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ABSTRACT 

The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operating point which minimizes 
generation cost loss etc. or maximizes social welfare, loadability etc. while maintaining an acceptable system performance 
in terms of limits on generators’ real and reactive powers, line flow limits, output of various compensating devices etc. 
Traditionally, classical optimization methods were used to effectively solve OPF. But more recently due to incorporation 
of FACTS devices and deregulation of a power sector, the traditional concepts and practices of power systems are 
superimposed by an economic market management. So OPF have become complex. In recent years, Artificial Intelligence 
(AI) methods have emerged which can solve highly complex OPF problems. The purpose of this paper is to present a study 
of some optimization techniques used to solve OPF problems and a technique for optimal sizing and implementation of the 
SVC in optimal power flow. To show the effectiveness of the algorithm a IEEE 26 bus system has been used. 
 
Keywords: FACTS devices, flexible A.C. transmission system, optimal power flow, static var compensator. 
 
INTRODUCTION 

The optimal power flow problem has been 
frequently solved using classical optimization methods. 
The OPF has been usually considered as the minimization 
of an objective function representing the generation cost 
and/or the transmission loss [1]. The constraints involved 
are the physical laws governing the power generation-
transmission systems and the operating limitations of the 
equipment. Effective optimal power flow is limited by (i) 
the high dimensionality of power systems and (ii) the 
incomplete domain dependent knowledge of power system 
engineers. The first limitation is addressed by numerical 
optimization procedures based on successive linearization 
using the first and the second derivatives of objective 
functions and their constraints as the search directions or 
by linear programming solutions to imprecise models. The 
advantages of such methods are in their mathematical 
underpinnings, but disadvantages exist in the sensitivity to 
problem formulation, algorithm selection and usually 
converge to a local minimum. The second limitation, 
incomplete domain knowledge, precludes also the reliable 
use of expert systems where rule completeness is not 
possible. 
 
PROBLEM FORMULATION 

The standard OPF problem can be written in the 
following form [2], 
Minimise F(x) (the objective function) 
Subject to: (equality constraints) 
Hi(x) = 0, i = 1, 2 , ...,n (inequality constraints) 
Gj(x) = 0, j = 1, 2 , ..., m                                    
 

Where x is the vector of the control variables that is those 
which can be varied by a control center operator 
(generated active and reactive powers, generation bus 
voltage magnitudes, transformers taps etc.); 

The essence of the optimal power flow problem 
resides in reducing the objective function and 

simultaneously satisfying the load flow equations (equality 
constraints) without violating the inequality constraints 
 
a. Objective function 

The most commonly used objective in the OPF 
problem formulation is the minimization of the total cost 
of real power generation. The individual costs of each 
generating unit are assumed to be function, only, of active 
power generation and are represented by quadratic curves 
of second order. The objective function for the entire 
power system can then be written as the sum of the 
quadratic cost model at each generator.      
 

                                      (1)                     
 

where n is the number of generators including the slack 
bus. Pi is the generated active power at bus i. ai, bi and ci 
are the unit costs curve for ith generator. 
 
b. Types of equality constraints 

While minimizing the cost function, it’s 
necessary to make sure that the generation still supplies 
the load demands plus losses in transmission lines. Usually 
the power flow equations are used as equality constraints. 
 

                    (2) 
 

where active and reactive power injection at bus i are 
defined in the following equation: 
 

;           (3) 
 

i = 2, …nbus 
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; 

i = npv+1,……. nbus.                                               (4) 
 
c. Types of inequality constraints 

The inequality constraints of the OPF reflect the 
limits on physical devices in the power system as well as 
the limits created to ensure system security. The most 
usual types of inequality constraints are upper bus voltage 
limits at generations and load buses, lower bus voltage 
limits at load buses, Var limits at generation buses, 
maximum active power limits corresponding to lower 
limits at some generators and maximum line loading 
limits. The inequality constraints on the problem variables 
considered include: 
 

 Upper and lower bounds on the active generations at 
generator buses Pgi

min ≤Pgi ≤ Pgi
max, i = 1… n. 

 Upper and lower bounds on the reactive power 
generations at generator buses and reactive power 
injection at buses with VAR compensation Qgimin ≤ 
Qgi ≤ Qgimax, i = 1, npv 

 Upper and lower bounds on the voltage magnitude at 
the all buses Vimin ≤ VI ≤ Vimax, i = 1, nbus. 

 Upper and lower bounds on the bus voltage phase 

angles: , i = 1, nbus. 
 

 It can be seen that the generalized objective 
function F is non-linear, the number of the equality and 
inequality constraints increase with the size of the power 
distribution systems. Applications of a conventional 
optimization technique such as the gradient-based 
algorithms to a large power distribution system with a very 
non-linear objective functions and great number of 
constraints are not good enough to solve this problem. 
Because it depends on the existence of the first and the 
second derivatives of the objective function and on the 
well enough computing of these derivatives in large search 
space. 
 
ARTIFICIAL INTELLIGENCE (AI) METHODS 

An artificial intelligence technique is the science 
of making an intelligent computer program. Even though 
excellent advancements have been made in classical 
methods, they suffer with the following disadvantages: In 
most cases, mathematical formulations have to be 
simplified to get the solutions because of the extremely 
limited capability to solve real-world large-scale power 
system problems. They are weak in handling qualitative 
constraints. They have poor convergence, may get stuck at 
local optimum, they can find only a single optimized 
solution in a single simulation run, they become too slow 
if number of variables are large and they are 
computationally expensive for solution of a large system. 

Whereas, the major advantage of the Artificial 
intelligence methods is that they are relatively versatile for 
handling various qualitative constraints. Artificial 
intelligence methods can find multiple optimal solutions in 

single simulation run. So they are quite suitable in solving 
multiobjective optimization problems. In most cases, they 
can find the global optimum solution. The advantages of 
Genetic algorithms (GA) methods are: It only uses the 
values of the objective function and less likely to get 
trapped at a local optimum. Higher computational time is 
its disadvantage. Ant Colony Optimization (ACO) and 
Particle Swarm Optimization (PSO) are the latest entry in 
the field of optimization. The main advantages of ACO are 
positive feedback for recovery of good solutions, 
distributed computation, which avoids premature 
convergence. It has been mainly used in finding the 
shortest route in transmission network, short term 
generation scheduling and optimal unit commitment. PSO 
can be used to solve complex optimization problems, 
which are non-linear, non-differentiable and multi-model. 
The main merits of PSO are its fast convergence speed and 
it can be realized simply for less parameters need 
adjusting. PSO has been mainly used to solve Bi-objective 
generation scheduling, optimal reactive power dispatch 
and to minimize total cost of power generation. 
 
PARTICLE SWARM OPTIMIZATION (PSO) 
ALGORITHM 

Among the many AI techniques that have 
emerged off late and have been inspired by the nature, 
PSO is one of the latest and is amongst the best. After 
being proposed in mid 1990s, it has since then been 
utilized as an optimization tool in various applications, 
ranging from biological and medical applications to 
computer graphics and music composition.  

Kennedy and Eberhart [3], considering the 
behavior of swarms in the nature, such as birds, fish, etc. 
developed the PSO algorithm. The PSO has particles 
driven from natural swarms with communications based 
on evolutionary computations. PSO combines self-
experiences with social experiences. In this Algorithm, a 
candidate solution is presented as a particle. It uses a 
collection of flying particles (changing solutions) in a 
search area (current and possible solutions) as well as the 
movement towards a promising area in order to get to a 
global optimum. 

PSO is initialized with a group of random 
particles and the searches for optima by updating 
generations [4]. In every iteration each particle is updated 
by following “two best” values. The first one is the best 
solution (fitness value) it has achieved so far. This value is 
called Pbest. Another best value that is tracked by the 
particle swarm optimizer is the best value obtained so far 
by any particle in the population. This best value is the 
global best called Gbest. After finding the best values the 
particles update its velocity and position with the 
following equation: 
 

Vi
j+1 =W*Vi

j +C1*(Pbesti - Si
j) + C2* rand2 * (Gbesti –Si

j) (5) 
 

Si
j+1 = Si

j+1 +Vi
j+1               (6)  

 

W = Wmax -  *iter                              (7) 
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Where
 

Vi
j = Velocity of agent i at jth iteration j +1 

Vi
j+1 = Velocity of agent i at (j +1) th iteration 

W = The inertia weight 
C1 = C2 = Weighting Factor  
Si

j = Current position of agent i at jth iteration 
Si

j+1 = Current Position of agent i at (j+1) th iteration 
imax = Maximum iteration number 
iter = current iteration number 
Pbesti = P of agent i best 
Gbesti = G of the group best 
Wmax = Initial value of inertia weight  
Wmin = Final value of inertia weight  
 

The velocity of the particle is modified by using 
(5) and the position is modified by using (6). The inertia 
weight factor is modified according to (7) to enable quick 
convergence. Implementation of an optimization problem 
of PSO is realized within the evolutionary process of a 
fitness function. The fitness function adopted is given as: 
 

                (8) 
 

where objective function is the generation cost and the 
penalty is the bus voltage angle. Penalty cost has been 
added to discourage solutions which violate the binding 
constraints. Finally, the penalty factor is tended to zero. 
The PSO algorithm to solve the optimal power flow with 
FACTS devices can be summarized as follows: 
 

 

GENETIC ALGORITHM 
Genetic algorithms are search algorithms based 

on the process of biological evolution. In genetic 
algorithms, the mechanics of natural selection and genetics 
are emulated artificially. The search for a global optimum 
to an optimization problem is conducted by moving from 
an old population of individuals to a new population using 
genetics-like operators [5, 6]. Each individual represents a 
candidate to the optimization solution. An individual is 
modeled as a fixed length of string of symbols, usually 
taken from the binary alphabet. An evaluation function, 
called fitness function, assigns a fitness value to each 
individual within the population. This fitness value is a 
measure for the quality of an individual. The basic 
optimization procedure involves nothing more than 
processing highly fit individuals in order to produce better 
individuals as the search progresses. A typical genetic 
algorithm cycle involves four major processes of fitness 
evaluation, selection, recombination and creation of a new 
population. The use of real valued representation in the 
GA is claimed by Wright to offer a number of advantages 
in numerical function optimization over binary encoding. 
Efficiency of the GA is increased as there is no need to 
convert chromosomes to the binary type; less memory is 
required as efficient floating-point internal computer 
representations can be used directly; there is no loss in 
precision by discretisation to binary or other values; and 
there is greater freedom to use different genetic operators. 
For the real valued representation, the kth chromosome Ck 
can be defined as follows: 
 

Ck = [Pk1, Pk2, . . . , Pkn]     k = 1, 2, . . . , m                  (9) 
 

where m means population size and Pki is the generation 
power of the i-th unit at k-th chromosome. Reproduction 
involves creation of new offspring from the mating of two 
selected parents or mating pairs. It is thought that the 
crossover operator is mainly responsible for the global 
search property of the GA. We used an arithmetic 
crossover operator that defines a linear combination of two 
chromosomes. Two chromosomes, selected randomly for 
crossover,  
 

Ci
gen and Cj

gen may produce two offspring, Ci
gen+1 and 

Cj
gen+1, which is a linear combination of their parent’s i.e. 

 

Ci
gen+1 =α.Ci

gen + (1-α).Cj
gen  

 

Cj
gen+1 = (1-α).Ci

gen +α.Cj
gen           

 

where α is a random number in range of [0, 1]. The 
mutation operator is used to inject new genetic material 
into the population and it is applied to each new structure 
individually. A given mutation involves randomly altering 
each gene with a small probability. We generate a random 
real value which makes a random change in the tth element 
selected randomly of the chromosome. The objective 
function is used to provide a measure of how individuals 
have performed in the problem domain. In the case of a 
minimization problem, the most fit individuals will have 
the lowest value of the associated objective function. The 
fitness function is normally used to transform the objective 
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function value into a measure of relative fitness. The 
fitness function is defined as 
 

Fit(x) = g (f (x))                                  (10) 
 

where f(x) is the objective function, g transforms the value 
of the objective function to non-negative number. An 
elitist which GA search is used guarantees that the best 
solution so far obtained in the search is retained and used 
in the following generation and thereby ensuring no good 
solution already found can be lost in the search process. 
 
Economic dispatch using genetic algorithm 

The success of the genetic algorithm strongly 
depends on the problem mapping which involves the 
transformation of the problem solution to a chromosome 
representation and the design of the fitness function to 
assess the quality of a solution. Each chromosome within 
the population represents a candidate solution. A 
chromosome must represent a generation scheduling in 
order to solve the economic dispatch problem by using a 
genetic algorithm approach [7]. In the economic dispatch 
problem, the unit power output is used as the main 
decision variable, and each unit’s loading range is 
represented by a real number. The representation takes 
care of the unit minimum and maximum loading limits 
since the real representation is made to cover only the 
values between the limits. The main objective of the 
economic dispatch is to minimize fuel costs while 
satisfying constraints such as the power balance equation. 
The fit individuals will have the lowest cost of the 
objective function of the economic dispatch problem. The 
fitness function is used to transform the cost function 
value into a measure of relative fitness. For the economic 
dispatch problem, the fitness function, Fit (P), may be 
expressed as 
 

                        (11) 
 

In order to produce two offspring, an arithmetic 
crossover operator is used. After crossover is completed, 
mutation is performed. In the mutation step, a random real 
value makes a random change in the tth element of the 
chromosome. After mutation, all constraints are checked 
whether violated or not. If the solution has at least one 
constraint violated, a new random real value is used for 
finding a new value of the tth element of the chromosome. 
Then, the best solution so far obtained in the search is 
retained and used in the following generation. The genetic 
algorithm process repeats until the specified maximum 
number of generations is reached. 
 
ANT COLONY OPTIMIZATION 
 
Ant colony behavior 

The ACSA imitates the behaviors of real ants [8]. 
As is well known, real ants are capable of finding the 
shortest path from food sources to the nest without using 
visual cues. Also, they are capable of adapting to changes 

in the environment, for example, finding a new shortest 
path once the old one is no longer feasible due to a new 
obstruction. Moreover, the ants manage to establish 
shortest paths through the medium that is called 
“pheromone.” The pheromone is the material deposited by 
the ants, which serves as critical communication 
information among ants, thereby guiding the determination 
of the next movement. Any trail that is rich of pheromone 
will thus become the goal path. The process is illustrated 
by Figure-1.  
 

 
 

   (a)    (b)                                      (c) 
 

Figure-1. Example of the real ant’s behavior. 
 

In Figure-1(a), the ants are moving from food 
source P to the nest Q on a straight line. Once an obstacle 
appears as shown in Figure-1(b), the path is cut off. The 
ants will not be able to follow the original trail in their 
movements. Under this situation, they have the same 
probability to turn right or left. But after some time the 
path RS will have more pheromones and all the ants will 
move in the path PRS. As the ants from R to reach T 
through S will reach quicker than that of the ants through 
T, i.e., RTU. Hence ant at U from Q will find pheromone a 
path USRP and will go through it, where Figure-1(c) 
depicts that the shorter path RSU will collect larger 
amount of pheromone than the longer path RTU. 
Therefore, more ants will be increasingly guided to move 
on the shorter path. Due to this autocatalytic process, very 
soon all ants will choose the shorter path. This behavior 
forms the fundamental paradigm of the ant colony search 
algorithm.  
 
State transition rule and local/global updating rule 

As illustrated in Figure-1, by the guidance of the 
pheromone intensity, the ants select preferable path. 
Finally, the favorite path rich of pheromone become the 
best tour, the solution to the problem. This concept 
develops the emergence of the ACSA method [9, 10]. At 
first, each ant is placed on a starting state. Each will build 
a full path, from the beginning to the end state, through the 
repetitive application of state transition rule. While 
constructing its tour, an ant also modifies the amount of 
pheromone on the visited path by applying the local 
updating rule. Once all ants have terminated their tour, the 
amount of pheromone on edge is modified again through 
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the global updating rule. In other words, the pheromone 
updating rules are designed so that they tend to give more 
pheromone to paths which should be visited by ants. In the 
following, the state transition rule, the local updating rule 
and the global updating rule are briefly introduced.  
 
State transition rule 

The state transition rule used by the ant system, 
called a random-proportional rule, is given by the 
following, which gives the probability with which ant k in 
node i chooses to move to node j: 
 

; if j ϵ  Jk (i)   
Otherwise zero                                             (12) 
 

where  is the pheromone which deposited on the edge 
between node i and node j , is the inverse of the edge 
distance, Jk (i) is the set of nodes that remain to be visited 
by ant k positioned on node i, and β  is a parameter which 
determines the relative importance of pheromone versus 
distance. Equation (12) indicates that the state transition 
rule favors transitions toward nodes connected by shorter 
edges and with large amount of pheromone. 
 
Local updating rule 

While constructing its tour, each ant modifies the 
pheromone by the local updating rule. This can be written 
as follows: 
 

                                   (13) 
 

Where the initial pheromone is value, and  is a 
heuristically defined parameter. The local updating rule is 
intended to shuffle the search process. Hence the 
desirability of paths can be dynamically changed. The 
nodes visited earlier by a certain ant can be also explored 
later by other ants. The search space can be therefore 
extended. Furthermore, in so doing, ants will make a better 
use of pheromone information. Without local updating all 
ants would search in a narrow neighborhood of the best 
previous tour. 
 
Global updating rule 

When tours are completed, the global updating 
rule is applied to edges belonging to the best ant tour. This 
rule is intended to provide a greater amount of pheromone 
to shorter tours, which can be expressed as follows: 
 

                               (14) 
 

Where   is the distance of the globally best tour from the 
beginning of the trail, and  is the pheromone decay 
parameter. This rule is intended to make the search more 
directed; therefore the capability of finding the optimal 
solution can be enhanced through this rule in the problem 
solving process. 
 
 
 

FACTS DEVICES 
 The flexible ac transmission systems are akin to 
high voltage dc and related thyristor developments, 
designed to overcome the limitations of the present 
mechanically controlled ac power transmission systems 
[11]. By using reliable, high speed power electronic 
controllers, the FACTS technology provides the utilities 
with five opportunities for increased efficiency.  
 

 Greater control of power so that it flows on the 
prescribed transmission routes.  

 Secure loading of transmission lines to levels nearer to 
their thermal limits.  

 Greater ability to transfer between controlled areas. 
 Prevention of cascading outages.  
 Damping of power system oscillation. 

 

 The driving force for new and more cost effective 
FACTS equipment is the development of semiconductor 
devices. The most powerful are thyristors which can have 
a blocking ability of more than 10 kV and carry current up 
to 5 kA. However the GTO devices offer additional 
advantage for interrupting the current. These devices 
permit the use of forced commutated converters which are 
advantageous in building FACTS equipment with more 
advanced characteristics. The IGBT devices are used for 
converters in the lower rating ranges, mainly to be used in 
medium and low voltage network. The advantage of these 
devices is that they allow switching frequencies in the 
range up to 3 - 10 kHz. 

The idea of FACTS is explained in Figure-2 
which shows schematic diagram of an ac interconnection 
between two systems. The active power transmitted 
between the systems is defined by the given equation 
where U1 and U2 are the voltages at both ends of the 
transmission. X is the equivalent impedance of the 
transmission, and δ1-δ2 is the phase angle difference 
between both systems. From the equation it is evident that 
the transmitted power is influenced by three parameters: 
voltage, impedance and voltage angle difference.  FACTS 
devices can influence one or more of these parameters as 
shown in Figure, and thereby influence power flow. 

Figure-2 is a list of FACTS controllers [12] 
which have been realized or are still under development 
for application. They can be used for load flow control, 
voltage control and stability improvement in transmission 
system as well as for additional special applications. 
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 System 1                     System2 
                      X 

                                P 
U1δ1 U2δ2 

 
              
              

                        

                  U1 U2  
          P =                 sin( δ2−δ1) 
                    X 

StaticVar
Compen-
sator          
Phase 
Angle 
Regulator 
      
  TCSC       

UPFC 

 
 

Figure-2. Representation of different controllers. 
 

The advantage of FACTS is that combining a 
variety of different equipment can create different new 
members of the FACTS family. Advantages of FACTS 
controllers in ac system are shown in Table-1. 
 

Table-1. Comparison of advantages of FACTS. 
 

Device 
name 

Load 
flow 

control 

Voltage 
control 

Transie
nstability 

Oscillation 
damping 

SVC * *** * ** 
TCSC ** * *** ** 
SSSC *** ** *** ** 
UPFC *** *** *** *** 

 

* small ** medium  *** strong 
 

As the first FACTS controller listed, SVC has 
already been in use for two decades with excellent 
operating experiences. The demand for SVC has increased 
continuously as systems become more heavily loaded and 
problems arise regarding voltage control. The second task 
for SVC to damp out power oscillations and to increase 
stability limit in long distance transmission system became 
important as new large transmission system were built.   
 
APPLICATION STUDY 

In the present paper, a new technique to 
implement the SVC in Optimal Power Flow [13,14,15] has 
been developed through MATLAB. It is tested using a 26-
bus system. The Bus and Line Data of the system is 
presented in Tables 2 and 3. The system consists of 26 

lines, 6 generators, 7 Tap-changing transformers, it can be 
seen that bus numbers 1, 2, 3, 4, 5 and 26 are generator 
buses and bus one is taken as reference bus others are 
taken as load buses. The initial angle at respective buses is 
assumed as zero degree. Accuracy is taken as = 0.01%. 

Power flow solution by Newton-Raphson Method 
is applied. The voltage profile at various buses and the 
total generating cost is obtained as shown in Table-4. It 
can be easily observed that the bus voltage at bus no. 24 is 
found to be minimum and this may be the location to 
connect the FACT devices. Now aim is to evaluate the 
required reactive Mvar to be generated by FACTS devices. 

A real power flow performance index method has 
been used to define the optimum location of FACTS 
devices. In our 26 bus system case bus 24 is most suitable 
bus to connect the SVC.  
Modifications required in Load flow to include SVC  
 

a) Shunt FACTS devices can be directly incorporated in 
load flow without modification of Jacobian. 

b) The bus at which the SVC is connected has to be 
declared as generator bus with minimum and 
maximum reactive power limits. 

c) After the load flow converges to a solution the 
reactive power to be generated at SVC bus will be 
known. 

d) This reactive power corresponds to the rating of SVC. 
 

 To calculate the value of SVC, we declare the 
24th bus as a generator bus and apply Newton-Raphson 
method to get the optimal value of SVC at the 24th bus. 
After load flow solution converges we get the reactive 
power to be generated at the 24th bus that is the optimal 
rating of the SVC is to be connected at the same bus. It is 
shown in the Table-5. 

After getting the optimal value of SVC at 24th bus 
we again declare 24th bus as load bus and connect the SVC 
at 24th bus of the same rating. After connecting the SVC 
optimal power flow program in MATLAB is executed. 
After executing OPF, we get the improved voltage profile, 
improved voltage angle profile and reduced total 
generating cost as shown in Figures 3 and 4 and in Table-6. 
 

 
 

Figure-3. Comparison of the voltage profiles with and 
without the use of SVC. 
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Figure-4. Comparison of the bus voltage angle variation with 
and without the use of SVC. 

 
Table-2. Bus data. 

 

Load Generator  Bus 
No 

Voltage 
Mag. 

Angle 
degree MW Mvar MW Mvar Qmin Qmax 

1 1.025 0.0 51 41 0 0 0 0 
2 1.020 0.0 22 15 79 0 40 250 
3 1.025 0.0 64 50 20 0 40 150 
4 1.050 0.0 25 10 100 0 25 80 
5 1.045 0.0 50 30 300 0 40 160 
6 1.00 0.0 76 29 0 0 0 0 
7 1.00 0.0 0 0 0 0 0 0 
8 1.00 0.0 0 0 0 0 0 0 
9 1.00 0.0 89 50 0 0 0 0 

10 1.00 0.0 0 0 0 0 0 0 
11 1.00 0.0 25 15 0 0 0 0 
12 1.00 0.0 89 48 00 00 0 0 
13 1.00 0.0 31 15 0 0 0 0 
14 1.00 0.0 24 12 0 0 0 0 
15 1.00 0.0 70 31 0 0 0 0 
16 1.00 0.0 55 27 0 0 0 0 
17 1.00 0.0 78 38 0 0 0 0 
18 1.00 0.0 153 67 0 0 0 0 
19 1.00 0.0 75 15 0 0 0 0 
20 1.00 0.0 48 27 0 0 0 0 
21 1.00 0.0 46 23 0 0 0 0 
22 1.00 0.0 45 22 0 0 0 0 
23 1.00 0.0 25 12 0 0 0 0 
24 1.00 0.0 54 27 0 0 0 0 
25 1.00 0.0 28 13 0 0 0 0 
26 1.015 0.0 40 20 60 0 15 50 
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Generator Operating Costs in $/h, with Pi MW are as follows: 
 
 C1 = 240 + 7.0P1 + 0.0070P1

2

 C2 = 200 + 10.0P2 + 0.0095P2
2                

 C3 = 220 + 8.5P3 + 0.0090P3
2                

 C4 = 200 + 11.0P4 + 0.0970P4
2                

 C5 = 220 + 10.5P5 + 0.0080P5
2                

C26 =190 + 12.0P26 + 0.0075P26
2         

 
Generator real power limits are: 

 

Generator Minimum MW Maximum MW 
1 100 500 
2 50 200 
3 80 300 
4 50 150 
5 50 200 

26 50 120 
 

Table-3. Line data. 
 

Bus No Bus No R p.u. X p.u. 1/2 B p.u. tr. tap at bus 
1 2 0.00055 0.00480 0.03000 1 
1 18   .00130 0.01150 0.06000 1 
2 3 0.00146 0.05130 0.05000 0.96 
2 7 0.01030 0.05860 0.01800 1 
2 8 0.00740 0.03210 0.03900 1 
2 13 0.00357 0.09670 0.02500 0.96 
2 26 0.03230 0.19670 0.00000 1 
3 13 0.00070 0.00548 0.00050   1.017 
4 8 0.00080  0.02400  0.00010 1.050 
4 12 0.00160 0.02070 0.01500 1.050 
5 6 0.00690 0.03000 0.09900 1 
6 7 0.00535 0.03060 0.00105 1 
6 11 0.00970 0.05700 0.00010 1 
6 18 0.00374 0.02220 0.00120 1 
6 19 0.00350 0.06600 0.04500 0.95 
6 21 0.00500 0.09000 0.02260 1 
7 8 0.00120 0.00693 0.00010 1 
7 9 0.00095 0.04290 0.02500 0.95 
8 12 0.00200 0.01800 0.02000 1 
9 10 0.00104 0.04930 0.00100 1 

10 12 0.00247 0.01320 0.01000 1 
10 19 0.05470 0.23600 0.00000 1 
10 20 0.00660 0.01600 0.00100 1 
10 22 0.00690 0.02980 0.00500 1 
11 25 0.09600 0.27000 0.01000 1 
11 26 0.01650 0.09700 0.00400 1 
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12 14 0.03270 0.08020 0.00000 1 
12 15 0.01800 0.05980 0.00000 1 
13 14 0.00460 0.02710 0.00100 1 
13 15 0.01160 0.06100 0.00000 1 
13 16 0.01793 0.08880 0.00100 1 
14 15 0.00690 0.03820 0.00000 1 
15 16 0.02090 0.05120 0.00000 1 
16 17 0.09900 0.06000 0.00000 1 
16 20 0.02390 0.05850 0.00000 1 
17 18 0.00320 0.06000 0.03800 1 
17 21 0.22900 0.44500 0.00000 1 
19 23 0.03000 0.13100 0.00000 1 
19 24 0.03000 0.12500 0.00200 1 
19 25 0.11900 0.22490 0.00400 1 
20 21 0.06570 0.15700 0.00000 1 
20 22 0.01500 0.03660 0.00000 1 
21 24 0.04760 0.15100 0.00000 1 
22 23 0.02900 0.09900 0.00000 1 
22 24 0.03100 0.08800 0.00000 1 
23 25 0.09870 0.11680 0.00000 1 

 
Table-4. 

 

Load Generator Bus 
No 

Voltage 
Mag. 

Angle 
degree MW Mvar MW Mvar 

1 1.025 0.000 51.000 41.000 719.634 230.539 
2 1.020 -0.932 22.000   15.000 79.000 127.705 
3 1.035 -4.216 64.000 50.000 20.000 64.704 
4 1.050 -3.581 25.000 10.000 100.000 55.760   
5 1.045 1.130 50.000 30.000 300.000 132.166 
6 0.998 -2.564 76.000 29.000 0.000 0.000 
7 0.993 -3.200 0.000 0.000 0.000 0.000 
8 0.996 -3.296 0.000 0.000 0.000 0.000 
9 1.007 -5.391 89.000 50.000 0.000 0.000 

10 0.988 -5.558 0.000 0.000 0.000 0.000 
11 0.996 -3.209 25.000 15.000 0.000 0.000 
12 0.992 -4.690 89.000 48.000 0.000 0.000 
13 1.013 -4.434 31.000 15.000 0.000 0.000 
14 1.000 -5.042 24.000 12.000 0.000 0.000 
15 0.991 -5.540 70.000 31.000 0.000 0.000 
16 0.982 -5.884 55.000 27.000  0.000 0.000 
17 0.987 -4.988 78.000 38.000 0.000 0.000 
18 1.007 -1.864 153.000 67.000 0.000 0.000 
19 1.001 -6.384 75.000 15.000 0.000 0.000 
20 0.979 -6.023 48.000 27.000 0.000 0.000 
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21 0.976 -5.775 46.000 23.000 0.000 0.000 
22 0.976 -6.435 45.000 22.000 0.000 0.000 
23 0.975 -7.083 25.000 12.000 0.000 0.000 
24 0.967 -7.343 54.000 27.000 0.000 0.000 
25 0.972 -6.770 28.000 13.000 0.000 0.000 
26 1.015 -1.803 40.000 20.000 60.000 33.892 

Total                            1263.000   637.000     1278.634     644.765 
 Total generation cost =   15449.22 $/h 

 
Table-5. 

 

Load Generator Bus 
No 

Voltage 
Mag. 

Angle 
degree MW Mvar MW Mvar 

1 1.025 0.000 51.000 41.000 719.163 219.500 
2 1.020 -0.928 22.000 15.000 79.000 118.904 
3 1.035 -4.194 64.000 50.000 20.000 56.469 
4 1.050 -3.580 25.000 10.000 100.000 36.388 
5 1.045 1.114 50.000 30.000 300.000 121.563 
6 1.001 -2.608 76.000 29.000 0.000 0.000 
7 0.995 -3.215 0.000 0.000 0.000 0.000 
8 0.998 -3.304 0.000 0.000 0.000 0.000 
9 1.011 -5.401 89.000 50.000 0.000 0.000 

10 0.994 -5.575 0.000 0.000 0.000 0.000 
11 0.999 -3.230 25.000 15.000 0.000 0.000 
12 0.995 -4.692 89.000 48.000 0.000 0.000 
13 1.014 -4.412 31.000 15.000 0.000 0.000 
14 1.001 -5.022 24.000 12.000 0.000 0.000 
15 0.993 -5.520 70.000 31.000 0.000 0.000 
16 0.985 -5.873 55.000 27.000 0.000 0.000 
17 0.989 -4.966 78.000 38.000 0.000 0.000 
18 1.008 -1.875 153.000 67.000 0.000 0.000 
19 1.013 -6.459 75.000 15.000 0.000 0.000 
20 0.986 -6.051 48.000 27.000 0.000 0.000 
21 0.988 -5.861 46.000 23.000 0.000 0.000 
22 0.987 -6.505 45.000 22.000 0.000 0.000 
23 0.985 -7.141 25.000 12.000 0.000 0.000 

24 1.000 -7.756 54.000 27.000 0.000 56.220 
25 0.982 -6.792 28.000 13.000 0.000 0.000 
26 1.015 -1.801 40.000 20.000 60.000 30.995 

Total                                  1263.000        637.000    1278.163     640.039 
 
 
 
 
 

 
21



                                         VOL. 6, NO. 5, MAY 2011                                                                                                                          ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
Table-6. 

 

Load Generator Bus 
No 

Voltage 
Mag. 

Angle 
degree MW Mvar MW Mvar 

1 1.025 0.000 51.000 41.000 447.478 240.495 
2 1.020 -0.200 22.000 15.000 447.478 29.931 
3 1.045 -0.623 64.000 50.000 263.255 61.371 
4 1.060 -2.193 25.000 10.000 137.594 62.266 
5 1.045 -1.424 50.000 30.000 167.266 134.395 
6 1.005 -2.910 76.000   29.000 0.000 0.000 
7 1.000 -2.464 0.000 0.000 0.000 0.000 
8 1.004 -2.345 0.000 0.000 0.000 0.000 
9 1.017 -4.432 89.000 50.000 0.000 0.000 

10 1.000 -4.372 0.000 0.000 0.000 0.000 
11 1.001 -2.841 25.000 15.000 0.000 0.000 
12 1.002 -3.346 89.000 48.000 0.000 0.000 
13 1.023 -1.249 31.000 15.000 0.000 0.000 
14 1.011 -2.440 24.000 12.000 0.000 0.000 
15 1.003 -3.229 70.000 31.000 0.000 0.000 
16 0.995 -3.998 55.000 27.000 0.000 0.000 
17 0.986 -4.325 78.000 38.000 0.000 0.000 
18 1.009 -1.890 153.000 67.000 0.000 0.000 
19 1.017 -6.130 75.000 15.000 0.000 0.000 
20 0.993 -4.819 48.000 27.000 0.000 0.000 
21 0.990 -5.486 46.000 23.000 0.000 0.000 
22 0.993 -5.424 45.000 22.000 0.000 0.000 
23 0.990 -6.450 25.000 12.000 0.000 0.000 
24 1.004 -7.079 54.000 27.000 0.000 0.000 
25 0.985 -6.268 28.000 13.000 0.000 0.000 
26 1.015 -0.301 40.000 20.000 86.436 25.050 

Total 1263.000   637.000  1275.163   553.507 
 Total generation cost =   15438.07 $/h 

 

Thus it can also be seen that the total generation cost per hour comes down 
by 15449.22-15438.07= 11.15$/h as a result of the proposed SVC usage. 

 
CONCLUSIONS 

In this paper an attempt has been made to review 
various optimization methods used to solve OPF 
problems. A new powerful technique to implement 
FACTS devices is presented in this paper for the 
congestion management in the open power market. The 
merits of this method are that there is no requirement to 
modify the power mismatch equations to implement the 
FACTS devices. Application of this technique to Optimal 
Power Flow has been explored and tested. The simulation 
results show that this simple algorithm can give a good 
result using only simple modifications. This method can 

be used in any optimizations technique such as Particle 
Swarm Optimizations Technique, Genetic algorithms and 
ant Colony Search Algorithms. 
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