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ABSTRACT  

Due to the importance of heat exchangers in chemical and petrochical industries, heat exchangers analysis and 
heat translate calculations are preceded. The conventional and prevalent methods (such as KERN method and etc) are 
presented heat translate calculation for the analysis and selection of shell and tube heat exchanger based on the obtained 
pressure drop and fouling factor after consecutive calculation. Also there are many properties and parameters in prevalent 
methods. The current work proposed a new method based on the artificial neural network (ANN) for the analysis of Shell 
and Tube Heat Exchangers. Special parameters for heat exchangers analysis were obtained by neural network and the 
required experimental data were collected form Kern’s book, TEMA and Perry’s handbook. The work used back- 
propagation learning algorithm incorporating levenberg- marquardt training method. The accuracy and trend stability of the 
trained networks were verified according to their ability to predict unseen data. MSE error evaluation was used and the 
error limitation is 10-3-10-6. Parameters can be obtained without using charts, different tables and complicated equations. 
During this research, twenty two networks were utilized for all different properties. The results demonstrated the ANN’s 
capability to predict the analysis. 
 
Keywords: model, shell and tube heat exchanger, analysis, KERN method, artificial neural network. 
 
Nomenclature 
 

A Heat-transfer surface ft2 
B Baffle spacing in 
C,c Specific heat of fluid Btu/(lb)(oF) 
De 

Equivalent diameter for heat transfer and 
pressure drop ft 

Fc Caloric Fraction 
FT Temperature difference factor 
f Friction factor 
ID Inside diameter in 
jH Factor for heat transfer 
Kc Caloric constant 
k Thermal conductivity Btu/(hr)(ft2)(oF/ft) 
L Tube length ft 
LMTD Log mean temperature difference oF 
Nt Number of tubes 
n Number of tube passes 
PT Tube pitch in 
Ps ∆  
Pt,∆ 

Tube side and return pressure drop, 
respectively psi 

Q Heat flow Btu/hr 
R Temperature group, (T1-T2)/(t2-t1) 
Re Reynolds number for heat transfer and pressure 

drop 
S Temperature group,(t2-t1)/(T1-t1) 
 s Specific gravity 
tw Tube wall temperature oF 
φ The viscosity ratio (µ/µw)0.14 
µ Viscosity lb/(ft)(hr) 
µw Viscosity at wall temperature lb/(ft)(hr) 
 

1. INTRODUCTION 
Heat exchangers may be classified according to 

their flow arrangement. Counter current heat exchangers 
are most efficient because they allow the highest log mean 
temperature difference between the hot and cold streams. 
In a cross-flow heat exchanger, the fluids travel roughly 
perpendicular to one another through the exchanger. For 
efficiency, heat exchangers are designed to maximize the 
surface area of the wall between the two fluids, while 
minimizing resistance to fluid flow through the exchanger. 
The exchanger's performance can also be affected by the 
addition of fins or corrugations in one or both directions, 
which increase surface area and may channel fluid flow or 
induce turbulence. The driving temperature across the heat 
transfer surface varies with position, but an appropriate 
mean temperature can be defined. In most simple systems 
this is the log mean temperature difference (LMTD). 
Sometimes direct knowledge of the LMTD is not available 
and the NTU method is used. 

Fouling occurs when a fluid goes through the 
heat exchanger, and the impurities in the fluid precipitate 
onto the surface of the tubes. Precipitation of these 
impurities can be caused by: Frequent use of the heat 
exchanger, Not cleaning the heat exchanger regularly, 
Reducing the velocity of the fluids moving through the 
heat exchanger and Over-sizing of the heat exchanger. 
Effects of fouling are more abundant in the cold tubes of 
the heat exchanger than in the hot tubes. This is because 
impurities are less likely to be dissolved in a cold fluid. 
This is because, for most substances, solubility increases 
as temperature increases. A notable exception is hard 
water where the opposite is true. Fouling reduces the cross 
sectional area for heat to be transferred and causes an 
increase in the resistance to heat transfer across the heat 
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exchanger. This is because the thermal conductivity of the 
fouling layer is low. This reduces the overall heat transfer 
coefficient and efficiency of the heat exchanger. This in 
turn, can lead to an increase in pumping and maintenance 
costs. The conventional approach to fouling control 
combines the “blind” application of biocides and anti-scale 
chemicals with periodic lab testing. This often results in 
the excessive use of chemicals with the inherent side 
effects of accelerating system corrosion and increasing 
toxic waste - not to mention the incremental cost of 
unnecessary treatments. There are however solutions for 
continuous fouling monitoring In liquid environments, 
such as the Neosens FS sensor, measuring both fouling 
thickness and temperature, allowing to optimize the use of 
chemicals and control the efficiency of cleanings. 
 
2. MAINTENANCE  

Plate heat exchangers need to be dissembled and 
cleaned periodically. Tubular heat exchangers can be 
cleaned by such methods as acid cleaning, sandblasting, 
high-pressure water jet, bullet cleaning, or drill rods. In 
large-scale cooling water systems for heat exchangers, 
water treatment such as purification, addition of 
chemicals, and testing, is used to minimize fouling of the 
heat exchange equipment. Other water treatment is also 
used in steam systems for power plants, etc. to minimize 
fouling and corrosion of the heat exchange and other 
equipment. A variety of companies have started using 
water borne oscillations technology to prevent biofouling. 
Without the use of chemicals, this type of technology has 
helped in providing a low-pressure drop in heat 
exchangers [1, 2]. 
 
 

3. THE ALGORITHM CALCULATION OF A  
    SHELL AND TUBE EXCHANGER  

Process conditions required: 
 

Hot fluid: T1, T2, W, C, s, µ, k, Rd, ∆P 
 

Cold fluid: t1, t2, w, c, s, µ, k, Rd, ∆P 
 

For the exchanger the following data must be 
known: 
Shell side: ID, Baffle space, passes 

Tube side: Number and length, OD, BWG, and 
pitch, Passes 
 

(1) From T1, T2, t1, t2 check the heat balance, Q, using c 
at Tmean and tmean. 
 

Q=WC (T1-T2) = wc (t2-t1)                                               (1)     
 

T,t(F)، W, w (lb/hr)، C, c (Btu/lb. F)  ،) Btu/hr(Q  
 

(2) Ture temperature difference ∆t: 
(Assuming conuter flow)  
 

LMED= [(T1-t2)-(T2-t1)]/ [ln (T1-t2)/ (T2-t1)]                   (2) 
 

R=(T1-T2)/(t2-t1), S=(t2-t1)/(T1-t1)  => FT∆ 
 

t=LMTD×FT                                                                     (3) 
 

(3) Caloric temperature Tc , tc : 

Tc=T2+Fc(T1-T2)                                                               (4) 
 

tc=t1+Fc(t2-t1)                                                                    (5) 
 

The coleric fraction Fc can be obtained from 
experimental results [3 by computing Kc from Uh and Uc 
and ∆tc/∆th for the process conditions. If neither of the 
liquids is very viscous at the cold terminal, say not more 
than 1.0 centipoies, if the temperature ranges do not 
exceed 50 to 100oF, and if the temperature difference is 
less than 50oF, the arithmetic means of T1and T2 and t1nad 
t2 may be used in place of Tc and tc for evaluating the 
physical properties. 
 

Cold fluid: tube side 
(4) Flow area, at. 
 

Flow area per tube at´ (in2) [3]. 
 

Nt. at´/144n, (ft2) =at                                                         (6) 
 

(5) Mass vel,Gt. 
 

GT=w/at, (Lb/hr.ft2)                                                          (7) 
 

(6) Obtain D from Table (10), ft. Obtain µ at 
tc,lb/(ft)(hr)=cp×2.24 
Res=De. Gt/µ                                                                     (8) 
 

(7) Obtain jH [3] 
(8) At tc obtain c,Btu/(lb)(oF) and k, Btu/(hr)(ft2)(oF/ft). 
Compute (cµ/k) 1/3 
 

(9) hi = jH.(k/D).(cµ/k)1/3.Φt                                              (9) 
 

(10) hio/Φt=hi/ Φt×ID/OD                                             (10) 
 

(11) Obtain tw from (10´). 
 Obtain µw and Φt= (µ/µw) 0.14. 
 

(12) Corrected coefficient, hio= (hio/Φt) ×Φt, (Btu/hr.ft2.F) 
Hot fluid: shell side 
 

(4´) flow area as. 
 

as=ID.C.B/144.PT, (ft2)                                             (11) 
 

(5´) Mass vel, Gs. 
 

(Lb/hr.ft2) Gs=w/as, 
 

(6´) compute De=4×free area/wetted perimeter, (ft)      (12) 
 

de = 4×(PT-πdo
2/4)/πdo, (in)                                  (13) 

 

Obtain µ at Tc, lb/ (ft) (hr) =cp×2.24 
Res=De. Gs/µ 
 

(7´) Obtain jH [3] 
 

(8´) At Tc obtain C, Btu/ (lb) (oF) and k, Btu/ (hr) (ft2) 
(oF/ft). (8´) 
Compute (cµ/k) 1/3 
 

(9´) ho=jH. (k/De).(c.µ/k)1/3.Φs   
 

(10´) Tube wall tem, tw. 
 

tw = tc+[(ho/Φs)/((hio/Φt)+(ho/Φs))]×(Tc-tc)                      (14) 
 

(11´) Obtain µw and Φs= (µ/µw) 0.14. 
 

(12´) Corrected coefficient, ho= (hio/Φs) ×Φs 
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(13) Clean overall coefficient Uc: 
 

Uc= (hio. ho)/ (hio+ho)                                             (15) 
 

(14) Design overall coefficient UD: obtain external 
surface/lin ft a˝ from Table-10. Heat transfer surface, A= 
a˝LNt, (ft2) 
 

UD=Q/A˝∆t, (Btu/hr.ft2.F)                                              (16) 
 

(15) Dirt factor Rd: 
 

Rd= (Uc-UD)/Uc. UD, (hr.ft2.F/Btu)                               (17) 
 

If Rd equals or exceeds the required dirt factor, 
proceed under the pressure drop. 
 
Pressure drop 
 

(1) For Ret in (6) obtain f, ft2/in2. 
 

(2) ∆Pt= (f.Gt
2.Ln)/ (5.22×1010.D.s.Φt), (psi)                 (18) 

 

(3) ∆Pr = (4.n/s) × (V2/2g), (psi)                                    (19) 
 

PT=∆Pt+∆Pr, (psi)  ∆  
 

(1´) For Res in (6´) obtain f, ft2/in2. 
 

(2´) No. of crosses, N+1=12L/B                                    (20) 
 

(3´) ∆Ps= (f.Gs
2.Ds. (N+1))/ (5.22×1010.De.s.Φs) [3], (psi)  

 
4. ARTIFICIAL NEURAL NETWORKS 

In order to find relationship between the input 
and output data derived from experimental work, a more 
powerful method than the traditional ones are necessary. 
ANN is an especially efficient algorithm to approximate 
any function with finite number of discontinuities by 
learning the relationships between input and output 
vectors. These algorithms can learn from the experiments, 
and also are fault tolerant in the sense that they are able to 
handle noisy and incomplete data. The ANNs are able to 
deal with non-linear problems, and once trained can 
perform estimation and generalization rapidly. 

They have been used to solve complex problems 
that are difficult to be solved if not impossible by the 
conventional approaches, such as control, optimization, 
pattern recognition, classification, and so on, specially it is 
desired to have the minimum difference between the 
predicted and observed (actual) outputs. Artificial neural 
networks are biological inspirations based on the various 
brain functionality characteristics. They are composed of 
many simple elements called neurons that are 
interconnected by links and act like axons to determine an 
empirical relationship between the inputs and outputs of a 
given system. Multiple layers arrangement of a typical 
interconnected neural network is shown in Figure-1. It 
consists of an input layer, an output layer, and one hidden 
layer with different roles. Each connecting line has an 
associated weight. Artificial neural networks are trained 
by adjusting these input weights (connection weights), so 
that the calculated outputs may be approximated by the 
desired values. The output from a given neuron is 
calculated by applying a transfer function to a weighted 

summation of its input to give an output, which can serve 
as input to other neurons, as follows. 
 

( ) ⎟⎟
⎠
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⎝
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−
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kN

i
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Where αjk is neuron j’s output fromk’s layer βjk is the bias 
weight for neuron jin layer k. The model fitting parameters 
wijk are the connection weights. The nonlinear activation 
transfer functions Fk may have many different forms. The 
classical ones are threshold, sigmoid, Gaussian and linear 
function, etc… [4], for more details of various activation 
functions see Bulsari. 
 

 
 

Figure-1. Schematic of typical multi-layer neural 
network model. 

 
The training process requires a proper set of data 

i.e., input (Ii) and target output (ti). During training the 
weights and biases of the network are iteratively adjusted 
to minimize the network performance function. The 
typical performance function that is used for training feed 
forward neural networks is the network Mean Squares 
Errors (MSE) Eq. (22). 
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There are many different types of neural 
networks, differing by their network topology and/or 
learning algorithm. In this paper the back propagation 
learning algorithm, which is one of the most commonly 
used algorithms is designed to predict the PVT properties. 
Back propagation is a multilayer feed-forward network 
with hidden layers between the input and output. The 
simplest implementation of back propagation learning is 
the network weights and biases updates in the direction of 
the negative gradient that the performance function 
decreases most rapidly. An iteration of this algorithm can 
be written as follows. 
 

kkkk glxx −=+1                                                            (23) 
 

There are various back propagation algorithms 
such as Scaled Conjugate Gradient (SCG), Levenberg-
Marquardt (LM) and Resilient back Propagation (RP). LM 
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is the fastest training algorithm for networks of moderate 
size and it has the memory reduction feature to be used 
when the training set is large. One of the most important 
general purpose back propagation training algorithms is 
SCG. 

The neural nets learn to recognize the patterns of 
the data sets during the training process. Neural nets teach 
themselves the patterns of the data set letting the analyst to 
perform more interesting flexible work in a changing 
environment. Although neural network may take some 
time to learn a sudden drastic change, but it is excellent to 
adapt constantly changing information. However the 
programmed systems are constrained by the designed 
situation and they are not valid otherwise. Neural networks 
build informative models whereas the more conventional 
models fail to do so. Because of handling very complex 
interactions, the neural networks can easily model data, 
which are too difficult to model traditionally (inferential 
statistics or programming logic). Performance of neural 
networks is at least as good as classical statistical 
modeling, and even better in most cases. The neural 
networks built models are more reflective of the data 
structure and are significantly faster. 

Neural networks now operate well with modest 
computer hardware. Although neural networks are 
computationally intensive, the routines have been 
optimized to the point that they can now run in reasonable 
time on personal computers. They do not require 

supercomputers as they did in the early days of neural 
network research [5, 6]. 
 
5. NEURAL NETWORK MODEL DEVELOPMENT 

Due to shell and tube heat exchanger analysis 
method, all physical and chemical properties and 
parameters have been trained by artificial neural network. 
That all of the physical and chemical properties and 
parameters of 30 non- petroleum and 6 petroleum samples. 
Experimental data is collected Kern’s book [3] and TEMA 
[7] and Perry’s handbooks [2]. 70 percent of experimental 
data randomly is selected for training and the remaining 30 
percent used for testing by matlab2009. 22 networks are 
obtained containing different properties such as viscosity, 
specific gravity, specific heat and special parameters of 
heat exchangers. Error back- propagation method and 
levenberg-marquardt training algorithm at the feed 
forward network were used in this networks. Hidden layer 
function is tangent-sigmoid and output layer function is 
linear. In all of these networks mean square errors (MSE) 
and regression factor has been used as criteria for models. 
Most of networks have one hidden layer function and only 
in LMTD correct factor (FT) networks have two hidden 
layers. Hidden layer numbers, type of hidden layer, type of 
out put layer function and number of neurons of hidden 
layer specified by trial and error and experience. Error 
limitation is 10-3-10-6 and the result is corresponding with 
experimental numbers. The data of these networks are 
presented in Table-1.   

 
Table-1. The data of networks. 

 

Parameter No. of 
data 

No. of 
hidden layer 

No. of 
neurons 

MSE 
(training) 

MSE 
(test) 

Regration 
(training) 

Regration 
(test) 

Cp (non oil 
component) 348 1 15 0.00037 0.0013 0.99 0.97 

f (tube) 25 1 7 1.01*10-9 8*10-8 1 0.99 

f (shell) 35 1 11 4.7*10-9 3.7*10-6 1 0.97 

Фt [(µ/µw).14] 25 1 4 0.00016 0.0004 1 1 

k(oil component) 91 1 7 7.11*10-9 1.8*10-6 1 0.99 

Kc 62 1 5 0.00035 0.0002 1 1 

s (oil component) 218 1 11 0.00002 0.0002 1 1 
Viscosity 
(oil component) 91 1 9 0.0044 0.02 0.99 1 

Cp (oil component) 435 1 7 4*10-5 2*10-5 1 1 

V2/2g 17 1 4 3.9*10-9 0.0008 1 1 
µ (non oil 
component 576 1 16 0.0018 0.0015 1 1 

Fc 112 1 4 .00003 .00003 1 0.99 

jH (tube) 159 1 7 0.5 1 1 1 

jH (shell) 37 1 7 2.16 1.77 1 1 
k(non oil 
component) 213 1 15 .00005 .0004 0.99 0.96 

FT (1-2  heat 
exchanger) 469 1 11 .00043 .00054 0.99 0.99 
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FT (2-4 heat 
exchanger) 480 2 7,9 .0008 .0005 1 0.97 

FT (3-6 heat 
exchanger) 493 2 9,9 .00036 .00063 0.98 0.98 

FT (4-8 heat 
exchanger) 473 2 7,7 .00006 .0032 0.99 0.9 

FT (5-10 heat 
exchanger) 257 2 7,5 .00029 .00012 1 1 

FT (6-12 heat 
exchanger) 290 2 7,5 .00014 .00021 0.99 0.99 

FT (1-3 heat 
exchanger) 245 1 9 .00008 .00009 1 1 

 
6. RESULTS  

The optimum performance of networks is 
empirically obtained by changing the number of neurons 
in the hidden layer using the trial-and-error method. The 
minimal number of neurons is sufficient for prediction 
performance without leading to over-fitting or an 
unreasonably long computational time. If too few neurons 
exist in the hidden layer, the performance of the network 
will not be satisfactory. Conversely, if too many neurons 
exist in the hidden layer, the convergence will be very 
slow and may be compromised by local minima or over-
fitting. The LM training algorithm was found to have a 
superior performance among all the best networks. There 

foe, the LM method containing 14 hidden neurons with 
minimum error is selected as the optimum structure. The 
trained ANN models were also tested and evaluated 
against the new data. Figures 2-45 shows the scatter 
diagrams that compare the experimental data versus the 
computed neural network data in both training and testing 
networks in many aspects. As evident in the Figures, a 
tight cluster of points around the 45o line occurs for the 
data points, indicating excellent agreement between the 
experimental and calculated data. Almost all data fall 
along this line, which confirms the accuracy of the ANN 
model. 

 
Friction coefficient (tube) 
 

  
Figure-2. A Comparison between ANN and experimental data 

for training the network. 
Figure-3. A Comparison between ANN and experimental 

data for testing the network. 
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Friction coefficient (shell) 
 

  
Figure-4. A Comparison between ANN and experimental 

data for training the network. 
Figure-5. A Comparison between ANN and experimental data 

for testing the network. 
 
 
jH (tube) 
 

 
 

Figure-6. A Comparison between ANN and experimental 
data for training the network. 

 
 
 
 
 

 
 

 
 

Figure-7. A Comparison between ANN and experimental 
data for testing the network. 
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jH (shell) 
 

 
 

Figure-8. A Comparison between ANN and experimental 
data for training the network. 

 

 
 

Figure-9. A Comparison between ANN and experimental 
data for testing the network. 

 
 
 
 
 
 
 
 
 
 
 
 

k (petroleum) 
 

 
 

Figure-10. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-11. A Comparison between ANN and 
experimental data for testing the network. 
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k (non-petroleum) 
 

 
 

Figure-12. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-13. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 
 
 

s (petroleum) 
 

 
 

Figure-14. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-15. A Comparison between ANN and 
experimental data for testing the network. 
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FT (1-2 Heat exchanger) 
 

 
 

Figure-16. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-17. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 
 

FT (2-4 Heat exchanger) 
 

 
 

Figure-18. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-19. A Comparison between ANN and 
experimental data for testing the network. 
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FT (3-6 Heat exchanger) 
 

 
 

Figure-20. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-21. A Comparison between ANN and 
experimental data for testing the network 

 
 
 
 
 
 
 
 
 
 
 
 

FT (4-8 Heat exchanger) 
 

 
 

Figure-22. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-23. A Comparison between ANN and 
experimental data for testing the network. 
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FT (5-10 Heat exchanger) 
 

 
 

Figure-24. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-25. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 
 
 

FT (6-12 Heat exchanger) 
 

 
 

Figure-26. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-27. A Comparison between ANN and 
experimental data for testing the network. 
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FT (1-3 Heat exchanger) 
 

 
 

Figure-28. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-29. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 

Cp (petroleum) 
 

 
 

Figure-30. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-31. A Comparison between ANN and 
experimental data for testing the network. 
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Cp (non-petroleum) 
 

 
 

Figure-32. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-33. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 
 

Viscosity (petroleum) 
 

 
 

Figure-34. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-35. A Comparison between ANN and 
experimental data for testing the network. 
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Viscosity (non-petroleum) 
 

 
 

Figure-36. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-37. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 

V2/2g 
 

 
 

Figure-38. A Comparison between ANN and 
experimental data for training the network. 

 
 

 
 

Figure-39. A Comparison between ANN and 
experimental data for testing the network. 
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FC 
 

 
 

Figure-40. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-41. A Comparison between ANN and 
experimental data for testing the network. 

 
 
 
 
 
 
 
 
 
 

Фt 
 

 
 

Figure-42. A Comparison between ANN and 
experimental data for training the network. 

 

 
 

Figure-43. A Comparison between ANN and 
experimental data for testing the network. 
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Figure-44. A Comparison between ANN and 
experimental data for training the network. 

 
 

 
 

Figure-45. A Comparison between ANN and 
experimental data for testing the network. 

 

7. CONCLUSIONS 
This work investigated the ability of ANN in 

modeling and analysis the Shell and Tube Heat 
Exchangers. The MLP neural network architectures were 
used for the purpose. Results showed good agreement with 
experimental data. An important feature of the model is 
that it requires no theoretical knowledge or human 
experiences during the training process. The model was 
trained based on the experimental data. All unknown 
relationships were represented approximately using neural 
networks instead of traditional relationships.  
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