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ABSTRACT 

The paper considers the effect on the dusty gas otherwise at rest at infinity due to uniform motion of a sphere. The 
dust particles are assumed to have small relaxation time. Using the potential solution of gas flow at large Reynolds number 
R, an equation for the concentration of dust near the sphere is derived and solved numerically. It is also shown that 
particles do not collide with the sphere until the Stokes number σ  is greater than 1/12 if we assume the gas flow 
unchanged by the presence of the dust particles and also graphically represented concentration of dust about sphere along 
radius vector. 
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INTRODUCTION 

Interest in the problem of mechanics of systems with 
more than one phase has devolved rapidly in the recent years. 
Situations which occur frequently are concerned with motion of   
liquid or gas which contains a distribution of solid particles. Such 
type of situation occurs for example, in the movement of dust 
laden air, in the problem of fluidization, in the use of dust in gas 
cooling systems to enhance heat transfer processes, and in the 
process by which rain drops formed by coalescence of small 
droplets which might be considered as solid particles for purpose 
of examining their movement prior to coalescence.          

Carrier [1] Rudinger [2] Marble [3] did an 
extensive work on the models of dusty gas flows and 
shock waves in dusty gas. Later Saffman [4] formulated 
equations for small disturbance in plane parallel flow of a 
dusty gas. Following his model Michael[5] and Michael 
and Norrey [6] studied the steady motion of a dusty gas 
past a fixed surface and arrived at approximate solutions. 
Nirmala [7] studied the effect of fine and coarse dust 
particles on transport of in the trachea. Sanchita Ghosh [8] 
studied on hydro magnetic pulsatile of a dusty fluid. Here 
in this paper Saffman [4] model is employed to study 
motion of a sphere in dusty gas by Finite difference 
technique. The dust is represented by a large number 
density N of small dust particles whose volume 
concentration is small, but mass concentration is 
appreciable. It is assumed that the   individual particles of 
dust are so small that Stokes flow approximation to their 
motion relative to the gas, is appreciable. The equations of 
motion gives rise to two additional independent 
parameters due to the presence of Dust, viz. f, the mass 
concentration of the dust and τ , relaxation which is 
representative of the time scale on which velocity of the 
dust adjusts itself to changes in neighboring gas velocity. 
When 0=τ , this adjustment is instantaneous, and we 
have a limiting case in which the dust moves with gas at 
each point. The motion in this case is closely related to 
flow of a clean gas. We consider here the flow of a dusty 
gas for small non-zero values of τ  by a perturbation of 
the solution at 0=τ . Here Reynolds number is assumed 

to be large, and as a first step towards the solution, the 
problem considers in detail the perturbation of the un-
separated potential flow for a sphere. The analysis shows 
that when a nonsingular perturbation of a potential flow is 
assumed, the concentration of dust particles becomes 
logarithmically infinite to the front stagnation point of the 
sphere. It also found  that dust particles cannot reach the 
sphere except at the front stagnation point, there being a 
dust streamline emanating from the point  which 
delaminates a thin dust free layer adjacent to the sphere 
whose thickness is of  the order ‘σ a’ where σ  is Stokes 
number, aU /τ  and U, the velocity of sphere and a, its 
radius.  
 
MATHEMATICAL FORMULATION AND 
SOLUTION OF PROBLEM 

The equations governing the motion of dusty gas 
as given by Saffman [4] are: 
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Where vandu  are velocities of gas and dust particles.  
N is the number density of dust particles, each of mass m. 
K is the Stokes coefficient of resistance, p, µρ , , being 
the pressure, density and viscosity of the gas.  The time 
relaxation parameter τ  is given from (3) by 

0. →= ττ When
K
m  equation (3) shows that vu → .  

Substituting for vu −  in (1), from (3) we have 
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When 0→τ  equation (5) becomes:  
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Where the mass concentration of dust, 
ρ

mNf = and 

ρµυ /= . In this limiting case when we put vu =  in (4) 
and using (2) we obtain     
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This indicates N remains constant in the 
neighborhood of any given dust or gas particle. A simple 
case in which N is uniform and equals N0 everywhere in 
the incident flow, then we have f = f 0  a constant. Equation 
(6) then represents flow of a clean gas with uniform 
density ( )01 f+ρ  and viscosityµ . The solution for 
dusty gas flow at Reynolds number R is then equivalent to 
the solution for a clean gas at the increased Reynolds 
number R ( )01 f+ . For the motion of a sphere with 
velocity U, the gas velocity changes on the length scale of 
the radius ‘a’ of the sphere, a perturbation on the solution 
for τ = 0 can be obtained in terms of small dimensionless 
parameter aU /τσ = . For spherical dust particles of 
radius ‘d’ and density ρ d, condition ρ ≤1 becomes 
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Now consider the potential flow of liquid due to 
the motion of the sphere in the limiting case when τ = 0, 
neglecting for the present viscous boundary layer and 

separation effects. The solution = 0 in equation (6) 
and the effect of the dust is simply to scale up the pressure 
variations over the sphere by the factor

→
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Let  represent the unperturbed velocity of the dust and 
gas, where 
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θ,r  being spherical polar coordinates from the centre of 
the sphere, with 0=θ  as the downstream direction and 
U the velocity of sphere. 

In the perturbation let represent 
gas and dust velocities for a small non zero value of 
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where  represent small perturbation velocities of 
order

→→
11 , vu

τ . Also we suppose N=N0+N1; 

. Neglecting the internal 
effect of viscosity in the gas and taking only the first order 
terms we have from equation(5): 
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Similarly the linearised form of equation (3) for  
the dust flow is  
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Neglecting higher order Equation (4) becomes 
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     The above equation can be written as: 
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Using equation (7) and Laplacian in spherical 
polar coordinates, we have  
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The right hand side being always positive, and an 
even function about the plane ,2/πθ =  the left hand 

side being 
s
fu

∂
∂→ 1

0 . ; which shows that  increases 

monotonically along a streamline and the rate of increase 
is symmetric about 

1f
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Writing in terms of θandr , equation (11) becomes 
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            The equation reduces to 
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Applying explicit finite difference formula to equation 
(13), we get 
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The stagnation points for the motion of a sphere are 
given πθθ == and0 . Thus , the concentration of 
dust particles as the sphere moves at stagnation points, is 
given by: 
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Put 0=θ in equation (12) and integrating 
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In the dimensionless from the unperturbed 
streamlines are given by 
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The Lagrangian form of equation (12) and (15) using we 
get.  
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SMALL VALUES OF f  

If f0   is small, it follows from equation (10) that 
is small for the second order and to the first order 

equation (8) tells us that  and equation (9) 
gives 
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Hence remains a potential field in this case with 
potential 
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The equation for dust streamlines is given by: 

)cos(sin3
2

sin
4

sincos3cos

4

2
2

4

θθσθ

θθσθ

θ
r

r
dr

rd

+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

=          (18) 

It is interesting to observe that when dust 
particles are clean, that is when ,0=σ its streamlines 
coincide with those of fluid particles. It is intersecting to 
trace the divergence of the gas particles from the path 
given by equation (15). In order to do so, we write the 
equation of the streamline in the form. 
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Where c  is a small change in c of orderσ , representing 
the displacement of the particles at an angleθ , we then 
have 
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Eliminating 
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 from equation (18) and (20) we have 
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This shows that dust path lines coincide with gas 
path line at a far away distance from the sphere. Since at 
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θ

θ
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it follows that path line of 

dust and gas particles coincide along the direction 0=θ .  

Integrating (21) along the streamline ,sin 2

c
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have
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DUST SEPARATION STREAMLINE 

Ruling out the case in which the sphere acts as a 
steady source of dust, we must conclude that there is a 
separating streamline for the dust which starts at the first 
stagnation point. In the first approximation, the position of 
this separation line will be given by the equation.          
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Assuming f to be small and if we write 

),(θδσ aar +=  as the equation for separation line, 
we have to the first order from equation (16) and (19) and 
(21) we have  
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CRITICAL VALUE OFσ  
 Although the main discussion of this paper is 
based on small values of σ , it is worthwhile to study the 
critical value of σ at which particles begin to collide with 
the sphere. This can be done on the assumption that the 
gas velocity is unchanged by the dust and that head-on 
collisions with the sphere by the particles on the upstream 
axis will be the first to occur. 

The equation of motion for a particle on this axis 
in dimensionless form is: 
 

                                    
v
r

v

dr
dv

σ

3

1
−

=                             (25) 

 

We have to solve this equation with boundary 
condition .0 α== ratv  Let us investigate the 
behavior of solution of equation (23) at the it’s stagnation 
point  Writing r =1 + h where h is small equation 
(25), becomes: 
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This may be written in parametric form with 
parameter proportional to the time. 
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Thus v and h have the form  teλ

Where  032 =++ σλλ
When 12/1≤σ  the roots 1λ and 2λ  are real 

and –ve and the time taken for particles to come to 
stagnation point approaches infinitely like log h as h  0. 
When 

→
12/1>σ  we find  non-zero at h = 0 and the 

particles collide with the sphere in a finite time. This result 
agrees with that of Michael [7].  

,v

 
CONCLUSIONS 
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Mass concentration is found to be maximum at 
0=θ and gradually decreases with the increase of θ  

obtaining 0 at
2
πθ = . The concentration is symmetrical 

about 0=θ  and the equation for dust stream lines is 

obtained. The dust particles path lines are found to 
coincide with gas path lines at far away distance sphere.  
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