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ABSTRACT 

This paper presents a simple mathematical model of gonorrhea in homosexual population. This model is 
characterized by a pair of non-linear first order ordinary differential equations reflecting the growth rates of promiscuous 
and infective in a homosexual population and here cured infectives are separated from the main stream for further 
investigation. Numerical examples are given to explain the effect of cure rate and infective rate on the spread and control 
of the disease. 
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1. INTRODUCTION 

A mathematical modeling of epidemic diseases 
has been a subject of intensive study of the last half a 
century by both theoretical and experimental scientists 
working in the areas of population dynamics, social 
medicine and applied mathematics. A mathematical model 
of gonorrhea was given by cook and York [1] in the year 
1973 in the form of a set of first ordered ordinary coupled 
nonlinear differential equations. Later Braun [2] described 
a model of gonorrhea which is identical with the model 
given by cook and York [1]. Hethkoote, York [3] provided 
an exhausted bibliography on mathematical modeling of 
gonorrhea. Beretra and Capasso [4] established the 
stability criteria of gonorrhea employed a suitably 
constructed liapanov functional. Srinivas and 
Pattabhiramacharyulu [5] investigated stability of time 
delay gonorrhea. Ramakishore and Pattabhiramacharyulu 
[6] have given stability criteria for gonorrhea in 
homosexual population by considering the population as 
variable. 

In the present investigation we have discussed the 
effect of cure rate and infective rate on the spread and 
control of the disease. For this we have solved a pair of 
nonlinear equations which represents the growth rates of 
promiscuous population and infective by employing the 
Runge-kutta method of fourth order. And some of the 
solution graphs are presented whenever necessary. 
 
2. BASIC EQUATIONS 

Equations for this model are given by a pair of 
non linear ordinary differential equations which represents 
the growth rates of promiscuous and infective population. 
In this model cured infectives are eliminated from the 
main stream. Following notations are used in this model: 
 

P = Total number of promiscuous individuals in the population. 
I = Number of infectives in population. 
S = Number of susceptibles in population (P-I). 
a1 = Natural growth rate in population. 
a11 = Natural self inhibition coefficient. 
c   = Cure rate in infectives. 
b = Infective rate in promiscuous population. 

f   = Specific cure rate (c / b). 
k = Carrying capacity (a1/a11). 
P0 = Initial number of population. 
I0 = Initial number of infectives. 
S0 = Initial susceptible (P0 - I0). 
a1, a11, c, b are non negative constants. 
 

Equation for growth rate of promiscuous population (P) 
 

                                             (1) 
 

Equation for growth rate of Infective population (I) 
 

                                            (2) 

 
3. EQUILIBRIUM POINTS 

The system has three equilibrium points: 
a)    = 0, = 0. (Fully washed out stage) 

b)     , = 0. (This state is the perfectly healthy 

        state without any infection) 

c) ,  I k f= − . (Coexistence state) 

this would exist only when . i.e., when the carrying 

capacity is greater than the specific cure rate. 
Criteria for Stability of each equilibrium points 

and possible solution curves together with trajectories of 
perturbed equations are given by the present authors [6].  
This paper presents a numerical solution of the equations 
(1), (2). 
  
4. A NUMERICAL SOLUTION OF THE BASIC 
    NON LINEAR COUPLED DIFFERENTIAL 
    EQUATIONS 

Solving the equation (1) and substituted in the 
equation (2) then we get the nonlinear differential equation 
representing the growth rate of infective.  
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      (3) 

 

Numerical solutions of this equation is obtained 
by empl

.1 Case (A):  Specific cure rate f >1   

.1.1 Case (1): when f > 1 and P  > k 
nfective rate when 

initial 

Table-1. 

S. No. c b 0 I0 k a11

oying Runge-Kutta method of fourth order with 
the initial condition I (t0) = I0. The interval is assumed to 
range over (0, 100) for investigate the behaviour of the 
infectives of this model. Graphs are presented for possible 
cases. 
 
4
 
4 0

i.e., Cure rate is greater than i
population greater then carrying capacity. 

Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-1 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-1. 
 

 

P
1 0  0  .2 .1 10 4 2 0.01
2 0.4 0.1 10 4 2 0.01 
3 0.6 0.1 10 4 2 0.01 
4 0.8 0.1 10 4 2 0.01 
5 1.0 0.1 10 4 2 0.01 

 
.1.2 Case (2): when f > 1 and P  = k 

nfective rate when 
initial p

Table-2. 
 

S. No. c b 0 I0 k a11

4 0
i.e., Cure rate is greater than i
opulation is equal to the carrying capacity. 

Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-2 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-2. 
 

P
1 0  0  .2 .1 10 4 10 0.01
2 0.4 0.1 10 4 10 0.01 
3 0.6 0.1 10 4 10 0.01 
4 0.8 0.1 10 4 10 0.01 
5 1.0 0.1 10 4 10 0.01 

 
.1.3 Case (3): when f > 1 and P  < k 

nfective rate when 
initial p

Table-3. 

S. No. c b 0 I0 k a11

4 0
i.e., Cure rate is greater than i
opulation is less than the carrying capacity. 

Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-3 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-3. 
 
 

 

P
1 0  0  .2 .1 6 4 10 0.01
2 0.4 0.1 6 4 10 0.01 
3 0.6 0.1 6 4 10 0.01 
4 0.8 0.1 6 4 10 0.01 
5 1.0 0.1 6 4 10 0.01 

 
.2 Case (B): specific cure rate f = 1   

.2.1 Case (4): when f = 1 and P0 > k 
fective rate when 

initial 

Table-4. 

S. No. c b 0 I0 k a11

4
 
4

i.e., Cure rate is equal to in
population greater then carrying capacity. 

Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-4 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-4. 
 

 

P
1 0   .1 0.1 10 4 2 0.01

 
.2.2 Case (5): when f =1 and P0 = k 

nfective rate when 
initial po

Table-5. 

S. No. c b 0 I0 k a11

4
i.e., Cure rate is equal to i
pulation equal to carrying capacity. Computations 

have been carried for diverse spectrum of values for the 
system parameters as shown in the Table-5 to estimate the 
strength of the infective (I). The variations of infective 
verses time is illustrated in the Figure-5. 
 

 

P
1 0  .1 0.1 10 4 10 0.01

 
.2.3 Case (6): when f = 1 and P0 < k  

fective rate when 
initial p

Table-6. 

S. No. c b 0 I0 k a11

4
i.e., Cure rate is equal to in
opulation is less than the carrying capacity. 

Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-6 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-6. 
 

 

P
1 0   .1 0.1 6 4 10 0.01

 
.3 CASE (C): specific cure rate f < 1   

.3.1 Case (7): when f < 1 and P0 > k 
fective rate when 

initial 

4
 
4

i.e., Cure rate is less than in
population greater then carrying capacity. 

Computations have been carried for diverse spectrum of 
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values for the system parameters as shown in the Table-7 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-7. 
 

Table-7. 

S. No. c b 0 I0 k a11

 

P
1 0   .1 0.2 10 4 2 0.01
2 0.1 0.4 10 4 2 0.01 
3 0.1 0.6 10 4 2 0.01 
4 0.1 0.8 10 4 2 0.01 
5 0.1 1.0 10 4 2 0.01 

 
.3.2 Case (8): when f < 1 and P  = k 

fective rate when 
initial po

Table-8. 

S. No. c b P0 I0 k a11

4 0
i.e., Cure rate is less than in
pulation equal to carrying capacity. Computations 

have been carried for diverse spectrum of values for the 
system parameters as shown in the Table-8 to estimate the 
strength of the infective (I). The variations of infective 
verses time is illustrated in the Figure-8. 
 

 

1 0.1 0. 10 0.2 10 4 01 
2 0.1 0.4 10 4 10 0.01 
3 0.1 0.6 10 4 10 0.01 
4 0.1 0.8 10 4 10 0.01 
5 0.1 1.0 10 4 10 0.01 

 
.3.3 Case (9): when f < 1 and P  < k 

fective rate when 
initial 

Table-9. 

S. No. c b 0 I0 k a11

4 0
i.e., Cure rate is less than in

population less than the carrying capacity. 
Computations have been carried for diverse spectrum of 
values for the system parameters as shown in the Table-9 
to estimate the strength of the infective (I). The variations 
of infective verses time is illustrated in the Figure-9. 
 

 

P
1 0  0  .1 .2 6 4 10 0.01
2 0.1 0.4 6 4 10 0.01 
3 0.1 0.6 6 4 10 0.01 
4 0.1 0.8 6 4 10 0.01 
5 0.1 1.0 6 4 10 0.01 

 

.4. Solution curves corresponding parameter values of 

 
 
 
 
 
 

4
       Table-1 to Table-9 
 

0 20 40 60 80 100
0

2

4

6

8

10

time

in
fe

ct
iv

es

 

 

c = 0.2

c = 0.4
c = 0.6
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c = 1.0

 
 

Figure-1. (c > b, P0 > k) for Table-1. 
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c = 0.2
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Figure-2. (c > b, P0 = k) for Table-2. 
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Figure-3. (c > b, P0 < k) for Table-3. 
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b = 0.2
b = 0.4

b = 0.6,0.8,1.0
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c = 0.1 = b

 
  

Figure-7. (c < b, P0 > k) for Table-7. Figure-4. (c = b, P0 > k) for Table-4. 
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b = 0.6, 0.8,1.0

b = 0.4

b = 0.2
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c = 0.1 = b

 
  

Figure-5. (c = b, P0 = k) for Table-5. Figure-8. (c < b, P0 = k) for Table-8. 
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c = 0.1=b
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Figure-6. (c = b, P0 < k) for Table-6. Figure-9. (c < b, P0 < k) for Table-9. 
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4.5 Conclusions 
 

Specific cure rate f = c / b 
 > 1 = 1 < 1 

> 1 

Cure rate is greater than 
infective rate and initial 
population is greater than 
carrying capacity: 
In this case we observed that the 
infective are decreasing for 
increasing values of cure rates. 
Here only healthy population 
would survive the infective will 
wash out. Shown in the Figure-
1. 

Cure rate and infective rate are 
equal and the initial 
population greater than 
carrying capacity: 
Here infective are gradually 
increasing for some time after 
that all Population becomes 
infected and starts falling 
down as shown in Figure-4. 

Cure rate is less then 
Infective rate and initial 
population is greater than 
carrying capacity: 
In this case we can see that the 
infective are steeply increasing 
for some time and they are 
gradually decreasing as shown 
in the Figure-7. 

= 1 

Cure rate is greater than 
infective rate and initial 
population equals to carrying 
capacity: 
In this case infective are 
increasing for some time after 
that they are constant for C = 
0.2, C = 0.4. For the C = 0.6 no 
change in the infective 
population throughout. Infective 
are falling down for bigger 
values of cure rate as shown in 
Figure-2. 

Cure rate and infective rate are 
equal and also initial 
population is equal to the 
carrying capacity: 
In this case infective has steep 
raise with in very less time, 
after that they maintain 
constant number in total 
population .shown in Figure-5. 

Cure rate is less then Infective 
rate and initial population is 
equal to carrying capacity: 
Here the infective are increasing 
with larger growth rate and after 
some time all population will be 
infected i.e., only infective can 
survive and healthy population 
washed out as shown in Figure-8 

Initial 
Population 
     / 
Carrying 
Capacity 
  (P0/k) 

< 1 

Cure rate is greater than 
infective rate and initial 
population is less than carrying 
capacity: 
In this case we observed that 
infective are gradually 
increasing to some extent for 
small cure rates and these are 
falling down when cure rate is 
increasing as shown in the 
Figure-3. 

Cure rate and infective rate are 
equal and the initial 
population less than carrying 
capacity: 
 In this case we noticed that 
the infective are gradually 
increasing and after some time 
they maintain constant number 
in the total population as 
shown in Figure-6. 

Cure rate is less then Infective 
rate and initial population is less 
than carrying capacity: 
In this case we observed that the 
infective are gradually 
increasing and all the population 
becomes infective for higher 
values of infective ate as shown 
in the Figure-9 

 
Here numerical work is extended to examine the 

variations of the infective and susceptible. Here 
Susceptible = promiscuous population - infective (P-I). 
Here we have considered values for all parameters of this 
model. Eighteen cases are arises for different values of 

parameters, in those eight interesting cases (S. No: 1, 2, 5, 
7, 10, 17, 22, 27 in the Table-10) are graphically 
illustrated in below from Figure-10 to Figure-17. Time 
interval assumed to range over (0,100). 
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Table-10. 
 

S. No. C b P0 I0 S0 k A11

1 0.2 0.1 10 7 3 2 0.01 
2 0.4 0.1 10 7 3 2 0.01 
3 0.6 0.1 10 7 3 2 0.01 
4 0.4 0.1 10 5 5 2 0.01 
5 0.6 0.1 10 5 5 2 0.01 
6 0.2 0.1 10 3 7 2 0.01 
7 0.8 0.1 10 3 7 2 0.01 
8 0.1 0.8 10 3 7 2 0.01 
9 0.2 0.1 4 1 3 10 0.01 

10 0.4 0.1 4 1 3 10 0.01 
11 0.4 0.1 6 2 4 6 0.01 
12 0.2 0.1 6 3 3 5 0.01 
13 0.4 0.1 6 3 3 6 0.01 
14 0.6 0.1 6 3 3 6 0.01 
15 0.1 0.2 6 3 3 6 0.01 
16 0.1 0.2 10 7 3 2 0.01 
17 0.4 0.1 10 3 7 2 0.01 
18 0.1 0.6 10 7 3 2 0.01 
19 0.1 0.4 10 5 5 2 0.01 
20 0.1 0.6 10 5 5 2 0.01 
21 0.1 0.2 10 3 7 2 0.01 
22 0.1 0.4 10 7 3 2 0.01 
23 0.1 1.0 10 3 7 2 0.01 
24 0.1 0.2 4 1 3 10 0.01 
25 0.1 0.4 4 1 3 10 0.01 
26 0.1 1.0 4 1 3 10 0.01 
27 1.0 0.1 4 1 3 10 0.01 
28 0.1 0.4 6 3 3 6 0.01 
29 0.1 0.6 6 3 3 6 0.01 
30 0.1 0.4 6 2 4 6 0.01 

 
5.  SOLUTION CURVES CORRESPONDING PARAMETER VALUES OF S. NO. 1, 2, 5, 7, 10, 17, 22, 27 
      IN THE TABLE-10. 
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Figure-10. (c > b, P0 > k, I0 > S0) S. No. 1 in Table-10. 
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Figure-11. (c > b, P0 > k, I0 > S0) S. No. 2 in Table-10. 
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Figure-12. (c > b, P0 > k, I0 = S0) S. No. 5 in Table-10. 
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Figure-13. (c > b, P0 > k, I0 < S0) S. No. 7 in Table-10. 
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Figure-14. (c > b, P0 < k, I0 > S0) S. No. 10 in Table-10. 
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Figure-15. (c > b, P0 > k, I0 < S0) S. No. 17 in Table-10. 
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Figure-16. (c < b, P0 > k, I0 < S0) S. No. 22 in Table-10. 
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Figure-17. (c > b, P0 < k, I0 < S0) S. No. 27 in Table-10. 
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6. CONCLUSIONS 
 

a) The cure rate is greater than the infective rate and the 
initial strength of infective are greater than that of the 
susceptible: 

 

 In this case infective dominates the susceptible 
till the time of reversal dominance t = 33.51 after that the 
susceptible dominates over the infective. i.e., only healthy 
population would survive after t = 33.51 shown in the 
Figure-10. 
(for parameter values C =  0.2, b = 0.1, P0 = 10,  I0 = 7, S0 
= 3, k = 2, a11 = 0.01). 
 

b) The cure rate is greater than infective rate and initial 
strength of infective are greater than susceptible: 

 

 Here we can see that infective dominates the 
susceptible till t = 33.51 after that susceptible dominate the 
infective and also after t = 52.5 infective declaim to zero. 
i.e., only the susceptible would survive and infective will 
be washed out as shown in the Figure-11. 
(For parameter values C = 0.4, b = 0.1, P0 = 10, I0 = 7, S0 
= 3, k = 2, a11 = 0.01) 
 

c) The cure rate is greater than the infective rate and the 
initial strength of both the infective and susceptible 
are equal: 

 

 For this case it is observed that the susceptible 
dominate over the infective throughout. i.e., in this case 
only healthy population would survive and the infective 
washed out after t = 29 as shown in the Figure-12. 
(For parameter values C = 0.6, b = 0.1, P0 = 10, I0 = 5, S0 
= 5, k = 2, a11 = 0.01) 
 

d) Cure rate is greater than infective rate and Strength of 
the susceptible is greater than infective initially: 

 

 Here we noticed that the susceptible are greater 
than infective in their strength throughout the infective are 
washed out. As shown in the Figure-13. 
(For parameter values C = 0.8, b = 0.1, P0 = 10, I0 = 3, S0 
= 7, k = 2, a11 = 0.01) 
 

e) Cure rate is greater than that of the infective rate and 
the susceptible are greater than the infective initially: 

 

 In this case we observed that susceptible 
dominates the infective till the time of reversal dominance 
t=23.5, after which invective dominate over the 
susceptible. i.e., infective and susceptible both co-exist 
throughout as shown in the Figure-14. 
(For parameter values C = 0.4, b = 0.1, P0 = 4, I0 = 1, S0 = 
3, k = 10, a11 = 0.01) 
 

f) Cure rate is greater than the infective rate and the 
initial strength of infective are less than susceptible: 

 

 Here the susceptible dominate over the infective 
up to t = 2.5 beyond that the infective dominate over the 
susceptible up to t = 7.5 after that the dominance of the 
susceptible is restored. i.e., infective dominates susceptible 
in the time interval t = 2.5 to t = 7.5 and beyond that time 
the susceptible are dominating infective. It is also 
observed that after t = 58.5, the susceptible only would 

survive and infective are washed out as shown in the 
Figure-15. 
(For parameter values C = 0.4, b = 0.1, P0 = 10, I0 = 3, S0 
= 7, k = 2, a11 = 0.01) 
 

g) Cure rate is less the infective rate and the infective are 
greater than susceptible initially: 

 

 In this case the infective dominates the 
susceptible all throughout. i.e., only infective are survived 
and susceptible are washed out. Here the infective have 
steep rise at t=1 as shown in the Figure-16. 
(For parameter values C = 0.1, b = 0.4, P0 = 10, I0 = 7, S0 
= 3, k = 2, a11 = 0.01) 
 

h) Cure rate is greater than infective rate and the initial 
Strength of the susceptible is greater than infective 
initially: 

 

 This situation is opposite to the previous case i.e., 
susceptible increase with a large growth rate with a fast 
approach to the total population so this is the case devoid 
of gonorrhea shown in the Figure-17. 
(For parameter values C = 1.0, b = 0.1, P0 = 4, I0 = 1, S0 = 
3, k = 10, a11 = 0.01)           
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