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ABSTRACT 

In this paper, an analytical solution is developed to study the free vibration analysis of functionally graded 
material (FGM) plate without enforcing zero transverse shear stress conditions on the top and bottom surfaces of the plate 
using higher order displacement model. The material properties are assumed to be varied continuously through the 
thickness direction according to a simple power law distribution in terms of volume fraction of material constituents. The 
effective material properties are obtained by applying linear rule of mixtures. The derivation of equations of motion for 
higher order displacement model is obtained using principle of virtual work. The governing equations of FGM plate are 
established by applying energy principles and are solved by Navier’s method. The influence of side-to-thickness ratio, 
modulus ratio and aspect ratio on the nondimensional natural frequencies is studied. The obtained numerical results are 
compared with the results available in the literature. 
 
Keywords: FGM plate, higher order theory, Navier’s method, free vibration. 
 
INTRODUCTION 

Laminated composite plates are widely used 
because of high specific strength and high specific 
stiffness. However, laminated composite materials usually 
have an abrupt change in mechanical properties across the 
interface where two different materials are bonded 
together at some extreme loading conditions; this can 
result in cracking and large inter-laminar stresses leading 
to delamination. One way to solve these problems is to 
employ functionally graded materials. A functionally 
graded material (FGM) is a material in which the 
composition and structure gradually change resulting in a 
corresponding change in the properties of the material. 
This FGM concept can be applied to various materials for 
structural and functional uses [1-2]. The behavioral 
analysis of functionally graded composite materials is an 
important field of research owing to the interest for a wide 
range of applications: thermal barrier coatings for turbine 
blades (electricity production), armor protection for 
military applications, fusion energy devices, biomedical 
materials including bone and dental implants, 
space/aerospace (space vehicles, aircraft, aerospace 
engines, rocket heat shields) industries, automotive 
applications, etc., because of their superior advantages 
such as high resistance to temperature gradients, capability 
to withstand to high loads and high temperature fields and 
high durable properties, reduction in residual and thermal 
stresses, high wear resistance, and an increase in strength 
to weight ratio when compared to the other engineering 
materials. Hence, the non-linear behavior of functionally 
graded plates has to be understood for their optimum 
design. Chun-Sheng Chen et al., [3] studied the nonlinear 
behavior of laminated plate’s at large vibration 
amplitudes. They concluded that, the higher-order shear 
deformation terms had a significant influence on the plate 

in a large amplitude vibration as thickness ratio decreases 
and the plate was stacked with fewer layers. 

Pradhan et al., [4] studied the natural frequencies 
of the functionally graded cylindrical shell made up of 
stainless steel and zirconia. They observed that, natural 
frequencies of cylindrical shells are dependent on the 
constituent volume fractions and boundary conditions. 
Yang and Hui-Shen Shen [5-6] investigated the dynamic 
response of initially stressed functionally graded 
rectangular thin plates. In this, the plate is assumed to be 
clamped on two opposite edges and the remaining two 
edges may be simply supported or clamped or may have 
elastic rotational edge constraints. They were employed a 
one-dimensional differential quadrature approximation 
and the Galerkin procedure in the free vibration analysis. 
Free and forced vibration analyses for initially stressed 
functionally graded plates in thermal environment are also 
studied. Gopalakrishnan et al., [7] developed a new beam 
element based on the first-order shear deformation theory 
to study the thermo-elastic behavior of functionally graded 
beam structures. They considered both exponential and 
power-law variations of material property distribution to 
examine different stress variations. Alinaghizadeh and 
Isvandzibaei [8] studied the vibration analysis of 
cylindrical shells made of FGM composed of stainless 
steel and nickel. They were used third order shear 
deformation shell theory to derive the governing equations 
of motion. Hiroyuki Matsunaga [9] used a 2-D higher 
order theory for analyzing natural frequencies and 
buckling stresses of FG plates. Qian et al., [10, 11] 
analyzed free and forced vibrations of both homogeneous 
and FG thick plates with the higher order shear and normal 
deformable plate theory by using mesh less local Petrov-
Galerkin method. Navazi et al., [12] investigated the 
effects of various boundary conditions, volume fraction 
index and beams length-to-height ratio on free vibration 



                                         VOL. 6, NO. 10, OCTOBER 2011                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
106

analysis of FGM beams using analytical method. The 
equations of motion of FGM beams are derived using first 
order shear deformation beam theory (FSDBT1) and 
Hamilton’s principle. 

The Present work is concerned with the free 
vibration analysis of functionally graded material plates 
without enforcing zero transverse shear stress conditions 
on the top and bottom surfaces of the plate using higher 
order displacement model, with different boundary 
conditions, aspect ratios and side to thickness ratios and 
modulus ratio.  
 
2. HIGHER- ORDER THEORY FOR 
    DISPLACEMENT MODEL 

In formulating the higher-order shear deformation 
theory, a rectangular plate of total thickness h, side length 
a in the x-direction and b in the y-direction is considered 
and the location of the rectangular Cartesian coordinate 
axes used to describe deformations of the plate are given 
in Figure-1. It is assumed that a state of plane strain exists. 
Hence, in formulating the higher-order shear deformation 
theory, a rectangular plate of composed of functionally 
graded material through the thickness. It is assumed that 
the material is isotropic. In order to approximate 3D plate 
problem to a 2D one, the displacement components u (x, y, 
z, t), v (x, y, z, t) and w (x, y, z, t) at any point in the plate 
space are expanded in terms of thickness coordinate. The 
elasticity solution indicates that the transverse shear stress 
vary parabolically through the plate thickness. This 
requires the  use of displacement field in which the in-
plane displacements are expanded as cubic functions of 
the thickness coordinate in addition the transverse normal 
strain may vary in non linearly trough the plate thickness. 
The higher-order displacement field, which satisfies the 
above criteria, is assumed in the following form [13-18]: 
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Where   
 

u0, v0 are the in plane displacements of a point (x, y) on 
the mid plane. 
wo is the transverse displacement of a point (x, y) on the 
mid plane.  
θx, θy , θz are rotations of the normal to the mid plane 
about y and x-axes.  
u0

*, v0
*, w0

*, θx
*, θy

*, and θz
* are the corresponding higher 

order deformation terms.  
In the present work analytical formulation and 

solution were obtained without enforcing zero transverse 
shear stress conditions on the top and bottom surfaces of 
the plate using the displacement model in Eq. (1).  
 

 
 

Figure-1. Geometry of FGM plate along with reference 
axis and displacement components. 

 
Substitution of displacement relations from Eq. 

(1) into the strain displacement equations, the following 
relations are obtained as:      
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2.1. Constitutive relations 

The variation of material properties of a FGM 
plate can be expressed as: 
 

( ) ( ) bPVbPtPZP +−=                                                    (3)  
  

Where P denotes a generic material property like 
modulus, tP  and bP denotes the corresponding properties 
of the top and bottom faces of the plate, respectively, and 
n is a parameter that dictates the material variation profile 
through the thickness. Also V in Eq. (3) denotes the 
volume fraction of the top face constituent and follows a 
simple power-law as: 
 

n
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                                                              (4) 

 

Where h is the total thickness of the plate, z is the 
thickness coordinate and n is a parameter that dictates the 
material variation profile through the thickness. Here it is 
assumed that moduli E and G vary according to Eq. (3) 
and the Poisson’s ratio ν is assumed to be a constant. The 
linear constitutive relations are: 
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Where 
 

 σ  = (σx, σy, σZ τxy, τyz, τxz) t are the stresses 
ε = (ε X, ε Y, ε Z, γXY, γYZ, γXZ) t are the strains 
Qij’s are the plane stress reduced elastic constants in the 
plate axis. The superscript t denotes the transpose of a 
matrix.  
 
2. 2. Equations of motion  

The governing equations of displacement model 
in Eq. (1) are derived using the dynamic version of the 
principle of virtual displacements. The dynamic version of 

the principle of virtual work or Hamilton’s principle can 
be written in the analytical form as:  
 

0)(
0
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Where 
 

δU = virtual strain energy  
δV = virtual work done by applied forces  
δK = virtual kinetic energy   
δU + δV = total potential energy.  

The virtual strain energy, work done and kinetic 
energy are given by: 
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δV = - ∫ qδW0 dx dy                                               (8) 
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Where 
 

q = distributed load over the surface of the functionally 
graded plate 
ρ0 = density of plate material  

0u& = ∂u0 / ∂t, 0v& = ∂v0 / ∂t etc. indicates the time 
derivatives.  

Substituting for δu, δv and δk from Eq. (7-9) in to 
the virtual work statement in Eq. (6) and integrating 
through the thickness of the functionally graded plate, the 
in-plane, transverse force and moment resultant relations 
are obtained. Substituting Eq. (5) into force and moment 
resultants and upon integration the expressions obtained 
and written in a matrix form which defines the stress/strain 
relations of the FGM plate is given by:  
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The principle of virtual work is used to derive the 
equilibrium equations and are  expressed in terms of   uo, 
vo, wo,   θx , θy, θz, uo

*
, vo

*
, w0

*, θx
*
,θy

*
, θz

*by substituting for 
the force and moment resultant from Eq.(10). 
 
3. ANALYSIS OF FUNCTIONALLY GRADED 
    MATERIAL PLATE USING DISPLACEMENT 
    MODEL 

The simply supported (SS) boundary conditions 
are considered for displacement model. The Navier 
solution procedure, displacement components that satisfy 
the equations of boundary conditions are considered for 
the analysis. The Solutions are obtained using Newton 
Raphson method.  
 
3.1 Newton Raphson method for nonlinear analysis  

The Newton Raphson iterative method is based 
on Taylor’s series expansion. In the present work, the 
equation [S (∆ s+1)] {∆} s+ 1 = {F} is solved for generalized 
displacement vector {∆} s+1 by Newton Raphson iterative 
method. 
The iterative procedure is as follows: 
 

{R} {{∆} s+1} = [S (∆ s+1)] {∆} s+1-{F} 
 

R is called Residual and [S (∆ s+1)] is the stiffness 
matrix, which is a function of the unknown deflections 
{∆} s+1.  
Expanding {R} in Taylor series about {∆} r s+1  
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{0} = {R} s+1 + [KT ({∆} r s+1)] {δ∆} +O ({δ∆} 2) 
 

Where 
 

O (.) denotes the higher-order terms in {δ∆} 
[KT] is known as the tangent stiffness matrix (geometric 
stiffness matrix). 
{R} rs+1 = [K (∆r

s+1)] {∆} r s+1-. {F} 
 

The assembled equations are then solved for 
incremental displacement vector after imposing the 
boundary and conditions of the problem.  
 

{δ∆}  = - [KT ({∆} r s+1)] -1{R} rs+1 
 

{∆} r+1 s+1 = {∆} r s+1+ {δ∆} 
 

Total displacement vector is obtained from the 
tangent stiffness matrix, using the latest known solution 
and the process will continue until the termination criteria 
with a pre-selected error tolerance is obtained.   
 
4. RESULTS AND DISCUSSIONS  

The Navier solutions are developed for 
rectangular plates with two sets of simply supported (SS) 
boundary conditions. The two types of boundary 
conditions are given below. 
 

At edges x = 0 and x = a 
 

v0 = 0,  wo = 0, θy = 0, θz = 0, Mx = 0, v0
* = 0, w0

* = 0, 
 

θy
* = 0, θz

* = 0, Mx
* = 0, Nx = 0, Nx

* = 0.                      (11) 
 

At edges y = 0 and y = b 
 

u0
 = 0, wo = 0, θx = 0, θz = 0, My = 0, u0

* = 0, w0
* = 0, 

 

θx
* = 0, θz

* = 0, My
* = 0, Ny = 0, Ny

* = 0.   
 

The above simply supported boundary conditions 
are considered for solutions of the plates using higher-
order shear deformation theory.  

The Mechanical load is expanded in double 
Fourier sine series as: 
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mπ
and β = 

b
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In order to verify the accuracy and efficiency of 
the developed theories results and to study the effects of 
transverse shear deformation, the following typical 
material properties are used for obtaining the numerical 
results. 
 
Material 1: (Aluminium) 

CXmKWmKgGPaE 063 /1023,/204,/707,2,3.0;70 −===== ακρυ                 
 
Material 2: (Zirconia) 

CXmKWmKgGPaE 063 /1010,/209,/000,3,3.0;151 −===== ακρυ  
 

The center deflection and load parameter are 
presented here in non-dimensional form using the 
following.  
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For free vibration analysis, the Eigen values 
problem is given as: 
 

([S] –λ [M]) = 0                                           (15)           
 

Where 
 

λ = ω2 is the eigen value. 
 

The real positive roots of the Eq. (15) give the 
square of the natural frequency ωmn associated with mode 
(m, n). The smallest of the equation is called the 
fundamental frequency. 

The natural frequencies of functionally graded 
material plate are presented here in non-dimensional form 
using the following multiplier )/()/( 2

2 Eha ρωω =  
Simply supported square functionally gradient material 
plate under transverse load is considered for comparisons 
of fundamental natural frequencies for various material 
variation parameters (n). The solution procedures outlined 
in the previous section are applied to the above set of 
material properties of functionally graded simply 
supported square plates subjected to transverse load. The 
variation of non-dimensionalized fundamental frequencies 
against side to thickness ratio, modulus ratio and aspect 
ratio as a function of material variation parameter (n) for a 
simply supported FGM plates for displacement model is 
shown in Figures 2-5. The results obtained using higher 
order theory is compared with the available literature [19-
20]. 
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Figure-2. Non-dimensionalized natural frequencies Vs Power law index n with different side to 
thickness ratio’s for a simply supported FGM plate. 
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Figure-3. Non-dimensionalized natural frequencies Vs side to thickness ratio (a/h) for a simply 
supported FGM plate with variable thickness for model. 
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Figure-4. Non-dimensionalized natural frequencies Vs modulus ratio (E1/E2) for a simply 
supported FGM plate for model. 
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Figure-5. Non-dimensionalized natural frequencies Vs aspect ratio (a/b) for a simply 
supported FGM plate for model. 

 
Figures 2 to 5 shows the non-dimensionalized 

fundamental frequencies with respect to side to thickness 
ratio, aspect ratio and modulus ratio for a simply 
supported FGM plate for displacement model respectively 
as a function of material variation parameter (n). It is 
noticed that the fundamental frequencies are increasing 
with increase in side to thickness ratio, modulus ratio and 
decreasing with the increase of aspect ratio. From Figure-
2, it is seen that the present results are very close 
agreement with the Mustapha (2010) and Ali Shahrjerdi 
(2011) results. 
 
5. CONCLUSIONS 
 The following conclusions are drawn for the free 
vibration analysis of FGM plates. 
 

 It is to be concluded that the increasing of properties of 
ceramic to metal causes decreasing in natural frequency 
of plate; 

 It is to be found that the natural frequencies of FGM 
plate with different constituents lies between those of 
natural frequencies of metal and ceramic; 

 It can also be conclude that the natural frequencies 
increase with volume fraction of ceramic; 

 It is to be concluded that the natural frequencies of 
homogeneous ceramic plate is maximum among those 
of all functionally graded material plates; 

 It is to be found that the property of FGM with a small 
value of material variation parameter (n) approaches a 
ceramic plate, thus the frequency of FGM is high. On 
the other hand the property of FGM with a large value 
of n approaches metal plate and frequency of FGM is 
small; and 

 It is to be concluded that the natural frequencies of FGM 
are decreased with increase of volume fraction index n 
in other words, the increasing of the proportion of 
ceramic to metal results in a decreasing in natural 
frequencies. 
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