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ABSTRACT 

In this research, the ability of multi-layer perceptron neural networks to estimate vapour liquid equilibrium (VLE) 
data have been studied. Four binary systems (R1270+R290, CO2+R290, R125+R290, and R32+R290) have been 
investigated in the large ranges of temperature and pressure. These systems show different deviations from the Raoult's 
law. The networks with one hidden layer consist of five neurons are developed as the optimal structure. The networks were 
trained and then used as one-step tools without any iteration to estimate VLE data. For these binary systems, uncertainties 
in the ANNs results were not more than 0.126, 0.371, 0.221, and 0.613 %, respectively. In addition, the abilities of ANNs 
are shown by comparisons with Margules, Van Laar, and some other usual correlations. Results show capability of 
presented networks obviously. 
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1. INTRODUCTION 

Modeling and control of equipments for different 
chemical processes require the vapour liquid equilibrium 
(VLE) data [1]. The VLE data are usually estimated using 
thermodynamic models based on the fundamental phase 
equilibrium criterion of equality of chemical potential in 
both phases [2]. This process is based on the gamma- phi 
calculation method. This method requires knowledge of 
the activity coefficients in the liquid (γ ) and gas (φ ) 
phases for all the components. Several activity coefficient 
models such as NRTL, ASOG, UNIFAC, UNIQUAC, 
Wilson, and their modified forms have been devised to 
evaluate VLE [3-5]. Another method is based on equations 
of state (EoS). These methods are applied well to 
hydrocarbon systems. However, it is difficult to apply EoS 
for systems containing polar compounds [6]. These 
approaches because of their complexity are not suitable for 
the rapid prediction of vapour liquid equilibrium. 

Artificial neural network (ANN) is an empirical 
tool, which is analogous to the behavior of biological 
neural structures. They have the ability to identify 
underlying highly complex relationships from input-output 
data. In fact, they define several empirical relations, each 
for a portion of the data [7]. Speed, simplicity, and 
capacity to learn are other advantages of ANNs compared 
to the classical methods. Therefore, they can be used very 
suitable to predict VLE data non-iteratively for any set of 
input parameters. Furthermore, this method does not 
require values of pure component or interaction properties.  
Recently ANNs have been used in the multifarious 
instances of thermodynamical problems. In the context of 
VLE data predictions using ANNs, can sign to the 
suggested networks to estimate compressibility factor for 
the vapour and liquid phases as a function of temperature 
and pressure for several refrigerants [8], prediction of 
activity coefficient of liquid phase [9], calculation of VLE 
data for a light hydrocarbon mixture [10], benzene + 
hexane system [11], methane + ethane and ammonia + 

water systems and systems containing polar compounds 
[6], carbon dioxide + difluoromethane system [12], tert-
butanol + 2-ethyl-1-hexanol and n-butanol + 2-ethyl-1-
hexanol systems [13], apply three multi-layer networks to 
calculate logarithm of activity coefficient (γ) based on sign 
(positive or negative) of ln γ [14], and estimation of VLE 
data for binary and ternary systems using Radial Base 
Function (RBF) neural networks [7], etc. 

In this research, multi-layer perceptron networks 
have been used to estimate vapour-liquid equilibrium data. 
Multi-layer networks are quite powerful. For instance, a 
network containing two layers, where the first and the 
second layer have sigmoid and linear functions 
respectively, can be trained to approximate any function 
(with a finite number of discontinuities) arbitrarily well 
[15].  

Four typical binary refrigerant systems containing 
propane (R290) have been investigated in the large ranges 
of temperature and pressure. According to Raoult’s law for 
an ideal mixture, the mole fractions of a component in the 
vapour and liquid phases are proportional [16]. A real 
mixture behaves differently. Therefore, the presented 
systems are categorized into four groups, based on their 
deviations from ideality: small positive deviation 
(R1270+R290), big positive deviation (CO2+R290), and 
strong positive deviation with the presence of an azeotrope 
and minimum boiling point (R125+R290), and very strong 
positive deviation with the presence of an azeotrope and 
minimum boiling point (R32+R290). We have not found 
any previous literatures to apply ANNs to estimate vapour 
liquid equilibrium data in these systems. 

The developed network for each mentioned 
system is trained and evaluated by using several sets of 
collected experimental data from literatures [17-21]. A 
portion of the experimental data was used to train the 
network and the rest was used to evaluate the performance 
of the networks. Experimental data and predicted values 
by ANNs are compared. Then, results are shown 
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graphically and deviations are presented. In addition, VLE 
data sets are correlated by using Margules and van Laar 
correlations. Then, the abilities of ANNs are shown by 
comparisons with Margules, van Laar, and some other 
usual correlations. 
 
2. ARTIFICIAL NEURAL NETWORKS 

An ANN can be considered as a black box 
consisting of a series of complicated equations for the 
calculation of outputs based on a given series of input 
values. One of the major advantages of ANN is efficient 
handling of highly nonlinear relations in data, even when 
the exact nature of such relation is unknown [22]. 
Commonly neural networks are trained; so that a particular 
input leads to a specific target output. The network is 
adjusted based on a comparison between the network 
outputs and the targets (real values of outputs), until the 
network outputs match the target [15]. 

The most popular ANN is the feed-forward multi-
layer ANN which uses back-propagation learning 
algorithm. Feed-forward neural network usually has one or 
more hidden layers and an output layer. Scaled data is 
introduced into the input layer of the network and then is 
propagated from input layer to hidden layers and finally to 
the output layer. 

Each layer consists of some cells, known as 
neurons. A parameter  (known as weight) is associated 
with each connection between two cells. Each neuron in 
hidden or output layer firstly acts as a summing junction, 
which combines and modifies the inputs from the previous 
layer using the following equation [22]: 
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                                                       (1) 

)( jj ASY =                                                                       (2) 
 
 

Where  are the inputs to jth neuron (outputs from 

previous layer),  are the weights representing the 
strength of the connection between the ith neuron in the 
previous layer and jth neuron,  is the bias associated 

with jth neuron, and  is the net input of jth neuron in 
hidden or output layer. Each neuron consists of a transfer 
function. Output of a neuron is determined by 
transforming its net input using a suitable transfer 
function, namely S in this work. Generally, the transfer 
functions for function approximation are sigmoidal 
function, hyperbolic tangent and linear function, that 
sigmoidal function is widely used for nonlinear 
relationship.  (The output of jth neuron) is also an 
element of inputs to neurons in the next layer [22]. 
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There are many variations of the back-
propagation algorithm. The simplest implementation of 
back-propagation learning, updates the network weights 
and biases in the direction in which the performance 
function decreases most rapidly - the negative of error 
gradient. An iteration of this algorithm can be written as: 

kkkk gVV α−=+1                                                              (3) 
 

Where  is a vector of current weights and biases,  is 
the current gradient, 

kV kg

kα  is the learning rate, and  is a 
vector of new weights and biases. The objective is to find 
the values of the weights and biases that they minimize 
differences between the targets and the predicted outputs 
in order to minimize the mean square errors (MSE). MSE 
is the average squared error between the network predicted 
outputs and the target outputs. 

1+kV

The Levenberg-Marquardt algorithm is one of the 
best training rules designed to approach second-order 
network training speed [15]. This algorithm trains a neural 
network 10 to 100 faster than the usual gradient descent 
back-propagation method and uses the following update 
rule: 
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Where  is the Jacobian matrix contained  first 
derivatives of the network errors with respect to the 
weights and biases,  e is a vector of network errors, and I 
is always a ones  square matrix that is the same size as the  

. The Jacobian matrix can be computed through a 
standard back-propagation technique. The scalar µ 
decreases after each successful step (reduction in 
performance function) and increases only when a tentative 
step would increase the performance function. In this way, 
the performance function will reduce at any iteration of 
algorithm [15]. 

J
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In the learning process, there are several variables 
that have influence on the ANN training. These variables 
are the number of iterations, learning rate, the momentum 
coefficient, number of hidden layers and the number of 
hidden neuron. To find the best set of these variables and 
parameters, all of those must be varied and the best 
combination should be chosen [15]. 
 
3. DEVELOPMENT OF ANN MODELS 

After determining the number of input variables 
by using statistical analyses, the most appropriate 
architecture for the network should be determined. In this 
stage, several networks should be created, trained and 
tested. The number of layers, the optimum number of 
neurons per layers and the transfer function(s) in the 
hidden layer (s), obtain by trial and error. Care was taken 
to avoid overtraining. As a rule of thumb, the number of 
adjustable parameters should be equal or smaller than the 
number of available training data [22]. Numbers of 
adjustable parameters are related to neuron numbers 
directly. Therefore, several feed-forward neural networks 
with different architectures were tried. Finally, a feed-
forward multi-layer perceptron network with one hidden 
layers is used which temperature, pressure, and mole 
fraction of the first compound in the liquid phase (T, P, x1) 
are input variables and mole fraction of the first compound 
in the vapour phase (y1) is output variable. A simple 
scheme of developed networks is shown in Figure-1. It has 
been proven that utilizing hyperbolic tangent sigmoid and 
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linear transfer functions in the hidden and outer layers 
respectively will produce better results. 

 
Figure-1. The schematic of Multi-layer perceptron with 

one hidden layer. 
 

The input and output data are normalized in the 
range of [-1, 1], before import to networks. Then the 
Levenberg-Marquardt back-propagation algorithm that 

represents a simplified version of Newton’s method is 
applied as the training algorithm in this study. This 
algorithm appears to be the fastest method for training 
moderate-sized feed-forward neural networks up to several 
hundred weights [15]. The mean squared error (MSE) as 
an excellent criterion for evaluating the performance of the 
neural network is used. Furthermore, the network was 
trained in MATLAB 7.0 environment. 
 
4. RESULTS AND DISCUSSIONS 

The optimum performance for the networks 
obtained iteratively by changing the number of neurons in 
the hidden layers. If there are a few neurons in the hidden 
layer, the performance of the network is not satisfactory. 
However, if there are too many, convergence is very slow 
and may be compromised by local minima. The optimal 
number of hidden neurons is determined empirically, as 
the minimal number of neurons for which the prediction 
performance is sufficient without leading to over fitting or 
an unreasonably long computational time. Finally, a model 
containing 5 hidden neurons are selected. The training and 
evaluating errors for binary systems are reported in Table-1.  

 
Table-1. Deviation of training and testing stages for binary systems. 

 

 Train Test 
Binary mixture MSE AAD % MSE AAD % 
R125+R290 4.19e-6 0.159 5.3e-6 0.181 
CO2+R290 1.27e-5 0.280 2.49e-5 0.334 
R32+R290 2.83e-5 0.418 4.47e-5 0.511 
RE1270+R290 9.84e-7 0.079 3.02e-6 0.139 

 

 
 

Figure-2. Percent deviation of ANN results against the used experimental data 
in the training process. 
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The average absolute deviation is defined as 

below. The absolute deviation is defined as to avoid 
dividing by zero in the relative error 
( ), when mole fraction of the first 
compound in the vapour phase is zero. 
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The admirable agreement between experimental 
data and predicted results by using neural models are 
shown, obviously. The accuracy of results in the training 
and testing stages are shown in Figures 2 and 3.  

 

 
 

Figure-3. Percent deviation of ANN results against the used experimental data 
in the testing process. 

 
As it is cleared, the values of absolute deviation 

in the training and testing stages for all binary systems 
are below than 1.5 % and 2 %, respectively.  

Vapour-liquid composition (x-y) was calculated 
using developed networks. The estimated results of 
vapour–liquid composition in one temperature for each 
system are shown in Figure-4, summarily.  

An extended report of results is presented in 
Table-2. In this table, temperatures, pressure ranges, in 
addition, average absolute deviation (AAD %) of unseen 
data for predicted vapour phase mole fraction data (y1) in 
each temperature are presented for all binary systems. 

As it is specified, for binary system of 
R32+R290 maximum deviation in predicted data is 
related to temperature of 283.15 K and pressure range of 
0.280 to 0.689, equal 0.613 %. This is an excellent result 
for prediction of VLE data in a wide range of 
temperatures and pressures. For other mixtures, results 
are more accurate than this. As for binary systems of 
R1270+R290, CO2+R290, and R125+R290 maximum 
values of the deviation (AAD %) were not more than 
0.126, 0.371, and 0.221, respectively. These results show 
capability of presented network, obviously. 

In addition, some models of the excess Gibbs 
energy and subsequent activity coefficients for binary 

systems are used to correlate VLE data. Then their 
results are used as a criterion to evaluate the ANNs 
abilities. The three-suffix Margules and van Laar 
equations [23] are selected because they are 
mathematically easier to handle than the newer ones 
(Wilson, NRTL, and UNIQUAC). These equations 
include two empirical constants, to represent activity 
coefficient data. The equations are rearranged in a linear 
form to evaluate their constants.  
Three-suffix Margules: 
 

)]([ 2121 xxBAxxG E −+=                                            
(6) 

3
2

2
21 4)3(ln BxxBART −+=γ                                       (7) 

3
1

2
12 4)3(ln BxxBART +−=γ                                       (8) 

 

Linear form: 

121 2)(/ BxBAxxG E +−=                                            (9) 
 

Van Laar: 
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Linear form: 
 

121 )/1/1(/1/ xABAGxx E −+=                                 (13) 
 

Where GE is the excess Gibbs energy; yi is activity 
coefficient of component i; xi is liquid phase mole 
fraction of component i; A, and B are the adjustable 
parameters of correlations. The excess Gibbs energy data 
are produced from TPxy experimental data of binaries 
by using equations 14 and 15. It is supposed that the 
liquid phase properties are independent of the pressure 
variations [3]. 

                 
(14) 
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                                                 (15) 

Where P, R, T, yi, Pisat, , and  are pressure, the 
gases constant, temperature, the vapor phase mole 
fraction of component i,  vapor pressure of component i, 
fugacity coefficient of component i in the vapor phase, 
fugacity coefficient of pure i at T and saturation 
pressure, respectively. The vapor pressure data of pure 
components is given in Table-3.  

iφ̂
sat
iφ

 

 
 

Figure-4. Vapour-liquid composition, a) binary system of R1270+R290 at 273.15 K, b) 
binary system of CO2+R290 at 263.15, c) binary system of R125+R290 at 323.15 K, d) 

binary system of R32+R290 at 283.15 K. 
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Table-2. Deviations of data sets for binary systems at different temperatures [23]. 

 

Binary Temp., K Press. range, kPa AAD % Temp., K Press. range, MPa AAD % 
R1270+ R290      

 273.15 474.0-586.0 0.063 293.15 836.2-1019.0 0.126 
 278.15 550.8-678.5 0.059 303.15 1077.6-1307.6 0.088 
 283.15 636.0-780.8 0.088 313.15 1368.0-1652.2 0.116 

CO2+R290      
 253.15 309.2-1964.8 0.438 293.15 836.3-5723.7 0.346 
 263.15 423.1-2641.8 0.198 303.15 1079.6-7206.2 0.221 
 273.15 473.9-3113.2 0.220 313.15 1369.8-6434.3 0.311 
 283.15 636.3-4497.8 0.259 323.15 1714.5-6281.3 0.371 

R125+R290      
 253.15 244.1-426.7 0.221 288.15 731.0-1153.2 0.098 
 258.15 292.2-461.9 0.182 293.15 836.9-1383.5 0.149 
 263.15 345.5-586.4 0.207 303.15 1077.4-1798.5 0.200 
 273.15 474.2-815.3 0.072 313.15 1373.2-2246.6 0.158 
 283.15 635.6-1060.6 0.188 323.15 1716.2-2807.6 0.158 

R32+R290       
 248.13 203.4-466.1 0.613 293.15 836.9-1824.1 0.282 
 253.15 244.1-557.4 0.594 294.91 874.8-1902.3 0.503 
 254.15 253.3-575.2 0.570 303.15 1078.3-2328.7 0.276 
 263.15 345.5-777.6 0.476 313.15 1373.2-2946.6 0.219 
 273.15 473.9-1054.8 0.494 323.15 1716.2-3674.1 0.422 
 283.15 635.6-1402.1 0.282    

 
 

Table-3. Vapour pressure of pure compounds. 
 

R290 R1270 CO2 R125 R32 
T, K P, kPa T, K P, kPa T, K P, kPa T, K P, kPa T, K P, kPa 

253.15 244.1 273.15 586.0 253.15 1964.8 253.15 338.5 253.15 406.2 
263.15 345.5 278.15 678.5 263.15 2641.8 263.15 483.3 263.15 582.9 
273.15 473.9 283.15 780.8 273.15 3478.5 273.15 670.9 273.15 813.8 
283.15 635.6 293.15 1019.0 283.15 4497.8 283.15 909.5 283.15 1109.3 
293.15 836.9 303.15 1307.6 293.15 5723.7 293.15 1206.7 293.15 1478.2 
303.15 1078.3 313.15 1652.2 303.15 7206.2 303.15 1569.2 303.15 1930.2 
313.15 1373.2     313.15 2009.3 313.15 2481.0 
323.15 1716.2     323.15 2535.8 323.15 3144.7 

 
The fugacity coefficients are calculated by 

using the virial equation in the vapor phase [16]. For 
binary systems activity coefficient calculate as below: 

   (16) 

221112212 BBB −−=δ                                                 (17) 
 

Where Bii are the second virial coefficients. These 
coefficients are calculated by using the Pitzer equations 
extended for mixture by Prausnitz [3]. 
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Samples of the correlations for binary system of 

R125+R290 at 253.15 K are shown in Figure-5. In 
addition, for all binary systems in the whole of 
temperature ranges, deviations between correlation 
results and experimental data for vapour phase mole 
fraction of first compounds are shown in Figures 6 and 
7. The deviations are about 3 and 4 %, respectively for 
Margules and van Laar correlations. As it is clear, these 
results are in the lower accuracy than the ANNs 
estimations.  

The quantitative comparisons of these models 
as well as some other models used in the literatures for 
these systems are presented in Table-4. Results show the 
ability of ANNs in contrast with other models. However, 
some models have better results than ANNs, for example 
RKS EoS with the Huron-Vidal mixing rule and NRTL 
model [21], PR and CSD EoSs using the Wong-Sandler 
mixing rule [24] for binary system of R32 + R290; but 
the complexities of these models cause that the ANNs 
will be recommended as a successful tool to estimate 
VLE data.  

 
Table-4. Comparison among results of different methods in the estimation of the first compounds 

vapour phase mole fraction. 
 

Binary Model Ref. Temp. range (K) AAD (%) 
R1270+ R290:    
 ANN this work 273.15-313.15 0.091a

 Margules this work 273.15-313.15 0.335a

 van Laar this work 273.15-313.15 0.317a

 PR-EoS combined with the Wong-Sandler mixing rule [17] 273.15-313.15 0.254a

 Van Laar [25] 261.11-361.11 0.150b

 perturbed hard sphere EoS [26] 230.00-350.00 2.000b

CO2+ R290:    
 ANN this work 253.15-323.15 0.293a

 Margules this work 253.15-303.15 7.554a

 van Laar this work 253.15-303.15 7.471a

 PR EoS with the van der Waals one fluid mixing rule [19] 253.15-323.15 0.660b

 PR EoS with one constant binary interaction parameter [19] 253.15-323.15 0.750b

 Redlich-Kwong EoS with a modified procedure [27] 224.44-266.66 0.657a

R125+ R290:    
 ANN this work 253.15-323.15 0.164a

 Margules this work 253.15-323.15 3.629a

 van Laar this work 253.15-323.15 3.719a

 PR EoS using one parameter van der Waals one fluid model [20] 253.15-323.15 0.630b

 RKS EoS [18] 258.15-303.15 0.312 a

R32+ R290:    
 ANN this work 248.13-323.15 0.439a

 Margules this work 248.13-323.15 6.064a

 van Laar this work 248.13-323.15 5.915a

 PR EoS using one parameter van der Waals one fluid model [21] 253.15-323.15 0.620b

 RKS EoS with the Huron-Vidal mixing rule and NRTL model  [21] 248.13-293.15 0.376a

 PR EoS using the Wong-Sandler mixing rule [24] 268.15-313.15 0.340a

 CSD EoS using the Wong-Sandler mixing rule [24] 268.15-313.15 0.370a

 PR EoS using the Wong-Sandler mixing rule [28] 268.15- 318.15 1.026a

 Carnahan-Starling-Desantis EoS [28] 268.15- 318.15 0.853a

a ∑
=

−=
n

i
calyynAAD

1
exp )(*/100% ∑

=

−=
n

i
calcal yyynAAD

1
.exp /)(*/100%,  b   
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Figure-5. The correlations of liquid phase properties for binary system of R125+R290 at 253.15 K 
using a) Margules and b) van Laar equations. 
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Figure-6. Deviations between Margules equation results and experimental data for binary systems 

in the whole of temperature ranges. 
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Figure-7. Deviations between Van Laar equation results and experimental data for all binary systems 

in the whole of temperature ranges. 
 
5. CONCLUSIONS 

The ability of Artificial Neural Networks based 
on back-propagation algorithm to predict vapour liquid 
equilibria data of binary systems have been investigated. 
Therefore, four typical binary refrigerant systems with 
different non-ideally behavior, consist of propane (R290) 
have been studied in the large range of temperature and 
pressure. 

Multi-layer perceptron networks with one 
hidden layer consist of five neurons as the optimal 
structures are used to predict VLE data. Temperature, 
pressure, and mole fraction of the first compound in the 
liquid phase (T, P, x1) were input variables and mole 
fraction of the first compound in the vapour phase (y1) 
was output variable. Networks are trained and evaluated 
by using several sets of collected experimental data. 
Once the ANN model was trained, estimation of the 
vapour liquid equilibria data became a straight forward 
process without any iteration, which it saves 
computational time considerably. While conventional 
methods based on EoSs have usually iterative calculation 
and other complexity, too. In addition developed 
networks do not require any pure component parameter 
or the binary interaction parameters, or the mixing rules 
as required by conventional methods.  

Predicted results by using the developed 
networks were very close to experimental. As deviations 
was not more than 0.613% for all binary systems. All of 
these results prove that Artificial Neural Networks can 
be a successful tool to represent complex nonlinear 
systems effectively (e.g. prediction of vapour liquid 
equilibria data), if developed efficiently. 
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