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ABSTRACT 

This paper, we consider dynamic dispatching control of a fully flexible online manufacturing system. Hence, 
vendors, who supply the materials, play an important role in this system. So, selection of vendors is much important. In a 
periodically reviewed, online manufacturing system where materials are dispatched from a central control station to 
different manufacturing sales. After production process, the parts are routed to inspection and quality control room. Hence 
optimal dispatching policies are pursued to minimize the in-process inventory carrying / holding cost over finite horizon. A 
dynamic programming formulation is developed for optimal dispatching which shows that the dynamic recursive functions 
(i.e. cost - to go - function) are convex and monotonic under the condition of low defects rates and relative low cost 
material handling. From the derivation we conclude that optimal dispatching sales for a combination of zero inventory and 
Non- zero inventory policies. Thus, the optimal input control is proved to be in the form of a pulling system. 
 
Keyword: online manufacturing system, material dispatching control, in-process inventory, vendors evaluation, monotonic properties. 
 
1. INTRODUCTION 

In lean manufacturing, cellular manufacturing 
[John J. Liu, 1989] a blend of group technology and 
flexible manufacturing (FMS) has been gaining popularity 
in modern industries. An automated flexible 
manufacturing [George E. Monahan and Timothy L. 
Smunt-1987] process is asset of computer control work 
station connected by automated material handling which is 
used to produce multiple variations of parts at low to 
medium volume. In a cellular manufacturing, each cell 
consists of several machining centre and is capable of 
manufacturing different parts. Based on computer cluster 
analysis of global manufacturing process information, 
each particular type of cells is configured to efficiently 
manufacture a particular family of parts. With the 
extended machine ability at each cell, major setups and 
inter cell routing can be eliminated or gradually reduced, 
while the product mixed can be changed periodically. 

In this paper we consider dynamic dispatching 
control of a fully flexible manufacturing system which is 
commonly adopted by U.S. FMS venders (Ref. Kearney 
and Trecker 1983 for sample system). The system has “n” 
manufacturing cells with limited local buffers and one 
central control situation with an unlimited central buffer. 
Each part in the current part population can be 
manufactured with one cell. After a part is finished at cell 
“i”, it will be sent to the central buffer where inspection is 
conducted with a failure rate of “pi”. In order to keep on 
time delivery, a defective part must result in a new work 
order, either for reworking the parts or for initiating a new 
job order.  

All parts are loaded or unloaded in the central 
buffer. The system is reviewed by a timesharing computer 
every”t” time interval (e.g. one hour) over a time span of 
T, which represents a short-term planning horizon. Hence, 
we allow time breaks due to tea time between review 
periods and the processing rates at each cell in each review 
period are independent random variables with general 

probability distributions. We assume no machine 
breakdowns within T. 
 
Now we consider the following dispatching problem 
 
i) Input control that is the determination of the number of 
new parts to enter the system at the beginning of each 
review period. 
ii) Internal dispatching control, that is, the determination 
of the number of parts in the central buffer to be 
dispatched to each cell at the beginning of each review 
period. The objective of the dispatching control is to 
achieve a desirable level of in-process inventory, which 
includes the costs associated with parts waiting, machine 
idling and material handling. 

In the research process we will stress mainly on 
input control and internal dispatching system in flexible 
manufacturing system with random processing time has 
focused on the analysis of aggregate steady-state 
performance (e.g. average system throughput and average 
time in system) by using queuing network models. 

Kimemia and Gershwin (1985) considered part 
routing control by optimizing the static flow rates of each 
part to each station where local queues are assumed to be 
unlimited and the production rates of each part are 
assumed to be predetermined. Buzacott and Shanthikumar 
(1985) discussed average time in the system for a job shop 
where the external arrivals are controlled in a dispatching 
area. Yao and Buzacott (1986) employed a queueing 
network model with limited local buffers and reversible 
routings to evaluate the aggregate system performance of 
FMSs with the shortest-queue dispatching mechanism. 
Yao and Shanthikumar (1987) studied the problem of 
allocating the steady-state input rates among m cells so 
that the total throughput is maximized. See Yao and 
Buzacott (1986) for a survey on queueing network 
applications. In these queueing network models, the 
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discrete and dynamic nature of manufacturing processes 
has not been reflected adequately. 

Another group of researchers (e.g. Akellla and 
Kumar, 1986; Sharifnia, 1988; Maimon and Gerrshwin, 
1988) have concentrated on dynamic control of the 
systems with failure-prone machines and defect-free 
processing. In these models, optimal production rates are 
dynamically determined to minimize some operational 
costs subject to random machine breakdowns. Most 
recently, Bielecki and Kumar (1988) showed that zero-
inventory policies are optimal for a single- product failure-
prone manufacturing system where the time between 
machine failures is an exponentially distributed random 
variable. 

Some initial research work on dynamic control of 
machine-reliable systems with random processing times 
can be found in Seidmann and Schweitzer (1984), Maimon 
and choong (1987) and Liu (1989). Seidmann and 
Schweitzer consider one manufacturing cell that feeds the 
finished part to one production line. The processing times 
are assumed to be exponential. The optimal rule for the 
selection of parts at the cell is determined to minimize the 
expected shortage cost per unit time. Maimon and Choong 
use a stochastic optimal control model for the internal 
routing problem of a two-station FMS. They consider 
optimal allocation of the parts between two stations to 
minimize work-in-process (WIP), shortage and 
transportation cost. Liu discussed the periodic routing in a 
flexible machining system where flexible machining 
centers are utilized in parallel, and the processing times at 
each center are assumed to be stochastically stationary. 

The problem we discuss in this paper concerns 
four basic elements in cellular manufacturing: dynamic 

routing, random processing rate, inspection failure and 
limited local buffer space. The machines are assumed to 
be reliable. We stress in-process inventory behavior and 
optimization of dynamic dispatching. First, we establish a 
set of typical per period costs as the measure of in-process 
inventories. Then, a dynamic programming formulation is 
developed for optimal dispatching control. The 
distributions of the in-process inventory flows are then 
derived. 

The solution of the problem results in a series of 
nonlinear integer optimization problems. We prove that 
the necessary and sufficient condition for the convexity of 
the expected one-period cost is a low inspection failure 
rate and a relatively low part handling cost in comparison 
to machine-idling and holding costs. We show that the 
condition of low defect rate and low cost material handling 
is also sufficient for the dynamic recursive functions (i.e., 
cost-to-go functions) to be convex and monotonic. These 
convex and monotonic properties reveal that a 
combination of zero-inventory and nonzero-inventory 
policies may be necessary to achieve optimal dispatching. 
Finally, we propose two solution procedures, one by 
decomposition and the other by duplication that can 
reduce the complexity of computation and 
implementation. 

In the next section, we develop the dynamic 
optimal dispatching (DOD) model and derive probability 
distributions for in-process inventory flows. In section 2, 
we discuss the convexity and monotonic of dynamic 
recursive functions. In the last section, we present 
applications of the convex and monotonic properties. The 
structure of the solution procedures is also discussed. 
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2. MODEL FOR VENDOR SELECTION 
 
2.1 Vendor selection criteria 
 Under the following condition, vendor selection 
for L1 (lowest) bidder following criteria should be strictly 
followed. 
 

1. Quality of the products in terms of 
 

(i) Fitness for the purpose at reasonable cost or moderate 
cost. 

(ii) Conforming to the specifications and freedom from all 
defects. 

(iii) Degree to which an inherent characteristics fulfill its 
requirements. 

(iv) Customer satisfaction. 

 
2. Cost of the product in terms of 
 

(i) High quality at low cost. 
(ii) High quality at moderate or suitable cost. 
 
3. After sales and service 
 It means that after reporting fail or breakdown 
how much time it takes to repair it. 
4. Giving prompt action and correct information. 
5. Exhibit desire for business. 
6. Technical Competence. 
7. Source (Particular organization) used before. 
8. Payment terms. 

It means paying installment basis with discount etc. 
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9. Research and development facility. 
10. Favorable reputation of the organization. 
11. Faull clause under this a supplier can be black listed 

for three years. Hence Faull clauses means after short 
supplying, not supplying at all. 

12. Used before it means that the particular product has 
been used for its serviceability with respect to quality.   

 
 
3. MATHEMATICAL FORMULATION OF 
    VENDOR SELECTION PROBLEM (VSP) 
    (Multi-vendors Multi-customers Multi-items Situation) 
 
3.1 Assumptions and notations 
 

1) Only one item can be purchased from different 
vendor. 

2) Quantity discounts are not taken into consideration.  
3) Lead time and demand of the item are constant and 

known with certainty. 
4) No shortage of the item is allowed for any of the 

vendor. 
5) All the vendors can have the same number of items. 
 
3.2 Index set 
 
i = index for customer, for all i = 1, 2, ------, m  
j = index for vendor, for all j = 1, 2, ----------, n 
k = index for item, for all k = 1, 2, -------------, l 
 
3.3 Decision variable 
 
xijk = quantity of item k purchased by the ith  customer 
from vendor j 
 
3.4 Parameters list 
 
pijk =  price of  per unit item k of the ordered quantity by 
the ith customer from vendor j 
Dik = aggregate demand of item k by the customer i
Uijk = upper bound (limit) of the quantity of item k 
available from vendor j by the ith customer 
Bjk = budget allocated to item k for vendor j 
Wjk = upper bound (limit) of supply quantity of item k by 
the jth vendor 
yijk =  supply for item k from vendor j to the ith customer 
 
3.5 Model formulation  

The objective function for the vendor selection 
problem is as follows: 
 

∑∑∑
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 (Vendors quota 

allocation constraint)   
 

xijk ≥ 0                                       (Non-negativity restriction) 
 
4. THE MODEL FOR OPTIMAL DISPATCHING 
 For the sake of presentation, we summarize the 
basic assumptions: 
 

 n manufacturing cells, each with independent 
processing rates in each period; 

 no intercellular routings; 
 inspections are the Bernoulli type; 
 each inspection failure results in a new work order; 
 the finite planning horizon over which no machine 
breakdowns will occur; 

 the travel time between cells is negligible; and 
 the processing rate of a rework part follows the same 
probability distribution as that of a new part. 

 
4.1 A dynamic programming formulation 

The following notations will be used. 
 

xij    the number of  parts in cell I before dispatching in 
period j; 
qij   the number of parts dispatched to cell I at the 
beginning of period j; 
dij the potential processing rate at cell  i  in period j; 
σij the actual number of the parts produced at cell i  in 
period j; 
θij the number of defective parts produced at cell i  in 
period j; 
Yj the number of parts in the central buffer at the 
beginning of period j; 
Zj the number of new parts launched into the central buffer 
in period j; 
Ri the buffer capacity of cell i; 
Pi inspection failure rate for the parts completed at cell i; 
T, the total number of review periods. 
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4.2 Implementation and computation of optimal  
      dispatching 

In this section, we discuss the effects of 
convexity and monotonic on optimal dispatching. As we 
can see, the convexity and monotonic properties result in 
simplifying both the implementation and computation of 
optimal dispatching policies. 

Since  and  are shown to be non-

decreasing in  for all , zero-inventory policy should 
be applied to the control of the central station. However, 

is not definitely controllable due to random feedback 

flows. Realistically, only initial recovery ( may be 
subject to control. Note that the minimum total expected 
cost under optimal dispatching is implied by

jΦ jB

jY j

jY
)11,Yx

( )111 ,YxΦ . 

By the monotonic of , the total expected cost attains its 

minimum only if , and therefore, zero initial 
inventories should be established at the central station. For 
local control, zero-inventory policy may not be optimal 
because the one-period cost is not necessarily no 

decreasing in . The following lemma presents another 
important result derived from the convex and monotonic 
properties. 

jΦ

01 =Y

jB

jx

 
4.3 Lemma 4 

Given each state ( )jj Yx ,  for any optimal policy 
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4.4 Proof  
The result follows from that is no decreasing 

in . Using Theorem 2, the non-decreasing ness of in 

can be verified from (1), (2) and (6) by induction in 

index .Then optimal input policy for period  

is , which is given by 
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Lemma 4 suggests a pulling control policy for the optimal 

input control. The term  represents the 

number of parts pulled by local optimal control. Thus, the 
optimal input policy reads as follows: no new parts are 
launched to the system if there are enough parts at the 
central station to be pulled by the local cells; otherwise, 
new parts are launched so that the total number of parts 
available at the central station equals the number of parts 
required for the local cells. 

(∑
=

−
n

i
ijij xu

1

* )

The key is then to determine the local optimal 
control . However, the local optimal control  is 

intricately related to 

*
ju *

ju
( )jj Yx , because of the cross-cell 

constraints and random feedback flows. Determination of 
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*
ju  remain a difficult task. In what follows, we discuss 

two solution procedures that can reduce the burden in 
computing . *

ju
The determination of optimal dispatching 

requires iterations in for eachjΦ ( )jj Yx , , where jΦ , as 
given in (8), actually represents an ( )1+n -dimensional 
non-linear integer programming problem. The first 
procedure, called Procedure 1, is a direct result of Lemma 
4. By Lemma 4, for each ( )jj Yx , , the ( )1+n -

dimensional programming  can be decomposed into 
two -dimensional minimization problems 

jΦ
n
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Let  and  be optimal solutions to  and , 

respectively. If , then  

and .Otherwise, and . 
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The second solution procedure, called Procedure 
2, uses Lagrangian multipliers. By duality theory, there is 
no duality gap for problem (8) since  and are 

convex, and is concave (see Chapter 6, Bazaraa and 

Shetty). Therefore,  can be evaluated by solving the 
associated Lagrangian dual problem 
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Further, jψ  is concave (also see, Chapter 6, 
Bazaraa and Shetty) which means that a local optimal of 

jψ is also a global optimal. Note that for the DOD model, 
the Lagrangian multiplier ν is a scalar. The dual problem 

is then concerned with the maximization of jψ over the 

one-dimensional region }:{ o≥νν where an ascent 
direction is also the steepest ascent direction. For the one-
dimensional concave dual problem, an efficient Ascent 
Algorithm can be constructed (see pp. 194-201, Bazaraa 
and Shetty for more about ascent methods in the 
Lagrangian Dual Problem). With-in each iterations of the 
Ascent Algorithm, a search point λν is first determined, 

and then jj νψ ( ׀ is solved where the objective 

function for each given

), jj Yx

λν  isconvex and the constraint 

region . is rectanglu r For each), jj Yx(U ( )jj Yx , , the Ascent 

Algorithm is carried out to find an optimal 
dispatching ( )**, jj Wu . It should be noted that 

jψ represents an ( )1+n -dimensional nonlinear 
programming problem. 

We tested the algorithms, coded in PASCAL by 
the author, for two cases (i.e., and 3=n 6=n ) on a 
mainframe computer (a Unisys 7000/40), using different 
system data sets (e.g., buffer capacity varies from 1 to 9 
lots, the length of review period ranges from 60 to 240 
minutes, and the number of review periods ranges from 4 
to 12). For 3=n , the required CPU time ranges from 0.5 
to 4 minutes, and the CPU time for the 6=n case is 
within a range of 1.5 to 14 minutes. According to our 
experiments, there seems to be no significant difference in 
computational performance between the two solution 
procedures. Further algorithm refinement and a detailed 
report on computational experience can be obtained from 
the author. 
 
5. SUMMARY AND DISCUSSIONS 

A dynamic optimal dispatching (DOD) model is 
developed for minimizing in-process inventory costs in 
on-line manufacturing network system with general 
independent processing rates. The cost-to-go function is 
shown to be convex provided that a low processing defect 
rate and low cost material handling can be attained. With 
the convexity and monotonic, efficient solution procedures 
can be constructed that simplify the computation and 
implementation. This result identifies two important 
factors in improving productivity of flexible 
manufacturing systems and indicates the importance of 
work-in-process and quality control in manufacturing 
processes. Our analysis also shows that zero-inventory 
policy is not always applicable, and an optimal policy can 
well be a combination of zero-inventory and nonzero-
inventory strategies. 

Note that the solution of the problem is still 
complex. Future research on this topic includes the study 
of the general form of optimal dispatching policies and 
development of efficient heuristic algorithms. It is also of 
theoretical and practical interest to examine the case of the 
heterogeneous part population and infinite planning 
horizon. 

 
115



                                         VOL. 6, NO. 4, APRIL 2011                                                                                                                        ISSN 1819-6608           

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
REFERENCES 
 
Akella R. and P.R. Kumar. 1986. Optimal Control of 
Production Rate in a Failure Prone Manufacturing 
Systems. IEEE Trans Auto. Control. 31: 116-126. 
 
Bazaraa M.S. and C.M. Shetty. 1979. Nonlinear 
Programming: Theory and Algorithms. John Wiley, New 
York. 
 
Bielecki T. and P.R. Kumar. 1988. Optimality of Zero-
Inventory Policies for Unreliable Manufacturing Systems. 
Opns. Res. 36: 532-541. 
 
Buzacott J.A. and J.G. Shanthilkumar. 1985. On 
Approximate Queuing Models of Dynamic Job Shops. 
Mgmt. Sci. 31: 870-887. 
 
Denardo E.V. 1978. Dynamic Programming: Models and 
Applications. Prentice-Hall, Englewood Cliffs, N. J. 
 
Kearney and Trecker Co. 1983. KT’s World of advanced 
Manufacturing Technologies. Kearney and Treeker Co., 
Milwaukee, Wise. 
 
Kimemia J.G. and S.B. Bershwin. 1985. Flow 
Optimization in Flexible Manufacturing Systems. Int. J. 
Prod. Res. 23: 81-96. 
 
LIU J.J. 1989. The Periodic Routing of a Flexible 
Manufacturing System With Centralized In-Process 
Inventory Flows. Int. J. Prod. Res. (27). 
 
Maimon O.Z. and Y.F. Choong. 1987. Dynamic Routing 
in Reentrant Flexible Manufacturing System. Robot, 
Comput. Aided Manufact. 3: 295-300. 
 
Maimon O.Z. and S.B. Gershwin. 1988. Dynamic 
Scheduling and Routing for Flexible Manufacturing 
Systems That Have Unreliable Machines. Opns. Res. 36: 
279-292. 
 
Seidmann A. and P.J. Schwehzer. 1984. Part Selection 
Policy for a Flexible Manufacturing Cell Feeding Several 
Production Lines. IIE Trans. 16: 355-362. 
 
Sharifnia A. 1988. Optimal Production Control of a 
Manufacturing System with Multiple Machine States. 
IEEE Trans. Auto. Control. 33: 620-625. 
 
Yao D.D. and J.A. Buzacott. 1986. Models of Flexible 
Manufacturing Systems with Limited Local Buffers. Inst. 
J. Prod. Res. 24: 107-118. 
 
Yao D.D. and J.G. Shanthikumar. 1987. The Optimal 
Input Rates to a System of Manufacturing Cells. INFOR. 
25: 57-65. 
 
 

 
116


