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ABSTRACT 

The prediction of vapor-liquid equilibrium (VLE) may serve as a cheap alternative method to the experimental 
measurements of VLE. This is especially true for high pressure where it requires expensive equipment to measure VLE as 
compared with the low pressure experiments. Program phase equilibria (PE) with Peng-Robinson equation of state (PR-
EOS) and artificial neural networks (ANN) technique are applied at high-pressure VLE. Related literature data were used 
to develop and validate a model capable of predicting VLE for four CO2-fatty acid ester systems. The systems used 
including oleic acid methyl ester, linoleic acid methyl ester, eicosapentaenoic acid ethyl ester (EPAEE), and 
docosahexenoic acid ethyl ester (DHAEE) at two different temperatures of 313k and 333k and pressure range (28.6 - 
235.4) bar. The percentage average root square relative deviation (%ARSRD) is used to compare the predicted results by 
PE program and artificial neural networks (ANN) favored the ANN model as it gives more representative results to the 
experimental data. 
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Nomenclature 
 
a, b parameters in the equation of  state 
A, B dimensionless parameters 
f fugacity, bar 

ijk ,  

ijl  
adjustable parameters 

n number of components 
ni number of moles of  component  i, mole 
N number of data points 
P pressure, bar 
R universal gas constant, lit. bar/mole  K 
T temperature, K 
x,y liquid and vapor mole fractions, respectively 
Z compressibility factor 
V  total system volume, lit 
ν  total system molar volume ,  lit./mole 
Greek Symbols 

φ̂  fugacity coefficient in mixture 
ω  acentric factor 
Subscripts and Superscripts 
c critical condition 
exp experimental value 
calc calculated value 
ν  vapor phase 
l  liquid phase 
i,j Component 

m mixture 
r reduced property 

 
1. INTRODUCTION 

A gas when compressed isothermally to pressures 
more than its critical pressure, exhibits enhanced solvent 
power in the vicinity of its critical temperature. Such 
fluids are called supercritical fluids (SCF), which possess 
specific characteristics that make them attractive as 
solvents. In particular, solvent density, and hence solvent 
effectiveness, can be controlled by pressure and 
temperature. Liquid-like densities and gas like viscosity, 
coupled with diffusion coefficients that are at least an 
order of magnitude higher than those of liquids, contribute 
to enhancement of mass transfer.  

Gas extraction is a chemical engineering 
separation process and it is particularly effective for the 
isolation of components of medium molecular weight and 
relatively low polarity at moderate temperatures, and it can 
be used to recovery low volatility heat-labile component. 
The method finds its special application in food and 
petroleum industries [1]. 

The extraction of edible oils and the fractionation 
and purification of oil constituents with help of 
supercritical fluids (SCF's) have gained considerable 
industrial interest. In a typical purification step, undesired 
components presented with the edible oils, such as free 
fatty acids, are removed without any change in their 
constituents. 

Vacuum distillation is the conventional technique 
for the separation of oil compounds. Some of the oil 
components, such as polyunsaturated fatty acids, and their 
esters, are sensitive to heat and will be degraded in this 
process. The use of SCF provides means to avoid their 
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degradation. Carbon dioxide is the most commonly used 
supercritical fluid for extraction, and material processing 
owing to its availability, inertness, non-flammability, non-
toxicity, low cost and low critical temperature and 
pressure.     

King et al., [2] used entrainer to increase the 
vapor loading in the extraction of oleic acid and mono-
olein by carbon dioxide above its critical temperature and 
pressure using the vapor recirculation equipment [3]. 

Eisenbach [4] used supercritical fractionation 
method with carbon dioxide to separate eicosapentaenoic 
acid ethyl ester from a mixture of fatty acid ethyl esters 
obtained from codfish oil. His results suggest that a 
mixture of different carbon number could be separated 
using supercritical carbon dioxide. For the design of such 
supercritical fractionation process, it requires the vapor-
liquid equilibria for the mixture of fatty acid esters and 
carbon dioxide.             

 Inomata et al., [5] had developed new 
experimental equipment and measured vapor-liquid 
equilibrium data involving low volatility fatty acid esters 
(methyl stearate, methyl palmitate, methyl myristate, and 
methyl oleate) and carbon dioxide at temperature range 
(313.15-343.15K). They obtained fairly good correlation 
of the experimental data except in the critical region by 
using the PR-EOS and the modified van der Waals mixing 
rules that required two adjustable binary parameters. 

Cheng et al., [6] used an analytic method to 
produce PVT-x-y measurements for the systems ethane-
methyl oleate and carbon dioxide-methyl oleate along 
isotherms at 313.15K and 343.15K up to pressures 
substantially greater than the critical pressures of the pure 
solvents. PR-EOS with a non-quadratic mixing rule was 
successful in modeling the experimental data [7]. 

Bharath et al., [8] measured the vapor-liquid 
equilibria for two binary systems of the two oleic acid-
carbon dioxide and triolein-carbon dioxide and a ternary 
system oleic acid-triolein-carbon dioxide with the aim of 
separating the fatty acids and triglycerides. Their results 
showed that oleic acid can be selectively extracted using 
supercritical carbon dioxide as a solvent. They also 
measured at high pressure vapor-liquid equilibria for the 
systems palm kernel oil-carbon dioxide and sesame oil-
carbon dioxide and showed that the supercritical carbon 
dioxide was found to fractionate these triglyceride 
mixtures on the basis of the total carbon number of the 
constituent fatty acids of the triglyceride. 

Lockemann et al., [9] showed that the separation 
processes involving the use of SCF's at elevated pressures 
are powerful tools for the mild fractionation of 
polyunsaturated fatty acid compounds and the removal of 
short-chained components, such as methyl laurate, from 
edible oil constituents. The phase equilibria data are 
required to form the basis for the design of these 
separation processes. 

Karim et al., [10] measured the mole fraction 
solubility of oleic acid in supercritical pure CO2 at 
temperature range (308.15-333.15 K) and pressures up to 
200 bars. The effects of temperature and pressure in the 

extraction process are represented by Redlich-Kwong 
equation of state (RK-EOS). The results showed that the 
mole fraction solubility of oleic acid depends strongly 
upon the pressure (density) of the supercritical carbon 
dioxide and it becomes appreciable when the critical 
density is exceeded. The experimental phase equilibrium 
data were compared with the results predicted by the RK-
EOS and showed a good representation.  

Yang and Li [11] proposed neural networks 
method for modeling the supercritical fluid extraction. 
They suggested first the use of a three-layer neural 
network with fast learning algorithm and then compare the 
results with the conventional model of the PR-EOS. A 
novel hybrid model was proposed combining both the 
neural network and the PR-EOS. The proposed models 
perform better than the conventional model that needs to 
select its parameters by trial and error. The effectiveness 
of the proposed approaches is demonstrated by simulation 
and comparison studies. 

Chang et al., [12] determined experimental P-T-
x-y equilibrium data for four binary mixtures (CO2+four 
fatty acid ester systems, including oleic acid methyl ester, 
linoleic acid methyl ester, eicosapentaenoic acid ethyl 
ester, and docosahexenoic acid ethyl ester) over a wide 
range of pressure ( 104.4-235.4 bar) at 313K and 333K 
temperatures. They found that experimental equilibrium 
constants of oleic acid methyl ester and linoleic acid 
methyl ester larger than those of eicosapentaenoic acid 
ethyl ester and docosahexenoic acid ethyl ester. Their 
finding indicates that the two methylated fatty acids would 
be extracted easier than the other compounds in a 
separation process using supercritical CO2 extraction. The 
equilibrium data were, then, successfully correlated using 
PR and modified soave-redlich-kwong (SRK) equations of 
state with different mixing rules. 

Mohanty [13] has used multilayer perception 
ANN with one hidden layer to predict VLE. The method 
was used in terms of liquid and vapor phase compositions 
using the equilibrium temperature and pressure for each of 
the three binary systems (CO2- ethylcaprate, CO2-
ethylcaproate and CO2- ethylcaprylate). Mohanty [14] has 
also reported the use of ANN to estimate the bubble 
pressure and the vapor phase composition of the CO2–
difluoromethane system. He regarded the phase 
equilibrium ANN is applied to a single binary system at 
various conditions of equilibrium pressure and 
temperature. 
  Si-Moussa et al., [15] applied ANN to high-
pressure vapor liquid equilibrium (VLE) using data from 
literature to develop and validate a model capable of 
predicting VLE for six CO2-ester binaries (CO2-
ethylcaprate, CO2-ethyl caproate, CO2-ethyl caprylate, 
CO2-diethyl carbonate, CO2-ethyl butyrate and CO2-
isopropyl acetate). Their statistical analyses of the 
predictability of the optimized neural network model 
showed a good agreement with the experimental data. 
Furthermore, the comparison in terms of average absolute 
relative deviation was performed between the results 
predicted using various methods for each binary system at 
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the given temperature range. The data predicted by some 
cubic equation of state with various mixing rules and the 
excess Gibbs energy models showed that the artificial 
neural network model gives far better results.  

Moghadassi et al., [16] proposed a new method 
based on ANN for prediction of thermodynamic properties 
for superheated and saturated region of ammonia. The 
ANN's results were compared with the results of some 
equations of state (PR-EOS included). Comparisons 
showed an ANN capability for prediction of 
thermodynamic properties of ammonia. 

Moghadassi et al., [17] proposed a new method 
based on ANN for the prediction of vapor-liquid 
equilibrium data of nitrogen- n-pentane system. 
Experimental data were collected from work done based 
on static analytical method and after pre-treating were 
used for training the network. Among this training the 
back-propagation learning algorithm with various training 
such as Scaled Conjugate Gradient (SCG), Levenberg-
Marquardt (LM), and Resilient Back propagation (RP) 
methods were used. The most successfully algorithm with 
suitable number of seven neurons in the hidden layer, the 
LM algorithm was found to give the minimum Mean 
Square Error (MSE).  

Karim and Mutlag [18] modeled the experimental 
data were taken from literature for the separation of 
phenanthrene by pure supercritical CO2 and supercritical 
CO2 entrained with n-pentane as a liquid solvent by using 
two techniques, PR-EOS and ANN. They found that the 
ANN technique gives a good agreement with the 
experimental data of the systems under consideration. 

In present work an attempt is tried to estimate the 
high pressure VLE of four CO2-esters binaries using 
program PE with PR-EOS and ANN technique. Three pure 
component properties (Tc, Pc, ω) and two intensive state 
variables (T and P) were selected as Neural Network (NN) 
inputs in order to describe the VLE of the four binaries in 
one system. The experimental data used for program PE 
and training and validation of the NN are those reported 
by Chang et al., [12] for the binary systems of carbon 
dioxide (1) with each of the one of the fatty acid esters (2) 
(oleic acid methyl ester (methyl oleate), linoleic acid 
methyl ester (methyl linoleate), eicosapentaenoic acid 
ethyl ester (EPAEE) and docosahexenoic acid ethyl ester 
(DHAEE). 
 
2. MODELING SUPERCRITICAL FLUID  
    EXTRACTION (SFE) 

The experiments carried out to obtain high-
pressure phase-equilibrium data are very difficult to 
perform and costly to conduct. Hence, it would by 
extremely useful to develop a proper model or correlation 
scheme to extend and complement the experimentally 
obtained data for SCF-solute system at high pressure. The 
correlation scheme can also be used to optimize the 
parameters to control the extraction process and get the 
satisfy yield rate of extract. A reliable and simple mass 
transfer model is necessary to design an extraction plant 

and determine the optimum operating conditions to control 
the yield rate [19]. 

The theoretical calculation of phase equilibria 
may serve as a cheap alternative method to the 
experimental measurement of phase equilibria. This is 
especially true for high pressure operation where it is 
necessary to build expensive equipment to measure the 
phase equilibria. The theoretical prediction method may 
serve as a fast alternative method compared to the 
experimental measurements. 
 
2.1 Program PE (Phase Equilibrium) (PE V1.0) 

The calculation of phase equilibria requires 
suitable EOS for the system under investigation. 
Unfortunately, the successful use of all EOS is limited to 
certain groups of compounds and certain process 
conditions, making necessary the use of different EOS for 
different systems. These methods are referred to as 
predictive methods that can be used if hardly any 
information is known about the system under 
investigation. On the other hand such predictive models 
are inferior to other models with individual adjustable 
parameters if sufficient information is known about the 
system under investigation. In such case the adjustment of 
these parameters can be used to make the EOS accurately 
represent what is already known to use the EOS with these 
parameters. Afterwards the unknown parameters can be 
calculated based on the experimental knowledge. A PE 
program has been developed for modeling phase equilibria 
with non-predictive EOS. The program excludes the 
necessity to build, handle and maintain large data bases - 
but enabling best possible correlations, for well known 
system.  

The use of the EOS to fit the users' needs is the 
most important step for achieving good results. The choice 
of the most suitable EOS for a given system is related to 
background experience. The choice of the most elaborated 
complicated and physically sound EOS does not 
necessarily guarantee best results. One further key to 
success is the input in order to determine the adjustable 
EOS parameters.  

The program package PE (= Phase Equilibria) has 
been developed at the Technical University Hamburg-
Harburg within the last 12 years. The program has been 
designed for the calculation of fluid-phase equilibrium 
using equations of state (EOS). 

PE offers more than 40 different EOS, allowing 
the user to choose the one best fits his needs. PE also 
offers powerful routines to determine the above mentioned 
adjustable parameters for pure components and mixtures 
by correlating experimental data and subroutines to use 
these parameters for theoretical predictions of equilibria.  

PE V1.0 had already been designed for Microsoft 
Windows 95/98/NT in such a way that all Windows 
features like mouse control, menus, dialog boxes, combo 
boxes, and graphical output routines have been supported 
[19,20]. 

In the present work the experimental data [12] 
were described using PR-EOS [21]. It is known to give 

 
124



                                         VOL. 6, NO. 9, SEPTEMBER 2011                                                                                                               ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 
slightly better predications of liquid densities than the 
SRK-EOS by Soave [22]. The PR-EOS requires three 
inputs per compound, Tc, Pc and the acentric factor (ω) and 
the general form is,  
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In general an equation of state is developed first 
for pure component, and then extended to mixtures 
through the use of mixing rules for combining the pure 
component parameters. Most of the mixing rules for the 
EOS calculates the mixture parameters am and bm for the 

EOS according to the one-fluid mixing rules (Eqs. 7 and 8) 
and the only difference between them is the combining 
rule that determines how the cross coefficients aij and bij 
are calculated.  
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The quadratic mixing rule is the mixing rule 
offers a maximum of two binary interaction parameters 
per binary system, whereof only one is used to adjust the 
parameter a and it is sufficient for the correlation of 
equilibria in systems that do not contain specific 
interactions. 
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The physical properties of the pure components 
used in the present work are summarized in Table-1. 

 
Table-1. Physical properties of pure components used [12]. 

 

Component MW Tc (K) Pc (bar) ω 
CO2 44.01 304.20 73.80 0.2250 
Methyl Oleate 296.50 866.94 11.22 0.9835 
Methyl Linoleate 294.50 875.31 11.62 0.9869 
EPAEE 302.46 792.66 12.06 1.0102 
DHAEE 256.50 803.10 11.28 1.0797 

 
For the vapor-liquid equilibrium calculations, at 

equilibrium state the fugacity for all species i must be the 
same in all phases, namely, 
 

l
ii ff ˆˆ =υ  or iiii xy lφφν ˆˆ =                                                          ... (11) 

 

where  and  are the fugacity coefficients of 
component i in the liquid and vapor phases respectively. 
Since pressure-explicit equations of state are more 
common types and the useful relation for finding fugacity 
coefficients [23]
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where V is the total system volume, ni and nj are the mole 
numbers of component i and j respectively.To calculate 
the fugacity coefficients, equations of state which are valid 
for both vapor phase mixture and liquid phase mixture 
where used. Cubic equations of state such as the PR-EOS 
have become important tool in the area of phase 
equilibrium modeling, especially, for systems at pressures 
close to or above the critical pressure of one or more of 
these system components.  

When the PR-EOS is introduced into the Eq. 
(12), the following closed-form expression for fugacity 
coefficient is obtained in the liquid phase, 
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and when replacing υ in Eq.(1) in term of  PZRT , gives the cubic equation of PR-EOS as: 
 

( ) ( ) ( ) 0321 32223 =−−−−−+−− BBABZBBAZBZ             …(14) 
 
where Z is compressibility factor and, A and B are defined 
as, 
 

2)(RT
Pa

A m=                                                           … (14a)  

 

RT
Pb

B m=                                                               … (14b) 

 

The fugacity coefficients of the components in 
the vapor phase are also calculated with Eq.(13) with, yi 
and all the (PR) a and b values for the vapor replacing 
their corresponding terms.  
 
2.2 Artificial Neural Networks (ANN) modeling 

The main advantage of the ANN approach over 
traditional methods of modeling is that it does not require 
the complex nature of the underlying process under 
consideration to be explicitly described in mathematical 
terms. It learns the relationship between the input and the 
output by being exposed to the examples presented to 
them in training [24]. 

In order to describe the phase behavior of the four 
CO2-fatty acid ester systems by ANN model a total of 
seven variables have been selected in this work: four 
intensive state variables (temperature, pressure, and CO2 
mole fractions in the liquid and vapor phases) and three 
pure component properties of the fatty acid ester (critical 

temperature, critical pressure and acentric factor). The 
choice of the input and output variables was based on the 
need to describe the four binaries by only one ANN 
model. Therefore, the temperature, pressure, and the pure 
component properties of the esters have been selected as 
input variables and the remaining as output variables. 

The input / output data allows the neural network 
to be trained in a way that minimizes the error between the 
real output and the estimated (neural net) output. The 
model is then used for different purposes among which are 
estimation and prediction.

The basic element of a NN is an artificial neuron 
as shown in Figure-1, which consists of three main 
components; weight, bias and an activation function. Each 
neuron receives inputs xi (i= 1, 2, …, n) attached with a 
weight wij (j ≥1) which shows the connection strength for a 
particular input for each connection. Every input is then 
multiplied by the corresponding weight of the neuron 
connection and summed as: 
 

∑
=

=
n

j
iiji xwQ

1
                                                        … (15) 

 

A bias bi, a type of correction weight with a 
constant non-zero value, is added to the summation in Eq. 
(15) as: 
 

iii bQU +=                                                           … (16) 

 

 
 

Figure-1. Basic elements of an artificial neuron. 
 

In other words, Qi in Eq. (16) is the weighted sum 
of the ith neuron for the input received from the preceding 
layer with n neurons, wij is the weight between the ith 
neuron in the hidden layer and the jth neuron in the 
preceding (input) layer, and xj is the output of the jth 
neuron in the input layer. After being corrected by a bias 
as in Eq. (16), the summation is transferred using a scalar-
to-scalar function called an activation or transfer function, 
f (Ui), to yield a value called the unit’s activation, given as: 
 

)( ii Ufy =                                                             … (17) 
 

Activation functions serve to introduce 
nonlinearity into NNs which makes it more powerful than 
linear transformation. 

 
2.2.1 Neural Network (NN) Architecture 

In this study, the usual feed-forward multilayer 
NN with single hidden layer was considered. One of the 
most important tasks in NN studies is to determine the 
optimal network architecture which is related to the 
number of neurons in the hidden layer [24]. Generally, the 
trial and error approach is used. In this study, the best 
architecture of the network was obtained by trying 
different numbers of neurons. The trial started from two, 
and the performance of each network was checked by 
employing Mean Absolute Percentage Error (MAPE) 
defined as: 

 
126



                                         VOL. 6, NO. 9, SEPTEMBER 2011                                                                                                               ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

1001 ×

−

=
∑
=

N
d

yd

MAPE

N

i i

ii

                             … (18) 

 

where N is the number of exemplars in the training set, di 
is the desired output, yi is the computed output. The goal is 
to minimize MAPE to obtain a network with the best 
generalization. 

The relationship between the number of neurons 
ranging from 2 to 10 and the corresponding MAPE values 
obtained is presented in Figure-2. It is seen in Figure-2a 
that MAPE values decrease with an increasing number of 

neurons in the training stage. Therefore, the architecture of 
the network improves in the learning process with the 
increasing number of neurons. In the testing process, 
however, MAPE values reduce with the increasing number 
of neurons until the number of neurons reaches seven and 
then the MAPE values start to increase, which implies that 
the network becomes more generalized with the increasing 
number of neurons until an optimum value is obtained. 
Beyond this optimum point the network turns out to be 
specialized only on the training set and it deviates from 
producing reasonable results in the testing stage. This 
procedure is a common experience in NN studies. 
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                                                  (a)                                                                                          (b) 
 

Figure-2. Selecting an optimal network architecture. 
 

The coefficient of determination, R, is also shown 
in Figure-2. R seems to be slightly affected by the 
increasing number of neurons in the training stage (Figure-
2b) up to six neurons beyond which no change was 
noticed. Figure-2b shows that R starts to decrease with the 
increase in the number of neurons after the eighth neuron. 
These findings are in agreement with previous studies on 
the MAPE. Based on these analyses, the optimal 
architecture of the NN was constructed as 5-7-2, 
representing the number of inputs, hidden, and outputs 
neurons, respectively as shown in Figure-3. In this 
architecture the tangent-sigmoid transfer function is used 
as: 
 

1
1

2)( 2 −
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== − iUii e
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Figure-3. The optimal NN architecture. 
 
2.2.2 Training of NN 

Most of the engineering applications of the NNs 
are based on back-propagation training algorithm [25]. In 
this study, the Levenberg-Marquardt back-propagation 
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algorithm was employed to minimize the Mean Square 
Error (MSE) of the network according to: 
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The training session is shown in Figure-4. The 
data (105 in total) taken from the experimental study [12] 
were used as training and testing sets for the chosen NN 
architecture. Table-2 contains the measured equilibrium 
phase compositions for the binary systems studied, 
temperatures, and pressure. Fifteen percent of these data 
(16 samples) were reserved for the test set and the 
remaining data were perceived in the training. The overall 
performances of both sets were evaluated by MSE. 
 

 
 

Figure-4. Training session. 
 

Table-2. Minimum and maximum of experimental vapor-liquid equilibrium data for binary 
system studied and used to train the NN [12]. 

 

System T (K) P (bar) x1 y1

313 28.6-125.1 0.4876-0.9387 0.9999-0.9823 
CO2(1)- Methyl Oleate(2) 

333 56.2-180.3 0.6086-0.9430 0.9999-0.9812 
313 28.6-118.2 0.5217-0.9388 0.9999-0.9851 

CO2(1)- Methyl Linoleate(2) 
333 56.2-180.3 0.6128-0.9509 0.9999-0.9806 
313 42.4-152.7 0.5962-0.9402 0.9999-0.9790 

CO2(1)- EPAEE(2) 
333 28.6-207.9 0.2842-0.9324 0.9999-0.9793 
313 42.4-180.3 0.5325-0.9443 0.9999-0.9836 

CO2(1)- DHAEE(2) 
333 56.2-235.4 0.5583-0.9419 0.9999-0.9822 

 
3. RESULTS AND DISCUSSIONS 

The objective of the present work is to correlate 
experimental data by using PR-EOS and ANN. 

P-T-x-y equilibrium for four binary mixtures 
(CO2 + four fatty acid ester systems, including oleic acid 
methyl ester, linoleic acid methyl ester, EPAEE, and 
DHAEE) were investigated. The experimental data were 
selected from Chang et al., [12]. The data were taken 
covering a wide range of pressure (104.4-235.4 bar) at 
313K and 333K.The P-T-x equilibrium data without mole 
fraction in vapor phase were initially selected to be fitted 
with PR-EOS using quadratic mixing rule (Eqs. 9 and 10) 
and got a preferable fitting. The program package PE is 
used to get values of the adjustable parameter kij that 
accounts for the specific binary interactions between 
components i and j and values of an adjustable size 

parameter  at each temperature as shown in Table-3. 
The optimum adjustable parameters in the mixing rule of 
equation of state were obtained by minimizing the 
percentage average root square relative deviation 
(%ARSRD) calculated as follow, 

ijl

 

∑
=

⎥
⎦

⎤
⎢
⎣

⎡ −
×=

n

i i

calc
ii

x
xx

N
ARSRD

1

2

exp

exp1100%     … (21) 

 

where N is the number of data points,  and 

are the experimental and calculated mole fraction in 
liquid phase of CO

exp
ix

calc
ix

2 in fatty acid ester  respectively. 
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Table-3. Adjustable parameters kij and . ijl

 

T=313K T=333K 
System 

kij ijl  kij ijl  

CO2- Methyl Oleate 0.0412 -0.0379 0.0373 0.0130 
CO2- Methyl Linoleate 0.0395 -0.0337 0.0347 0.0259 
CO2- EPAEE 0.0357 0.0034 0.0562 0.0093 
CO2- DHAEE 0.0389 -0.0001 0.0577 0.0193 

 

Table-3 shows that kij and  have an absolute 
value much less than 1.0. The k

ijl

ij parameter has values less 

than about 0.15 and  can be both positive and 
negative, but it is less apparent how to comment a negative 

value for . 

ijl

ijl
The %ARSRD values for EOS at each 

temperature between the predicted and the experimental 

data are shown in Table-4 and it is noted that the values of 
%ARSRD are large at 313K and acceptable at 333K. The 
deviations of the systems CO2- methyl oleate and CO2- 
methyl linoleate are close to each other and the same 
behavior for the systems CO2- EPAEE and CO2-DHAEE. 
This is due mainly to the critical properties are being close 
to each other for methyl oleate and methyl linoleateare and 
for EPAEE and DHAEE. 

 
 

Table-4. The % ARSRD between the predicted and the experimental 
data for mole fractions in liquid phase using PR-EOS. 

 

% ARSRD 
System 

T=313K T=333K 
CO2- Methyl Oleate 163.42 14.71 
CO2- Methyl Linoleate 166.88 14.92 
CO2- EPAEE 911.47 12.44 
CO2- DHAEE 809.03 9.76 

 
The predicted results of vapor-liquid equilibrium 

of CO2 (1)- fatty acid ester(2) systems using PE program 
with PR-EOS and adjustable parameters determined 
previously and  experimental in reference[14] are shown 
graphically in Figures 5-12). These Figures also include a 
NN predicted results. The % ARSRD of the NN model are 
lower than those obtained by EOS model for all the CO2- 
fatty acid ester binaries as shown in Table-5. The Figures 
show excellent agreement between experimental data and 

the NN predicted data. It can be seen from the Figures that 
the NN model is plausibly acceptable as an alternative to 
cubic EOS (PR-EOS) for VLE data prediction for the 
studied case of CO2-ester systems. On the other hand NN 
will not be an accurate predictor if the operating 
inputs/output data are outside their training data range. 
Therefore, the training data set should possess sufficient 
operational range including the maximum and minimum 
values for both input/output variables.  

 
Table-5. The % ARSRD between the predicted and the experimental data for mole 

fraction in liquid and vapor phases using ANN. 
 

% ARSRD 
T=313K T=333K System 

xCO2 y CO2 x CO2 y CO2

CO2- Methyl Oleate 1.5420 0.0609 0.6064 0.0457 
CO2- Methyl Linoleate 1.3171 0.0522 0.8005 0.0812 
CO2- EPAEE 0.6957 0.0460 3.2052 0.0448 
CO2- DHAEE 1.1745 0.0171 1.2867 0.0327 
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Figure-5. Binary phase diagram of the system CO2   (1)-Methyl Oleate (2) at T = 313K. 
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Figure-6. Binary phase diagram of the system CO2  (1)-Methyl Oleate (2) at T = 333K. 
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Figure-7. Binary phase diagram of the system CO2  (1)- Methyl Linoleate (2) at T = 313K. 
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Figure-8. Binary phase diagram of the system CO2  (1)- Methyl Linoleate (2) at T = 333K. 
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Figure-9. Binary phase diagram of the system CO2  (1)-EPAEE (2) at T = 313K. 
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Figure-10. Binary phase diagram of the system CO2  (1)-EPAEE (2) at T = 333K. 
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Figure-11. Binary phase diagram of the system CO2   (1)-DHAEE (2) at T = 313K. 
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Figure-12. Binary phase diagram of the system CO2   (1)-DHAEE (2) at T = 333K. 
 
4. CONCLUSIONS 
 

a) The PR-EOS correlation fit the data well at T=333K 
but fails at T=313K, while the artificial neural network 
has given an overall agreement between experimental 
and prediction values in all the used the pressure and 
temperature ranges; 

b) The results concluded that the ANN predictions are 
very close to the experimental data, but NN will not be 
an accurate predictor if the operating inputs/output data 
are outside their training data range. Therefore, the 
training data set should possess sufficient operational 
range including the maximum and minimum values for 
both input/output variables; and 

c) This study shows that ANN models could be 
developed for high pressure phase equilibrium for a 
family of CO2 binaries, provided reliable experimental 

data are available, to be used in supercritical fluid 
processes. Hence, for a non expert in selecting 
appropriate EOS for the application in hand, an 
alternative model is offered to be used in a more 
reliably and less cumbersome way, in process 
simulators and processes involving real time process 
control. 
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