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ABSTRACT

Due to the importance of heat exchangers in chemical and petrochical industries, heat exchangers analysis and
heat translate calculations are preceded. The conventional and prevalent methods (such as KERN method and etc) are
presented heat translate calculation for the analysis and selection of shell and tube heat exchanger based on the obtained
pressure drop and fouling factor after consecutive calculation. Also there are many properties and parameters in prevalent
methods. The current work proposed a new method based on the artificial neural network (ANN) for the analysis of Shell
and Tube Heat Exchangers. Special parameters for heat exchangers analysis were obtained by neural network and the
required experimental data were collected form Kern’s book, TEMA and Perry’s handbook. The work used back-
propagation learning algorithm incorporating levenberg- marquardt training method. The accuracy and trend stability of the
trained networks were verified according to their ability to predict unseen data. MSE error evaluation was used and the
error limitation is 10°-10. Parameters can be obtained without using charts, different tables and complicated equations.
During this research, twenty two networks were utilized for all different properties. The results demonstrated the ANN’s

capability to predict the analysis.

Keywords: model, shell and tube heat exchanger, analysis, KERN method, artificial neural network.

Nomenclature 1. INTRODUCTION

5 Heat exchangers may be classified according to
A Heat-transfer surface ft their flow arrangement. Counter current heat exchangers
B Baffle spacing in are most efficient because they allow the highest log mean

Cc Specific heat of fluid Btu/(Ib)(°F)
Equivalent diameter for heat transfer and

temperature difference between the hot and cold streams.
In a cross-flow heat exchanger, the fluids travel roughly

De pressure drop ft perpendicular to one another through the exchanger. For
F. Caloric Fraction efficiency, heat exchangers are designed to maximize the
Fr Temperature difference factor surface area of the wall between the two fluids, while
£ Friction factor minimizing resistance to fluid flow through the exchanger.
D Inside diameter in The' §xchanger's performanf:e can also be affecte.d by the
. addition of fins or corrugations in one or both directions,
Ju Factor for heat transfer S .
. which increase surface area and may channel fluid flow or
K. Caloric constant o o induce turbulence. The driving temperature across the heat
k Thermal conductivity Btu/(hr)(ft")("F/ft) transfer surface varies with position, but an appropriate
L Tube length ft mean temperature can be defined. In most simple systems
LMTD Log mean temperature difference °F this is the log mean temperature difference (LMTD).
N, Number of tubes Sometimes direct knowledge of the LMTD is not available
n Number of tube passes and the NTU method is used.
P Tube pitch in Fouling occurs when a fluid goes through the
T . heat exchanger, and the impurities in the fluid precipitate
PsA Tube side and return pressure drop, o
. . onto the surface of the tubes. Precipitation of these
P,A respectively psi . ..
impurities can be caused by: Frequent use of the heat
Q Heat flow Btu/hr .
exchanger, Not cleaning the heat exchanger regularly,
R Temperature group, (T,-T>)/(t>-)) Reducing the velocity of the fluids moving through the
Re Reynolds number for heat transfer and pressure heat exchanger and Over-sizing of the heat exchanger.
drop Effects of fouling are more abundant in the cold tubes of
S Temperature group,(t,-t;)/(Ti-t;) the heat exchanger than in the hot tubes. This is because
Specific gravity impurities are less likely to be dissolved in a cold fluid.
tw Tube wall temperature °F This is because, for most substances, solubility increases
0 The viscosity ratio (p/p,)""* as temperature increases. A notable exception is hard
M Viscosity Ib/(ft)(hr) water w?ere thefop;;losite is Lrue. Foufling éeduges the cross
e Viscosity at wall temperature Ib/(ft)(hr) sectional area for heat to be transferred and causes an

increase in the resistance to heat transfer across the heat
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exchanger. This is because the thermal conductivity of the
fouling layer is low. This reduces the overall heat transfer
coefficient and efficiency of the heat exchanger. This in
turn, can lead to an increase in pumping and maintenance
costs. The conventional approach to fouling control
combines the “blind” application of biocides and anti-scale
chemicals with periodic lab testing. This often results in
the excessive use of chemicals with the inherent side
effects of accelerating system corrosion and increasing
toxic waste - not to mention the incremental cost of
unnecessary treatments. There are however solutions for
continuous fouling monitoring In liquid environments,
such as the Neosens FS sensor, measuring both fouling
thickness and temperature, allowing to optimize the use of
chemicals and control the efficiency of cleanings.

2. MAINTENANCE

Plate heat exchangers need to be dissembled and
cleaned periodically. Tubular heat exchangers can be
cleaned by such methods as acid cleaning, sandblasting,
high-pressure water jet, bullet cleaning, or drill rods. In
large-scale cooling water systems for heat exchangers,
water treatment such as purification, addition of
chemicals, and testing, is used to minimize fouling of the
heat exchange equipment. Other water treatment is also
used in steam systems for power plants, etc. to minimize
fouling and corrosion of the heat exchange and other
equipment. A variety of companies have started using
water borne oscillations technology to prevent biofouling.
Without the use of chemicals, this type of technology has
helped in providing a low-pressure drop in heat
exchangers [1, 2].

3. THE ALGORITHM CALCULATION OF A
SHELL AND TUBE EXCHANGER
Process conditions required:

Hot fluid: T}, T,, W, C, s, 1, k, Ry, AP
Cold fluid: t;, tp, w, ¢, s, W, k, Ry, AP

For the exchanger the following data must be
known:
Shell side: ID, Baffle space, passes

Tube side: Number and length, OD, BWG, and
pitch, Passes

(1) From Ty, T2, t1, t2 check the heat balance, Q, using ¢
at Tiean and tiean-

Q=WC (T;-T) = wc (t,-t;) (D
TA(F): W, w (Ib/hr): C, ¢ (Btu/lb. F)) Btu/hr(Q

(2) Ture temperature difference At:
(Assuming conuter flow)

LMED= [(T-tp)-(T>-t))/ [In (T1-t2)/ (Ta-t1)] 2
R=(T-Ty)/(tz-t1), S=(t2-t)/(T1-t;) => FrA
{=LMTDxFy 3)

(3) Caloric temperature T , t. :

T =T +F(T;-T>) )
t=t;+F(t2-t1) )

The coleric fraction F. can be obtained from
experimental results [3 by computing K. from Uy and U,
and At/At, for the process conditions. If neither of the
liquids is very viscous at the cold terminal, say not more
than 1.0 centipoies, if the temperature ranges do not
exceed 50 to 100°F, and if the temperature difference is
less than 50°F, the arithmetic means of T;and T, and t;nad
t, may be used in place of T, and t. for evaluating the
physical properties.

Cold fluid: tube side
(4) Flow area, a,.

Flow area per tube a,’ (in®) [3].

N.. a,/144n, (ft®) =a, (6)
(5) Mass vel,G..
Gr=w/a,, (Lb/hr.ft?) (7

(6) Obtain D from Table (10), ft. Obtain p at
te,1b/(ft)(hr)=cpx2.24
Re=D.. G/p ®)

(7) Obtain ji [3]
(8) At t, obtain ¢,Btu/(Ib)(°F) and k, Btu/(hr)(ft*)(°F/ft).
Compute (cp/k)

(9) hi= jir.(k/D).(cp/k) ., )
(10) hio/®=hy/ ®XID/OD (10)

(11) Obtain t,, from (10").
Obtain p, and O= (u/py) "

(12) Corrected coefficient, hi,= (h;o/®;) xD,, (Btu/hr.ftz.F)
Hot fluid: shell side

(4") flow area a;

a,=ID.C.B/144.Pr, (ft)) (11
(57) Mass vel, Gq.

(Lb/hr.f?) G=w/a,

(6") compute D.=4xfree area/wetted perimeter, (ft)  (12)
d.= 4x(P-nd,*/4)/nd,, (in) (13)

Obtain p at T, 1b/ (ft) (hr) =cpx2.24
Re&=D.. G/p

(7") Obtain jy [3]

(8") At T, obtain C, Btw/ (Ib) (°F) and k, Btw/ (hr) (ft%)
(°F/ft). (8")
Compute (cp/k)

(9") ho=jn. (/De).(c.p/k)'". D,

(107) Tube wall tem, t,,.

ty = tet[(ho/@)/((hio/ @) +(ho/ D)) ]*(Te-te) (14)
(117) Obtain p, and = (W/py) .

(127) Corrected coefficient, h,= (h;o/®s) XDy

1/3
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(13) Clean overall coefficient U,:
Uc: (hio~ ho)/ (hi0+ho) (15)

(14) Design overall coefficient Up: obtain external
surface/lin ft a” from Table-10. Heat transfer surface, A=
a’LN,, (f))

Up=Q/A"At, (Btu/hr.ft*.F) (16)
(15) Dirt factor Ry:
R¢= (U-Up)/U.. Up, (hr.ft>.F/Btu) (17)

If Ry equals or exceeds the required dirt factor,
proceed under the pressure drop.

Pressure drop

(1) For Re, in (6) obtain f, ft*/in’.

(2) AP= (£.G2.Ln)/ (5.22x10".D.s.®)), (psi) (18)
(3) AP, = (4.n/s) x (V*/2g), (psi) (19)
Pr=AP+AP,, (psi)A

(1") For Re in (6") obtain f, ft*/in’.

(27) No. of crosses, N+1=12L/B (20)
(3") AP&= (£.G2.D,. (N+1))/ (5.22x10'°.D,.5.®;) [3], (psi)

4. ARTIFICIAL NEURAL NETWORKS

In order to find relationship between the input
and output data derived from experimental work, a more
powerful method than the traditional ones are necessary.
ANN is an especially efficient algorithm to approximate
any function with finite number of discontinuities by
learning the relationships between input and output
vectors. These algorithms can learn from the experiments,
and also are fault tolerant in the sense that they are able to
handle noisy and incomplete data. The ANNs are able to
deal with non-linear problems, and once trained can
perform estimation and generalization rapidly.

They have been used to solve complex problems
that are difficult to be solved if not impossible by the
conventional approaches, such as control, optimization,
pattern recognition, classification, and so on, specially it is
desired to have the minimum difference between the
predicted and observed (actual) outputs. Artificial neural
networks are biological inspirations based on the various
brain functionality characteristics. They are composed of
many simple elements called neurons that are
interconnected by links and act like axons to determine an
empirical relationship between the inputs and outputs of a
given system. Multiple layers arrangement of a typical
interconnected neural network is shown in Figure-1. It
consists of an input layer, an output layer, and one hidden
layer with different roles. Each connecting line has an
associated weight. Artificial neural networks are trained
by adjusting these input weights (connection weights), so
that the calculated outputs may be approximated by the
desired values. The output from a given neuron is
calculated by applying a transfer function to a weighted

summation of its input to give an output, which can serve
as input to other neurons, as follows.

Ny
ay =F (z zwijkai(k—l) +ﬂij 2n
i1

Where aj is neuron j’s output fromk’s layer By is the bias
weight for neuron jin layer k. The model fitting parameters
wij are the connection weights. The nonlinear activation
transfer functions Fy, may have many different forms. The
classical ones are threshold, sigmoid, Gaussian and linear
function, etc... [4], for more details of various activation
functions see Bulsari.

Hidden Layer

Input Layer

Output Layer

Figure-1. Schematic of typical multi-layer neural
network model.

The training process requires a proper set of data
i.e., input (I;) and target output (t;). During training the
weights and biases of the network are iteratively adjusted
to minimize the network performance function. The
typical performance function that is used for training feed
forward neural networks is the network Mean Squares
Errors (MSE) Eq. (22).

2 N

MSE=|ili(ei) =ﬁ2(ti—ai)2 22)

1=1 1=1

There are many different types of neural
networks, differing by their network topology and/or
learning algorithm. In this paper the back propagation
learning algorithm, which is one of the most commonly
used algorithms is designed to predict the PVT properties.
Back propagation is a multilayer feed-forward network
with hidden layers between the input and output. The
simplest implementation of back propagation learning is
the network weights and biases updates in the direction of
the negative gradient that the performance function
decreases most rapidly. An iteration of this algorithm can
be written as follows.

X =X — 1 gy (23)

There are various back propagation algorithms
such as Scaled Conjugate Gradient (SCG), Levenberg-
Marquardt (LM) and Resilient back Propagation (RP). LM

80



VOL. 6, NO. 9, SEPTEMBER 2011

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved.

i@

www.arpnjournals.com

is the fastest training algorithm for networks of moderate
size and it has the memory reduction feature to be used
when the training set is large. One of the most important
general purpose back propagation training algorithms is
SCG.

The neural nets learn to recognize the patterns of
the data sets during the training process. Neural nets teach
themselves the patterns of the data set letting the analyst to
perform more interesting flexible work in a changing
environment. Although neural network may take some
time to learn a sudden drastic change, but it is excellent to
adapt constantly changing information. However the
programmed systems are constrained by the designed
situation and they are not valid otherwise. Neural networks
build informative models whereas the more conventional
models fail to do so. Because of handling very complex
interactions, the neural networks can easily model data,
which are too difficult to model traditionally (inferential
statistics or programming logic). Performance of neural
networks is at least as good as classical statistical
modeling, and even better in most cases. The neural
networks built models are more reflective of the data
structure and are significantly faster.

Neural networks now operate well with modest
computer hardware. Although neural networks are
computationally intensive, the routines have been
optimized to the point that they can now run in reasonable
time on personal computers. They do not require

supercomputers as they did in the early days of neural
network research [5, 6].

5. NEURAL NETWORK MODEL DEVELOPMENT

Due to shell and tube heat exchanger analysis
method, all physical and chemical properties and
parameters have been trained by artificial neural network.
That all of the physical and chemical properties and
parameters of 30 non- petroleum and 6 petroleum samples.
Experimental data is collected Kern’s book [3] and TEMA
[7] and Perry’s handbooks [2]. 70 percent of experimental
data randomly is selected for training and the remaining 30
percent used for testing by matlab2009. 22 networks are
obtained containing different properties such as viscosity,
specific gravity, specific heat and special parameters of
heat exchangers. Error back- propagation method and
levenberg-marquardt training algorithm at the feed
forward network were used in this networks. Hidden layer
function is tangent-sigmoid and output layer function is
linear. In all of these networks mean square errors (MSE)
and regression factor has been used as criteria for models.
Most of networks have one hidden layer function and only
in LMTD correct factor (Fr) networks have two hidden
layers. Hidden layer numbers, type of hidden layer, type of
out put layer function and number of neurons of hidden
layer specified by trial and error and experience. Error
limitation is 10-10 and the result is corresponding with
experimental numbers. The data of these networks are
presented in Table-1.

Table-1. The data of networks.

Parameter No. of No. of No. of MSE MSE Regration Regration
data hidden layer neurons (training) (test) (training) (test)
Cp (nonoil 348 1 15 0.00037 0.0013 0.99 0.97
component)
f (tube) 25 1 7 1.01%107 8*10°% 1 0.99
f (shell) 35 1 11 4.7%107 3.7%10° 1 0.97
@, [(W/py)™] 25 1 4 0.00016 0.0004 1 1
k(oil component) 91 1 7 7.11%¥107 1.8%10° 1 0.99
K. 62 1 5 0.00035 0.0002 1 1
s (oil component) 218 1 11 0.00002 0.0002 1 1
Viscosity 91 1 9 0.0044 0.02 0.99 1
(oil component)
Cp (oil component) 435 1 7 4%107 2%107 1 1
V2g 17 1 4 3.9%10° 0.0008 1 1
i (non ol 576 1 16 0.0018 0.0015 1 1
component
F, 112 1 4 .00003 .00003 1 0.99
ju (tube) 159 1 7 0.5 1 1 1
jut (shell) 37 1 7 2.16 1.77 1 1
k(non oil 213 1 15 .00005 .0004 0.99 0.96
component)
Fr (1-2 heat 469 1 11 .00043 .00054 0.99 0.99
exchanger)
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Fr (2-4 heat 480 2 7.9 .0008 .0005 1 0.97
exchanger)

Fr (3-6 heat 493 2 9,9 .00036 .00063 0.98 0.98
exchanger)

Fr (4-8 heat 473 2 7,7 .00006 .0032 0.99 0.9
exchanger)

Fr (5-10 heat 257 2 7,5 00029 00012 1 1
exchanger)

Fr (6-12 heat 290 2 7,5 00014 00021 0.99 0.99
exchanger)

Fr (1-3 heat 245 1 9 100008 100009 1 1
exchanger)

6. RESULTS foe, the LM method containing 14 hidden neurons with

The optimum performance of networks is
empirically obtained by changing the number of neurons
in the hidden layer using the trial-and-error method. The
minimal number of neurons is sufficient for prediction
performance without leading to over-fitting or an
unreasonably long computational time. If too few neurons
exist in the hidden layer, the performance of the network
will not be satisfactory. Conversely, if too many neurons
exist in the hidden layer, the convergence will be very
slow and may be compromised by local minima or over-
fitting. The LM training algorithm was found to have a
superior performance among all the best networks. There

Friction coefficient (tube)

minimum error is selected as the optimum structure. The
trained ANN models were also tested and evaluated
against the new data. Figures 2-45 shows the scatter
diagrams that compare the experimental data versus the
computed neural network data in both training and testing
networks in many aspects. As evident in the Figures, a
tight cluster of points around the 45° line occurs for the
data points, indicating excellent agreement between the
experimental and calculated data. Almost all data fall
along this line, which confirms the accuracy of the ANN
model.
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Figure-2. A Comparison between ANN and experimental data
for training the network.

Figure-3. A Comparison between ANN and experimental
data for testing the network.
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Figure-5. A Comparison between ANN and experimental data
for testing the network.
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Figure-7. A Comparison between ANN and experimental
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Figure-13. A Comparison between ANN and
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Figure-15. A Comparison between ANN and
experimental data for testing the network.
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Figure-17. A Comparison between ANN and
experimental data for testing the network.

Figure-19. A Comparison between ANN and
experimental data for testing the network.
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Figure-20. A Comparison between ANN and
experimental data for training the network.

Figure-22. A Comparison between ANN and
experimental data for training the network.
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Figure-21. A Comparison between ANN and
experimental data for testing the network

Figure-23. A Comparison between ANN and
experimental data for testing the network.
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Figure-24. A Comparison between ANN and
experimental data for training the network.
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Figure-25. A Comparison between ANN and
experimental data for testing the network.
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Figure-26. A Comparison between ANN and
experimental data for training the network.
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Figure-27. A Comparison between ANN and
experimental data for testing the network.
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Figure-28. A Comparison between ANN and
experimental data for training the network.
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Figure-29. A Comparison between ANN and
experimental data for testing the network.
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Figure-30. A Comparison between ANN and
experimental data for training the network.
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Figure-31. A Comparison between ANN and

experimental data for testing the network.
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Figure-33. A Comparison between ANN and

experimental data for testing the network.

Figure-35. A Comparison between ANN and
experimental data for testing the network.
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Figure-36. A Comparison between ANN and
experimental data for training the network.
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Figure-37. A Comparison between ANN and
experimental data for testing the network.
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Figure-38. A Comparison between ANN and
experimental data for training the network.
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Figure-39. A Comparison between ANN and
experimental data for testing the network.
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Figure-40. A Comparison between ANN and
experimental data for training the network.
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Figure-41. A Comparison between ANN and
experimental data for testing the network.
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Figure-42. A Comparison between ANN and
experimental data for training the network.
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Figure-43. A Comparison between ANN and
experimental data for testing the network.
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Figure-44. A Comparison between ANN and
experimental data for training the network.
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Figure-45. A Comparison between ANN and
experimental data for testing the network.

7. CONCLUSIONS

This work investigated the ability of ANN in
modeling and analysis the Shell and Tube Heat
Exchangers. The MLP neural network architectures were
used for the purpose. Results showed good agreement with
experimental data. An important feature of the model is
that it requires no theoretical knowledge or human
experiences during the training process. The model was
trained based on the experimental data. All unknown
relationships were represented approximately using neural
networks instead of traditional relationships.
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