminate. A material property has been chosen from the Wu Zhen [10] and Det Norske Verit [11]. Orthotropic material has been chosen for the analysis as their property varies in different direction which is true for fibre reinforced composites. Three plates of different orientation with same dimension but varying dimensions of the cut hole located centrally in the plate are designed. The dimension for composite laminate with orientation [0/90/0] s with central hole diameter of 28mm is shown in Figure-1.

Figure-1. Geometry of a fibre-glass laminated with centrally cut hole.

These plates have 6 ply laminates symmetric from the centre. One side of the laminate is kept fixed and other is applied with the load increasing gradually. For the analysis, the load is increased in the steps of 500N. For each application of load values stress-strain and displacement values are noted. The load and boundary conditions are selected as shown in Figure-2.

Figure-2. Load and boundary condition for the specimen.

The four different cases of the plates are considered as shown below.

- a) Without hole
- b) With circular hole of dia. 22 mm at the centre
- c) With circular hole of dia. 28 mm at the centre
- d) With circular hole of dia. 38 mm at the centre

The three different orientations of the plates are considered as shown below.

- a) $[0^{\circ}/90^{\circ}/0^{\circ}]\hat{s}$
- b) $[0^{\circ}/60^{\circ}/30^{\circ}]\hat{s}$
- c) [90°/45°/0°]ŝ

The solid elements 191 and 86 are considered for making the discretization of the plate. Solid 191 is 3-D 8

www.arpnjournals.com

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved.

node layered structural solid element. It is defined by eight nodes having three degrees of freedom at each node. It has plasticity, hyper elasticity, stress stiffing, creep, large deflection, and large strain capabilities. It also has mixed formulation capabilities for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyper elastic materials. It allows for prism and tetrahedral degeneration when used in irregular regions. is defined by 20 nodes having three degrees of freedom per node. It supports plasticity, hyper elasticity, creep, stress stiffening, large deflection and large strain capabilities. It also has mixed formulation capability for simulating deformations of nearly incompressible hyper elasticity materials. It allows up to 250 different layers.

The displacement, stress and strain values for the plate without circular hole at the orientation of $[0^{\circ}/90^{\circ}/0^{\circ}]$ s is analysed and presented in the Figures 3, 4 and 5, respectively.

Solid 86 is a higher node 3-D 20- node solid element that exhibits quadratic displacement behaviour. It

Plate without circular hole at [0°/90°/0°] \$:

Figure-3. Displacement plot of composite plate without hole at orientation $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ.

ARPN Journal of Engineering and Applied Sciences

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved.

ISSN 1819-6608

www.arpnjournals.com

Figure-4. Stress plot of composite plate without hole at orientation [0°/90°/0°]ŝ

Figure-5. Strain plot of composite plate without hole at orientation [0°/90°/0°] ŝ.

The displacement, stress and strain values for the plate with circular hole of 22mm at the orientation of

 $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ is analysed and presented in the Figures 6, 7 and 8, respectively.

www.arpnjournals.com

Plate with circular hole of 22 mm at [0°/90°/0°] \$:

Figure-6. Displacement plot of composite plate with 22mm dia hole at orientation $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ.

Figure-7. Stress plot of composite plate with 22mm dia hole at orientation [0°/90°/0°] ŝ.

ARPN Journal of Engineering and Applied Sciences

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved

ISSN 1819-6608

www.arpnjournals.com

Figure-8. Strain plot of composite plate with 22mm dia hole at orientation $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ.

Similarly, the displacement, stress and strain values for the plates with circular holes of diameter 28 and 38mm are analysed at the orientations of $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ. Also the plates with cut-out holes of diameter 22, 28 and 30mm are analysed at the orientations of $[0^{\circ}/60^{\circ}/30^{\circ}]$ ŝ and $[90^{\circ}/45^{\circ}/0^{\circ}]$ ŝ.

4. RESULTS

The results obtained from the ANSYS analysis are presented in the following Tables 1, 2 and 3. The compressive load is increased gradually in steps of 500N starting from zero. Thus the values of the displacement, stress and strain are noted for the load of 500N, 1000N, 1500N and so on till the maximum load is achieved. This maximum load which can be applied to this plate either with central hole or without hole is taken from Hakim S. Sultan Aljibori and W.P. Chong [2].

Table-1. Values of the displacement, stress and strain for the load varying from 500N for plate at orientation of $[90^{\circ}/45^{\circ}/0^{\circ}]$ ŝ with 3 different sizes of holes.

Without hole								
Load Displacement Stress Strain								
500	3.527	687.947	0.010964					
1000	7.053	1376	0.021929					
1500 10.58		2064	0.032893					
2000	2000 14.106		0.043857					
2500 17.633		3440	0.054822					
3000 21.16		4128	0.065786					
3500	24.686	4816	0.07675					

4000	28.213	5504	0.087715				
4500	31.739	6192	0.098679				
With hole diameter of 22mm							
Load	Displacement	Stress	Strain				
500	3.796	2382	0.035411				
1000	7.593	4764	0.070822				
1500	11.389	7146	0.106233				
2000	15.186	9528	0.141644				
2500	18.982	11909	0.177056				
3000	22.778	14291	0.212466				
3500	26.575	16673	0.247877				
4000	30.371	19055	0.283288				
4500	34.153	21437	0.318699				
	With hole dia	meter of 2	28mm				
Load	Displacement	Load	Displacement				
500	3.997	2592	0.040039				
1000	7.993	5184	0.080079				
1500	11.99	7776	0.120118				
2000	15.987	10368	0.160157				
2500	19.984	12960	0.200197				
3000	23.98	15553	0.240236				
3500	27.977	18146	0.280276				
4000	31.974	20737	0.320315				
4500	35.97	23329	0.360354				
	With hole dia	meter of 3	38mm				

Load	Displacement	Load	Displacement
500	4.525	3919	0.057723
1000	9.05	7839	0.115445
1500	13.567	11758	0.173162
2000	18.101	15678	0.230891
2500	22.626	19597	0.288614
3000	27.151	23517	0.346336
3500	31.677	27436	0.404059

Table-2. Values of the displacement, stress and strain for the load varying from 500N for plate at orientation of $[0^{\circ}/60^{\circ}/30^{\circ}]$ ŝ with 3 different sizes of holes.

Without hole						
Load	Load Displacement Stress Strain					
500	4.085	841.616	0.013114			
1000	8.17	1683	0.026228			
1500	12.34	2340	0.039343			
2000	16.341	3366	0.052457			
2500	20.426	4208	0.065571			
3000	24.121	5050	0.078685			
3500	28.596	5891	0.0918			
4000	32.681	6733	0.104914			
4500	36.766	7575	0.118028			
5000	40.852	8416	0.131142			
5300	46.834	9649	0.150347			
	With hole dia	meter of 2	22mm			
Load	Displacement	Stress	Strain			
500	4.316	2664	0.04123			
1000	8.632	5327	0.082479			
1500	12.948	7991	0.123718			
2000	17.263	10655 0.164957				
2500	21.579	13318	0.206196			
3000	25.896	15982	0.247436			
3500	30.211	18646	0.288675			
4000	34.527	21309	0.329914			
4500	38.843	23973	0.371154			
5000	43.159	26637	0.412393			
5300	45.748	28235	0.437136			
	With hole dia	meter of 2	28mm			
Load	Displacement	Load	Displacement			
500	4.5	3009	0.045999			
1000	9.001	6017	0.091998			
1500	13.501	9026	0.137997			
2000	18.001	12035	0.183996			

22.501	15043	0.229995
27.002	18052	0.275994
31.502	21061	0.321993
36.002	24069	0.367992
40.502	27078	0.413991
42.78	28600	0.437267
With hole dia	meter of 3	8mm
Displacement	Load	Displacement
5.072	4341	0.064678
10 142	0601	0.100256
10.145	0001	0.129356
15.215	13022	0.129356 0.194034
10.143 15.215 20.286	13022 17362	0.129356 0.194034 0.258712
10.143 15.215 20.286 25.358	13022 17362 21703	0.129356 0.194034 0.258712 0.32339
10.143 15.215 20.286 25.358 30.43	13022 17362 21703 26043	0.129356 0.194034 0.258712 0.32339 0.388068
10.143 15.215 20.286 25.358 30.43 35.501	13022 17362 21703 26043 30384	0.129356 0.194034 0.258712 0.32339 0.388068 0.452746
	22.301 27.002 31.502 36.002 40.502 42.78 With hole dia Displacement 5.072	22.301 13043 27.002 18052 31.502 21061 36.002 24069 40.502 27078 42.78 28600 With hole diameter of 3 Displacement 5.072 4341

Table-3. Values of the displacement, stress and strain for the load varying from 500N for plate at orientation of $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ with 3 different sizes of holes.

Without hole						
Load	Displacement	Stress	Strain			
500	2.855	514.23	0.008294			
1000	5.71	1028	0.016587			
1500	8.568	1543	0.024881			
2000	15.985	2090	0.045997			
2500	19.981	2612	0.057496			
3000	23.978	3135	0.068995			
3500	27.974	3657	0.080495			
4000	31.97	4180	0.091994			
4500	35.96	4702	0.103493			
5000	39.963	5223	0.114992			
5500	43.959	5747	0.126491			
5800	5800 50.021		0.143936			
	With hole dia	meter of	22mm			
Load	Displacement	Stress	Strain			
500	3.441	2114	0.036141			
1000	6.882	4227	0.072281			
1500	10.323	6341	0.108422			
2000	13.764	8454	0.144562			
2500	17.205	10568	0.180703			
3000	20.64	12681	0.216843			
3500	24.086	14795	0.252984			
4000	27.527	16908	0.289124			

www.arpnjournals.com

10	2.1	-	
	14	- 21	
		22	2.11
	20	-	1.1

•	1
www.arpnjourna	ls.com
1 0	

4500	30.968	19022	0.325265				
5000	34.409	21135	0.361406				
5500	37.85	23249	0.397456				
5800	39.915	24517	0.41923				
With hole diameter of 28mm							
Load	Displacement	Load Displacemen					
500	3.567	2113	0.043227				
1000	7.135	4226	0.086454				
1500	10.702	6338	0.129681				
2000	14.269	8451	0.172909				
2500	17.836	10564	0.216136				
3000	21.404	12677	0.259363				
3500	24.971	14790	0.30259				
4000	28.538	16903	0.345817				
4500	32.105	19015	0.389045				
5000	35.673	21128	0.432272				
5500	38.526	22818	0.466853				
	With hole dia	meter of	38mm				
Load	Displacement	Load	Displacement				
500	4.411	3671	0.062103				
1000	8.822	7341	0.124206				
1500	13.233	11012	0.18631				
2000	17.644	14683	0.248413				
2500	22.055	18353	0.310516				
3000	26.466	22024	0.372619				
3500	30.876	25695	0.434723				
4000	36.081	30026	0.508004				

From the above data, it is clear that as the central hole diameter increases, the plate breaks or its displacement and stress increases for the same load compared to the plate with lower diameter hole or no hole. This can be clearly shown by comparing the graphs drawn between load-displacements for the orientation with varying diameters of centrally located hole.

For all cases, symmetric angle ply laminates of $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ underwent the largest inelastic deformation before failure. These findings suggest that this type of ply configuration is capable of absorbing large amount of energy before fracture, where the energy absorbed is given by the area under the load-displacement curve. A similar trend has been observed from the experimental results, in which the ultimate load of the plate with angle orientation of $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ has the highest value, followed by angle orientations of $[0^{\circ}/60^{\circ}/30^{\circ}]$ ŝ and $[90^{\circ}/45^{\circ}/0^{\circ}]$ ŝ.

Also the results revealed that cross plies are better than the angular plies. Graphs are plotted for the comparison of load versus displacement for all the fiberglass laminated plates with and without holes at different angle orientations. It is interesting to note that all the laminates behave in a similar fashion whereby their behavior is almost linear before reaching the peak load.

Plate strength decreases as hole diameter increases

Graphs to the load versus displacement for different diameter of holse at each orientation are plotted and shown in Figures 9, 10 and 11. In these graphs the orientation is kept constant and the values of displacement for different load cases are noted down. These graphs reveal that the ability to bear the load decreases as the diameter of cut section increases. For some fixed load, the maximum displacement is observed for the plates with maximum hole diameter.

Figure-9. Load vs. displacement for different diameters of hole at the orientation of [0°/60°/30°] ŝ.

Figure-10. Load vs. displacement for different dia. of hole for the orientation $[90^{\circ}/45^{\circ}/0^{\circ}]$ ŝ.

Figure-11. Load vs. displacement for different dia. of hole for the orientation $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ.

www.arpnjournals.com

Stress vs. strain graph is found to be linear

Graphs to the stress versus strain for different diameter of holse at each orientation are plotted and shown in Figures 12, 13 and 14. It is the material property of the composites that as the stress increases their strain also increases linearly. Thus the stress strain curve for the composite material is a straight line which is one of the characteristics of a composite material.

Figure-12. Stress vs. strain for different diameters of hole at the orientation of $[0^{\circ}/60^{\circ}/30^{\circ}]$ ŝ.

Figure-13. Stress vs. strain for different diameters of hole at the orientation of $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ.

Figure-14. Stress vs. strain for different diameters of hole at the orientation of $[90^{\circ}/45^{\circ}/0^{\circ}]$ ŝ.

Cross plies better than angular plies

Graphs to the load versus displacement for different orientations at each hole diameter are plotted and shown in Figures 15, 16, 17 and 18. From these graphs, it is observed that the cross plies i.e., laminates with orientation $[0^{\circ}/90^{\circ}/0^{\circ}]\hat{s}$ is better than other orientations of $[90^{\circ}/45^{\circ}/0^{\circ}]\hat{s}$ and $[0^{\circ}/60^{\circ}/30^{\circ}]\hat{s}$ which are angular plies. It is found by comparing the displacements of the plate with varying orientation but common hole diameter. In all the four case of holes at the centre and without hole the result was found to be same i.e., cross plies better than angular plies.

Figure-15. Load vs displacement graph showing the comparison between three orientation for the plate hole dia. of 38 mm.

Figure-16. Load vs displacement graph showing the comparison between three orientation for the plate hole

Figure-17. Load vs displacement graph showing the comparison between three orientation for the plate hole dia. of 22 mm.

VOL. 6, NO. 4, APRIL 2011

ARPN Journal of Engineering and Applied Sciences

© 2006-2011 Asian Research Publishing Network (ARPN). All rights reserved

www.arpnjournals.com

The results obtained from this analysis are validated by finding the percentage of variation with the experimental works carried by Sultan and Chong [2]. The % of variation is calculated for the maximum displacement and presented in the Table-8. It is clear that nearly all the above results are in close agreement to the experimental work.

Figure-18. Load vs displacement graph showing the
comparison between three orientation for the plate
without hole.

Table-8. Variation betwee	en Sultan and C	Chong [3] and sof	tware analysis values.

Stacking sequence	Central hole dia.	Max. load	Maximum displacement by	Maximum displacement	% variation
sequence	(mm)	(kN)	Sultan and	ANSYS result	,
			Chong [3] (mm)	(mm)	
	Without hole	6.3	52.7662	50.021	5.2%
LU0/UU0/U015	22	5.84	34.7604	36.519	4.8%
[0°/90°/0°]s	28	5.42	35.0368	38.526	7.8%
	38	4.0	36.3502	36.081	0.74%
	Without hole	5.73	46.4215	46.834	0.88%
[0º/60º/30º]ê	22	5.25	46.9224	45.748	2.5%
[0/00/30]s	28	4.7	40.1546	42.78	6.1%
	38	4.07	50.3712	41.334	17%
	Without hole	5.0	40.0675	40.33	0.65%
[90°/45°/0°]ŝ	22	4.5	34.5310	34.168	1.05%
	28	4.0	38.5859	35.977	6.76%
	38	3.2	39.7767	31.677	20.34%

CONCLUSIONS

In a composite material, the fibers are the main constituents which are responsible for the strength of the composite. Thus the fibers play an important role in the load bearing capacity of the composite. Thus fiber orientation is very important in determination of the strength of the composite. In this paper, the different fiber orientation like $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ, $[0^{\circ}/60^{\circ}/30^{\circ}]$ ŝ and [90°/45°/0°] ŝ are analyzed under different compressive loading and with and without circular cut-out conditions. Out of these orientations, it is found that the $[0^{\circ}/90^{\circ}/0^{\circ}]$ s configuration is the best and has the maximum load bearing capacity and strength than the other orientations. i.e., the cross plies have maximum load carrying capacity as compared to angular plies. For the same load, the plate with orientation $[0^{\circ}/90^{\circ}/0^{\circ}]$ ŝ has the least deflection indicating the best strength as compared to the others. As the diameter of the cut hole is increased the strength of the plate decreases. It is because of the material removal from the plate reduces its strength and the load bearing capacity also reduces accordingly. The larger diameter of holes reduces the load bearing capacity and thus the

displacement or the deflection of the plate also increases upon the application of the load.

REFERENCES

- [1] Robin Olsson, Jonas Iwarsson. 2003. Experiments and analysis of laminates with artificial damage. Composites science and technology. 63: 199-201.
- [2] Hakim S. Sultan Aljibori, W.P. Chong. 2009. Loaddisplacement behaviour of glass fiber/epoxy composite plates with circular cut-outs subjected to compressive load. Materials and design. 31: 466-474.
- [3] De Freitas M, Reis L. 1998. Failure mechanisms on composite specimens subjected to compression after impact. J. Compos Structure. 42: 365-366.
- [4] Takeda T, Takano S, Shindo Y, Narita F. 2005. Deformation and progressive failure behavior of woven fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures. J. Compos Sci Technol. 65: 1691-1702.

www.arpnjournals.com

- [5] Kelkar AD, Tate JS, Bolick R. 2006. Structural integrity of aerospace textile composites under fatigue loading. J. Mater Sci Eng B. 132: 79-84.
- [6] Hilburger Mark W, Britt Vicki O. 2001. Nemeth Michael P. Buckling behavior of compression-loaded quasi-isotropic curved panels with a circular cutout. Int. J. Solids Struct. 38: 1495-1496.
- [7] S.A.M. Ghannadpour, A. Najafi. 2006. On the buckling behavior of cross-ply laminated composites plates due to circular /elliptical cutouts. Composite structures. 75: 2-3.
- [8] Yin Tao, Rong Min Zhi, Wu Jingshen, Chen Haibin, Zhang Ming Qiu. 2008. Healing of impact damage in woven glass fabric reinforced epoxy composites. J. Appl Sci Manufact. 39: 1479-1487.
- [9] Zhu B, Yu TX, Tao XM. 2007. An experimental study of in-plane large shear deformation of woven fabric composite. Compos Sci Technol. 67: 252-261.
- [10] Wu Zhen, Chen Wanji. 2009. Stress analysis of laminated composite plates with a circular hole according to a single-layer higher-order model. Composite Structures. 90: 122-129.
- [11] Det Norske Veritas and Ris. 2002. National Laboratory, Guidelines for design of wind turbines. 2nd Edition.

