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ABSTRACT

This paper deals with a commensal-host ecological model with the host being harvested at a constant rate. Further,
both the commensal and the host species are with limited resources. The Mathematical equations of the Model are
characterized by a couple of first order non-linear ordinary differential equations. All the possible, six equilibrium points
for the model are identified. Analytical solutions for the linearized perturbed equations are found and results are illustrated.
Further, some threshold results are stated followed by the identification of threshold regions through illustrations. Criteria
for global stability of linearized equations are discussed employing a property constructed Liapunov’s function.
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1. INTRODUCTION

Ecosystem models are a development of
theoretical ecology that aims to characterize the major
dynamics of ecosystems, both to synthesis the
understanding of such systems and to allow predictions of
their behaviour (in general terms, or in response to
particular changes). Research in theoretical ecology was
initiated by Lotka [11] and by Volterra [18]. Since then
many mathematicians and ecologists contributed to the
growth of this area of knowledge as reported in the
treatises of Mayer [12], Kapur [6, 7], Svirezhev and
Logofet [17], Kushing [8] and Freedman [5]. The
ecological interactions can be broadly classified as prey-
predation, competition, commensalism, Ammensalism,
Neutralism and so on. N.C. Srinivas [16] studied the
competitive ecosystems of two species and three species
with limited and unlimited resources. Later Lakshmi
Narayan and Pattabhi Ramacharyulu [9, 10] investigated
prey-predator ecological models with a partial cover for
the prey and alternative food for the predator and prey-
predator model with cover for the prey and alternate food
for the predator and time delay. Stability analysis of
competitive species was carried out by Archana Reddy,
Pattabhi Ramacharyulu and Gandhi [1, 2], Bhaskara Rama
Sarma and Pattabhi Ramacharyulu [3, 4]. While the
mutualism between two species was examined by
Ravindra Reddy [14]. Recently Phanikumar et. al., [13]
obtained the criteria for the stability of a Host- A
flourishing Commensal species pair with limited
resources. Seshagiri Rao et. al.,, [15] investigated the
stability of a host- A decaying commensal species pair
with limited resources.

The present investigation is on a commensal-host
ecological model with the host being harvested at a
constant rate and both the species are with limited
resources. The Mathematical equations of the Model are
characterized by a couple of first order non-linear ordinary
differential equations. In all, six equilibrium points for the
model are identified. Analytical solutions for the

linearized perturbed equations are found and results are
illustrated. Further, some threshold results are stated
followed by the identification of threshold regions through
illustrations. Criteria for global stability of linearized
equations are discussed employing a property constructed
Liapunov’s function.

2. BASIC EQUATIONS

Notation adopted
N, (t)
N, (t)

e,(=d,/a,) : Extinction coefficient of S;.

Population of the Commensal species (S, ).

: Population of the Host species (Sz).

c(=a,/a,) : Coefficient of Commensal.
k,(=a,/a,,): Carrying capacity of S,.
H, . Constant harvesting rate of S,

Further both the variables N; (t) and N, (t) are
non-negative for all t and all the model parameters d;, a,,
a1, A, aip, Hy and H, are assumed to be non-negative
constants.

Employing the above terminology, the equations
for this model are given by the following system of non-
linear coupled ordinary differential equations.

(i). Equation for the growth rate of the Commensal

species (S,) is:
dN,
dt

(ii). Equation for the growth rate of the Host species
(S,)is:
dN,

=a,N,[-e, =N, +¢cN, ] @2.1)

—a,k,N, ~N,? —H, | 22)

79



VOL. 6, NO. 11, NOVEMBER 2011

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

=n
©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. @

www.arpnjournals.com

3. EQUILIBRIUM STATES
The system under investigation has the following
dN dN
L —0and—2% =0.
dt dt

These states are classified into two categories A and B.

six equilibrium states given by

A. The states in which only the host survives

A.1.When k,” = 4H, (A1)
— — Kk,

E:N,=0; N2:7 (3.1)

A.2.When k,* > 4H, (A2)
JR— _ 2_

E,:N,=0; Nz—k2+ K —4H, (3.2

2

— — k, -k, —4H

E;: N,=0; N, =2 22 2 (3.3)

B. The co-existent states

B.1. When k,” = 4H, (B.1)

— ck,—-2¢, — Kk
E4:N1:—22 1;N2:72

This exists only whenck, > 2e, .

(3.4)

B.2. When k,” > 4H, (B.2)
o c[kz ++/k,’ —4H2]
E5:N1 = —e]_:

2
— ++k,? —4H,
N, = ; (3.5)

c[kz —Jk,’ —4H2}

m

60 N, =

N, = (3.6)

c[kz +k,’ —4H2}
2

Both these exists only when

>e,

4. STABILITY OF THE EQUILIBRIUM STATES
LetN=(N,,N,)= N +U (4.1)
where U = (u,,U,) is a perturbation over the

equilibrium state N=(N_1,N_2) are so small that their
second and higher powers and products are neglected.

The basic equations (2.1) and (2.2) are linearized
to obtain the equations for the perturbed state.

du
=~ AU (4.2)
dt
where
A= —€a; - 2a11'\T1 + CallNiz CanE L (4_3)
0 k,a,, —2a, N,

The eigen values of the characteristic matrix A are:
(ﬂqvlz) = (_ €, —- 2a11W1 +Ca;, l\Tzv kzazz - 2a22 Wz) (4'4)

The equilibrium state is stable, only when both
the eigen values of the characteristic matrix A are negative
in case they are real or both the roots have negative real
parts in case they are complex.

4.1. Stability of the equilibrium state E;: N-0s N 2K
2

2
In this case the corresponding linearized
perturbed equations are:
ck
u, an(—z—elj 0f|U
d 2
el = (4.5)
dt
u, u,

0 0
From (4.5), the corresponding characteristic equation is:

z{z - an(% - elﬂ -0 “.6)

- ck,
The characteristic roots of (4.6) are 4, = a,, Tl €,

and A, = 0. Since one of the two roots is zero, this state is

unstable.
Here three cases will arise, these are:

CASE 1A: ¢k, sel CASE 1B: k, <e CASE 1C: ¢k, e
7 1 7 1 7_ 1

ck,
Case-1A: When TS > e

From (4.5), the solutions of the linearized
perturbed equations in this case are given by:

311[72—91}
Uy =Uy® 4.7

U, =Uy (4.8)
and these solution curves are illustrated as follows.
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Case -1A.1: When U, > U,

The initial population strength of the commensal
is greater than that of the host i.e., U,y > U,,. In this case

the commensal always out-numbers the host. Further the
host species is observed to be at a constant distance from
the equilibrium point in the course of time, while the
commensal species goes far away from the equilibrium
point is shown in Figure-1.

L]
a4
uln
Uz *l
-
0 t

Figure-1

Case-1A.2: When U, < U,
The initial population strength of the host is
greater than that of the commensal i.e., U;; < U,,. In this

case u,(t)=u,(t) is possible at a
timey* — 2 Iog(uZOJ- This is the dominance
an(Ckz - 281) Uso
reversal time as shown in Figure-2.
]
&
)| 117
i
i
I
o |
i
i
: I
0 t* t

Figure-2

4.1 (a) Trajectories of the perturbed species
Eliminating ‘t’ between the equations (4.7) and
(4.8), we obtain:

u2
u20

=1 (4.9)

and the trajectory is a straight line as shown in Figure-3.

&
uz

uz0

Y

o

Figure-3

ck,
Case-1B: When S <€

From (4.5), the solutions of the linearized perturbed
equations in this case are given by:

u, =u efaﬂ(er%zjt (4.10)
1 10 .

U, = Uy, (4.11)

and the solution curves of (4.10) and (4.11) are illustrated
below.

Case-1B.1: When U, > U,
The initial population strength of the commensal
is greater than that of the host i.e., U;, > U,,. In this case

U1(t) =u, (t) is possible at a time

* #m Yo |, This is the dominance
g
—ck,)

all (Zel u20
reversal time over the host as shown in Figure-4.

u#s
o

‘L-ljl::\I 110
E\—»uu

I

I

. L
0 t* t

Figure-4
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Case-1B.2: When U;, <U,,

In this case the host continues out-numbering the
commensal through out its natural growth rate as shown in
Figure-5.  However  the  commensal  converge
asymptotically to the equilibrium point, while the host is
observed to be at a constant distance from the equilibrium
point in the course of time.

Ll "
1 #1123
uin
‘HH\
o,
-,
“m..h
T,
—
-
] t
Figure-5

4.1 (b) Trajectories of the perturbed species
Eliminating ‘t” between the equations (4.10) and
(4.11), we obtain:
u
-2 -1 (4.12)
u20

and the trajectory is a straight line as shown in Figure-6.

uz

20

k

uLn
Figure-6
ck,
Case-1C: When N =€

The solutions of the
equations in this case are given by:

linearized perturbed

U, = Uy (4.13)
U, = Uy, (4.14)

and the solution curves of (4.13) and (4.14) are illustrated
below.

Case-1C.1: When U, > Uy,

The initial population strength of the commensal
is greater than that of the host. In this case the commensal
always out-numbers the host. Further both the species are
at a constant distance from the equilibrium point as shown
in Figure-7.

Na
] 1]
12 110
-
0 t

Figure-7

Case-1C.2: When U,; <U,,
The initial population strength of the host is
greater than that of the commensal i.e., U,y <U,,. In this

case the host always out-numbers the commensal as
shown in Figure-8.

Ua
uz0 >3
U *1])
-
0 t

Figure-8

4.1 (c) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.13) and
(4.14), we obtain:

ul _ u2
u10 u20

(4.15)

and the trajectory is a straight line as shown in Figure-9.
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uz
uz0

Y

0

Figure-9

4.2. Stability of the equilibrium state

_k +/k,” —4H,
2

In this case the characteristic roots of the
perturbed equations are

. k, +yk,” —4H,

2

E,: N,=0;N,

_el

and A, =—a,,yk,” —4H, .
As before three cases will arise.

k, ++/k,> —4H
Case-2A: When e, > ¢| — 2 2

2

The above two roots A, and A, are negative and
hence the steady state is stable.

The solutions of the linearized perturbed
equations in this case are given by:
c(k2+1/k22—4H2J
—-ay; el—f t
u, =u,e (4.16)
—{ ay5/k,2~4H, |t
Uy = Uy (saf-am) (4.17)

The solution curves of (4.16) and (4.17) are
shown in Figures 10 to 13 and the observations are
presented in below.

2 2
ai[[k JkZMB Y ai[el[k JkZMH P
Case-2A.1 Case-2A.2
o ut
o u10
N uzn¥
' ¥
i —
» t* t
0 t 0 '
Figure-10 Figure-11
Case-2A.3 Case-2A 4
ihig "
uzn
uz0
ulp
o < e K
S~———u o
1 __112 t=
0 £ t L
Figure-12 Figure-13
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Observations:

Case-2A.1:
The initial population strength of the commensal

is greater than that of the host i.e., U;, > U,,. In this case

the commensal continues to out-number the host as shown
in  Figure-10. However both the species converge
asymptotically to the equilibrium point.

Case-2A.2:
The initial population strength of the commensal

is greater than that of the host i.e., U;, > U,,. Initially the

commensal out-numbers the host and this continues up to
the time

t' = ! Iog[umJ
c(k2 K, —4H2j . Uz

after which the host out-numbers the commensal. This is
illustrated in Figure-11.

Case-2A.3:
The initial population strength of the host is

greater than that of the commensal ie., U, <U,.
Initially the host out-numbers the commensal and this

continues up to the time
t= L Iog(umJ
c[k2+,/k22—4|-|2) Ugg

ay k22_4H2_a11 € - 2

after which the dominance is reversed as shown in Figure-
12.

Case-2A.4:
The initial population strength of the host is

greater than that of the commensal i.e., U;, < U,,. In this

case the host continues to out-number the commensal as
shown in Figure-13.

4.2 (a) Trajectories of the perturbed species

Eliminating ‘t” between the equations (4.16) and
(4.17), we obtain:

)

[ [k2+\/k224H2]}
all el—c _—

(4.18)

2
where y =

and the resultin
a22\/k22*4Hz g

curves are parabolic type and are shown in Figure-14.
This figure exhibit the stability of the equilibrium state.

Figure-14

k, ++k,” —4H,

Case-2B: When g, <C 5

In this case one root (/11) of the above two roots
is positive so the state is unstable.

The solutions of the
equations in this case are given by:

C(k2+w,k22—4H2 ]
Q| ————— ¢ t

linearized perturbed

2

U, = U, (4.19)

—(a221/k22—4H2 jt

U, = Uye (4.20)

and the solution curves are discussed as below.

Case-2B.1: When U,; > U,,

The commensal species always out-number the
host species in natural growth rate as well as in its initial
population strength, where as the host declines further is
shown in Figure-15.

]
11 & /
g —
|13EI\
— -
0 t
Figure-15

Case-2B.2: When U, < Uy,

The commensal dominates over the host in its
natural growth rate but its initial strength is less than that

of the host i.e., U;; <U,,. In this case, the host out-
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numbers the commensal till the time instant U, = Uy, (4.22)
t = ! Iog(uzo
= T 2
K lk 2 _4H U, _ *(322 k, *4H2jt
aﬂ{c[ﬁ;z]—q}+azz k,” —4H, U, = Uyt (4.23)

and there after the commensal out-numbers the host. This
is seen in Figure-16.

4 1

U2

H1o

g

0 t*

ak

Figure-16

4.2 (b) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.19) and

(4.20), we obtain:
k2+\/k224H2] e}
forvle =42 | o

( Y Jaﬂ\ k2274H2 ( u Jan{c[ 2
1 = =2
ulO u20

and the trajectories are hyperbolic type as shown in
Figure-17.

(4.21)

L
uz
20
0 1 >
w0
Figure-17
2
k, ++/k,” —4H,

Case-2C: When e, =C >

In this case one root (/11) would be zero while the

other root is negative and hence the state is unstable.
The solutions of the linearized perturbed
equations in this case are given by:

The solution curves of (4.22) and (4.23) are
illustrated in Figures 18 and 19.

Case-2C.1: When U, > Uy,
The initial population strength of the commensal
is greater than that of the host i.e., U;, > U,,. In this case

the host decays while the strength of the commensal
remains constant, the death rate of which is compensated
by the support given by the host. This is illustrated in
Figure-18.

114
1o = 11]
120
1z
W] t

Figure-18

Case-2C.2: When U, < Uy,
The initial population strength of the host is
greater than that of the commensal i.e., U,y < U,,. In this

case the host dominates over the commensal and this
continues up to the time instant

t=t" :|og(uzoj after which the
a,, kz2 -4H, U,
commensal dominates over the host. Further the

commensal species diverge away from the equilibrium
point while the host species is asymptotic to the
equilibrium point. This is seen in Figure-19.

[y

20 \
un . *1)
:K_'
| 12
1

Figure-19

85



VOL. 6, NO. 11, NOVEMBER 2011

ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

=n
©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. @

www.arpnjournals.com

4.2 (c) Trajectories of the perturbed species
Eliminating ‘t” between the equations (4.22) and
(4.23), we obtain:

=1 (4.24)

and the corresponding trajectory is a straight line shown in
Figure-20.

F 3 &
2
20
-
0 1 1]
110
Figure-20
4.3. Stability of the equilibrium state
— — k,—+k,”—4H
E,:N,=0; N, =-2 ; 2
The corresponding characteristic matrix in this
state is:
(kz—,/k22—4Hz]
a,|c DT -e 0
A:
0 a, K,  —4H,

The corresponding characteristic roots are:

k, —k,” —4H,

2

and A, =a,k,” —4H, >0.

Since one of the two roots is positive, this state is

212311 c —€

unstable.
As before three cases will arise:

k, —/k,” —4H,
2

Case-3A: When e >C

The solutions of the
equations in this case are given by:

[ c(kz,/kzzmzj}
-3 G— = |t
u,e

linearized perturbed

2

Uy = Uy (4.25)

(azzwlkzz—Aszt

U, = U,,e (4.26)

The solution curves of (4.25) and (4.26) are
shown in the following figures and the observations are
presented in below.

Case-3A.1: When U, > U,,

The host dominates over the commensal in its
natural growth rate but its initial strength is less than that

of the commensal i.e., U, >U,,. In this case, the
commensal out-numbers the host till the time instant

1 u and
t' = Iog[“’j
_ 2_ u
aﬁ[[k ka]el] o,

2

there after the dominance is reversed is shown in
Figure-21.

4

o

20

Figure-21

Case-3A.2: When U, <U,,

The host species always out-number the
commensal species in natural growth rate as well as in its
initial population strength, where as the commensal
declines further as shown in Figure-22.

~
___.-"
uap——-"
ulu\
Ty
-
0 t
Figure-22

4.3 (a) Trajectories of the perturbed species
Eliminating ‘t” between the equations (4.25) and
(4.26), we obtain;
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)

[k,2—4H —ay| g-c| -2 k —\'k2—4H
(ul Jazz ’ ’ _(uz j b [e c[ 2 Case-3B: When g, <C 2 2 2

(4.27) 2

ulO u20
In this case the solutions of the linearized

and the trajectories are hyperbolic type as shown in perturbed equations are given by:

Figure-23.
{c(kw/kzzmzj ]
| ——— ¢ t

2

3
2 u, =u,,e 4.28
o0 1 10 ( )
Ay K2 —4H, |t

u, = uzoe( a4t (4.29)
The solution curves in this case are illustrated

below from Figures 24 to 27.

1] >

I::I —
ulg
Figure-23
k, -k, —4H —Jk,7 -
au[c[ZZZZ] - 91] >ay kzz —-4H, au[c[kazzéle} - el} <8y k22 -4H,
Case-3B.1 Case-3B.2
1 L2
u
W ua 1
u10 > u20
U w0
2 20 ;
0] T 0 t* 4
Figure-24 Figure-25
Case-3B.3 Case-3B.4
Ul ug u
uf uj
ulO < l"IZO
uzn
un
' 0 t
Figure-26 Figure-27
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Observations:

Case-3B.1:

Initially, the first species out-numbers the second
species and it continues to grow. Also we observe that
both the species diverge away from the equilibrium point.
Hence the equilibrium point is unstable as shown in
Figure-24.

Case-3B.2:
The initial population strength of the commensal

is greater than that of the host i.e., U, > U,,. Initially, the

commensal out-numbers the host and this continues up to
the time

. 1

t" = Iog(umJ
k, —/k,’ —4H Uz
a,K,? —4H, —an(clzzz]—elJ

2

after which, the host out-numbers the commensal as
shown in Figure.25.

Case-3B.3:
The initial population strength of the host is

greater than that of the commensal ie., U;y <Uy.
Initially, the host out-numbers the commensal and this

continues up to the time
t" = 1 |Og(uzoj
k, —k,> —4H Uso
311[0[2222]—61]—322 k,” —4H,

after which, the dominance is reversgd. This is illustrated
in Figure-26.

Case-3B.4:
The initial population strength of the host is

greater than that of the commensal i.e.,U;; < U, . In this

case the second species out-number the first species all the
time as shown in Figure-27.

4.3 (b) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.28) and
(4.29), we obtain:

Ve
u10 UZO
oo k, —/k,> —4H, e
where N 2 '] and the resulting

a4 k> —4H,
curves are shown in Figure-28.

(4.30)

U2 el oy
uz0
¥ o<1
0 w
o
Figure-28
k, —/k,” —4H,

Case-3C: When €, =C 5

The solutions of the linearized perturbed

equations in this case are given by:

U, = Uy, (4.31)

(azzw/k22—4H2)t

U, = Uy,e (4.32)

The solution curves of (4.31) and (4.32) are
illustrated below.

Case-3C.1: When U, > Uy,
Initially the commensal dominates the host. In
this case Ul(t): uz(t) is possible at a time

t" = ;mg[uij, which is the dominance
4H,

a,, k22 - Uy
reversal time of the host species as shown in Figure-29.

U2

A .
L

Figure-29

Case-3C.2: When U, < U,,

In this case the host always out-numbers the
commensal. Here the commensal species is observed at
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constant distance from the equilibrium point, while the
host species diverge away from the equilibrium point is
shown in Figure-30.

1z
HJL
15
o *11]
0 t

Figure-30

4.3 (c) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.31) and
(4.32), we obtain:

ul
ulO

=1 (4.33)

and the corresponding trajectory is a straight line as shown
in Figure-31.

4 A
uz
20
i
Y 1 ]
o
Figure-31
4.4. Stability of the equilibrium state
— ¢ck,-2¢e, — Kk
E,: N,=—2—"2:N,=-2
4 1 2 2 2
The corresponding characteristic equation of this
state is:
ck
/1(/1 +ay, (72 -8, D =0 (4.34)

The characteristic roots of the equation (4.34) are
ck, _
A =-a, T_el <0 and A, =0. Since one root
of the two roots would be zero so this state is unstable.

The solutions of the linearized perturbed
equations in this state are:

—ay| K2 e
ulz[ulO_Ll]e [2 jt‘H—1

(4.35)
where L, = CU,, (4.35.1)
U, = Uy, (4.36)

Two cases would arise here.

Case-4A: U, =L,; Case-4B: u,, # L,

The solution curves in these two cases are
illustrated below.

Case-4A.1: When U, > U,

The initial population strength of the commensal
is greater than that of the host. In this case the commensal
always out-numbers the host. Further both the species are
at a constant distance from the equilibrium point as shown
in Figure-32.

&
110 *~11]
L0 =110
-
§] t

Figure-32

Case-4B.1: When U,; > U,,
In this case the commensal out-numbers the host

till the time instant t* = 2 |Og[ulo - Ll]
all(CkZ _Zel) Uy — L1

and there after the dominance is reversed. This is shown in
Figure-33. Here the commensal is asymptotic to the
equilibrium point while, the host goes far away from the
equilibrium point.
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Figure-33

Case-4B.2: When U;, < U,,

The host continues to out-number the commensal
in natural growth rate as well as in its initial population
strength as shown in Figure-34.

Hn
11 112
11
thh
H\"n
T —11)
- [
1l i
Figure-34
k, ++k,> —4H,
d u, 1| C 2
dt| |
u2
0
The corresponding characteristic roots are
c[k2+1/kf——4H2} nd
A =-ay —e <0

2

A, =—a,,k,” —4H, <0 both negative, the steady

state is stable.

The solutions of the equations in (4.38) are given by:

[ [k2+,/k22—4H2]
—a1| C f —€

t
+L,e

u, = [ulo - Lz]e

4.4 (a) Trajectories of the perturbed species
Eliminating ‘t” between the equations (4.35) and

(4.36), we obtain;

(4.37)

and the resulting curve is a straight line as shown in
Figure-35.

F 1
uz

20

L 4

U]
110

Figure-35

4.5. Stability of the equilibrium state E. :
The corresponding linearized perturbed equations

are:
k, +yk,” —4H, u,
—-e, | cay|C 5 —-e (438)
u2
—a,,k,” —4H,
7[azzw/k2274H2)t
(4.39)
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where
c[kz +4/k,’ —4H2}

a;;CUy, 2 —€ (4 39 1)

L, =
ok, k" -4, |
2
a; 2 —€ ay kz _4H2

—(a22\1k22—4H2 )t

U, =Uy€ (4.40)

c[kz +4/k,’ —4H2}

noticed that (U, ,u,)— 0 ast — oo,
There arise the following two cases:

It is to be noted that > e and also

Case-5A: u,, = L,; Case-5B: u,y # L,

Case-5A: Whenu,, = L,
the equations (4.39) and (4.40) become:

—(azz Jk2—aH, )t

U, = U,e (4.41)

—(azz\/kzz—m2 )t

U, = Uy® (4.42)

Here both U, and U, are exponentially decay with the

same characteristic time1/a,,+/k,” —4H, , the initial

values (U,, andU,,) may however be different. Hence the

equilibrium point is stable.
The solution curves in this case are given as follows:

Case-5A.1: When U, > U,,

In this case the commensal species always out-
number the host species in natural growth rate as well as in
its initial population strength. It is noted that both the
commensal and the host converge asymptotically to the
equilibrium point as shown in Figure-36.

L
o
310
e 0]
. g
0 b
Figure-36

Case-5A.2: When U, <U,,

The host species dominates over the commensal
species in its initial population strength. Also both the
species move towards to the equilibrium point as seen in
Figure-37.

s
iz
10
“H___E_
— 12
e 1]
*
0 t
Figure-37

4.5 (a) Trajectories of the perturbed species
Eliminating ‘t’ between the equations (4.41) and
(4.42), we obtain:

L -2 (4.43)

and the corresponding trajectory is a straight line as
shown in Figure-38.

Y
uz
uzn

uin
Figure-38
Case-5B: u,, # L,
Case-5B.1: When u,, >U,, and

c[kz + 4k’ —4H2}

> —e, |>a,qk,” —4H,

all
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The initial population strength of the commensal
is greater than that of the host i.e., U,y > U,,. In this case
the commensal dominates over the host till the time instant

t'= ! Iog[ tho — LZJ
c[kz+,/k;—4H2) : Uy ~ L,
&y, f_el _azz\/kz _4H2

after which the host dominates. This is the dominance
reversal time in this case as shown in Figure-39.

14
U1
20
: u2
i (1]
T =
0 t* t
Figure-39

Case-5B.2: When u,, > U,, and

c[kz +4/k,’ —4H2}

2

a,, —e [<ayqk,” —4H,

The initial population strength of the commensal

is greater than that of the host i.e., U,y > U,,. In this case

the commensal dominates the host all the time as shown in
Figure-40.

(Y
u1n
k20
1
1
...:
0 t

Figure-40

Case-5B.3: When U,, <U,, and

c[k2 k2 —4H2}

> —e, |>ay,qk,” —4H,

all

The initial population strength of the host is
greater than that of the commensal i.e., U;q < U,,. In this

case the host continues to out-number the commensal as
shown in Figure-41.

la
u30
o
uz
|
=
0 I
Figure-41
Case-5B.4: When U,;, <U,, and
c[k2+\/k22—4H2J .
a, —e, [<a,+k,” —4H,

2

The initial population strength of the host is
greater than that of the commensal i.e.,U;; < U,,. In this

case initially the host out- numbers the commensal and
this continues up to the time instant

t' = 1

Uy + sz

Iog[ ‘
2 {,+ i -4, Uy + L
azz\lkz _4H2_au f_el

where Lz' = —L, after which, the dominance is reversed.
The dominance reversal time is shown in Figure-42.

LYY
.1
o
i u1
' =11
0 t* t

Figure-42
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4.5 (b) Trajectories of the perturbed species
Eliminating ‘t” between the equations (4.39) and
(4.40), we obtain:

V4
o (EJ(U_ZJ N (1_ i)(“_ZJ
Up U AUy Uy A\ Uz
{ {kz +k,> —4H,
ay|C|———— |~
where

2 ] el]
and the resulting

(4.44)

B 2
aynyk,” —4H,
curves are parabolic type and are  shown in Figure-43.
This figure exhibits the stability of the equilibrium state.

yl
Figure-43
4.6. Stability of the equilibrium state E :
- c[kz —w/k22—4H2} Kk, —+k,?—4H,
N, = —-€ Nz =
2 2
c[kz —k,? —4H2J
along  with g < 5 and the

corresponding characteristic matrix is:

k, —yk,” —4H k, —yk,” —4H
—a,|c 22 2 l-e | caylc 2 2 2 |-e,
A= (4.45)
I 0 a,,yk,” —4H, |
The characteristic equation of (4.45) is: (azz /k22—4H2jt
U, =Uy€ (4.48)

2
{“a{{kz"‘z“mz]_eﬂ(ﬂ_an K ‘4sz=0 (4.46)

The characteristic roots of (4.46) are:

c[kz—,/kzz—mz}

2

A, =a,k,’—4H, >0.

Since one of the two roots is positive then the
steady state is unstable.

In this state the solutions of linearized perturbed
equations are as follows:

a [C[kZ—‘/kzz—AHz] .
11 f —c1
u, = [ulo - La]e

A =-a, e, [<0 and

t
[azz VK2 —4H, jt

+Le (4.47)

c k ~Jk,? —aH ]
where 8;CUy —&

M[{ } e]+a22 k,” —4H,

(4.47.1)

There arise the following two cases.

Case-6A: U, = L,; Case-6B: u,, # L,
The solution curves in these cases are illustrated
as follows:

Case-6A: Whenu, = L,
the equations (4.47) and (4.48) become:

(azzw/k22—4H2jt

U, = U,e (4.49)
(azzw/k22—4H2)t

U, = Uye (4.50)

Case-6A.1: When U, > Uy,

The initial population strength of the commensal
is greater than that of the host. However, both the species
move away from the equilibrium point. This is illustrated
in Figure- 44.
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0 t
Figure-44

Case-6A.2: When U,; < U,
The initial population strength of the host is
greater than that of the commensal i.e., U;; <U,,. In this

case the host dominates the commensal all the time as
shown in Figure-45.

Hn 11>
u]
uzol—"
=
ujg——"
-
W t
Figure-45

4.6 (a) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.49) and
(4.50), we obtain:

u u
-1 _2 (4.51)
Up Uy

and the corresponding trajectory is a straight line as shown
in Figure-46.

uz
20

ulin

Figure-46

Case-6B: u,, # L,

Case-6B.1: When U, > U,,

The host dominates over the commensal after the
time instant t*, but its initial population strength is less
than that of the commensal. Here, the host dominance time
over the commensal is

= ! Iog( Yo L3J
-4/ - Uy — Lg
a“[c[i(zl(z%] — elJ + a22 kz2 — 4_H2

2
This is illustrated in Figure-47.

Uk
uz
110
120 !
I
1
. U]
1
L -
0 £* t

Figure-47

Case-6B.2: When U,; <U,,

In this case the host species always out-number
the commensal species. Also it is evident that the host
species goes far away from the equilibrium point while the
commensal is asymptotic to the equilibrium point as
shown in Figure-48.
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4.6 (b) Trajectories of the perturbed species
Eliminating‘t’ between the equations (4.47) and
(4.48), we obtain:

Figure-49
5. THRESHOLD (OR) PHASE - PLANE DIAGRAM

dN
The conditions —tl =0 an

that neither N, nor N, changes its density. When we

u, L, | u, L, | u, M impose these conditions the basic equations give rise to
u u u u u . . : Nl —_0-
10 10 20 10 20 four straight lines. At the points whereF =0;
ay | c| Kezvke'=4H, Vo’ -4H, e, dN,
2 ) —==0 the resulting straight lines divide the phase
where , - , the resulting dt
Az Vk'-an, plane in to eight regions in the first quadrant
curves are shown in Figure-49. N, >0,N, >0 (vide Figure-50).
by
I
I A fde=10
i
dblyfdla <= 0 Stahle
A/t =0 E; Es A/l > 0
Conditionally stable R T
Vi 7 M- Lo¥AR 7R,
dMfdb = 0 4
E A fdb, < 0
unstahle - unstahle _k
Vi I o=
ledez:‘:U dN]_.lrdN2"‘:D
dblafdt=1 Es
unstable] - T
ANyl <8 unstable N = %
A AR = 0
- /B/ » Iy
Figure-50
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Threshold regions

Region I: Both the species N, and N, decline with time t.

Region II: The commensal species N, declines and the
host species N, flourishes with time t.

Region I11: The commensal species N, declines and the
host species N, flourishes with time t.

Region 1V: Both the species N, and N, decline with time t.

M2

-

E;

Region V: The commensal species N, flourishes and the
host species N, declines with time t.

Region VI: Both the species N; and N, flourish with

time t.
Region VII: Both the species N, and N, flourish with
time t.
Region VI111: Both the species N; and N, decline with
time t.

dMaidt=10

Conditionally stable

E

utistable

Es

dMaidt=10

unstable

&

Figure-51 (Threshold diagram)

6. LIAPUNOV’S FUNCTION FOR GLOBAL
STABILITY
In Section 4.5 we have discussed the local
stability of the state of co-existence. Now we examine the
global stability of the dynamical system (2.1) and (2.2).
We have already noted that this system has a unique,
stable non-trivial co-existent equilibrium state at

c[k2+w/k22—4H2] K k.2
— +4k,” —4H
N, = > N, =2 : Z.

2

!

Basic equations:

dN
dtl = allNl[_el - N1 +CNz]

(6.1)

dN,
dt =ay

The linearized perturbed equations over the
perturbations (uU,,U,) are:

koN, —N,* —H, | 62)

% = _allN_lul + CallN_1u2 (6.3)
du — k
d_tz = —ZaZZ[N2 —72}“2 (6.4)
The corresponding characteristic equation is:

— — k
(/1+aan{/1+2az{N2 —éD:O 6.5)
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e [N +2a, [Nkzﬂa . zN*[N*kﬂ ~0(66)

Equation (6.6) is of the form A* + pA+q=0

where
— — k,
p=a;N,+2a,|N, Y >0 (6.7)
—— Kk,
q=2a,a,N,| N, Y >0 (6.8)

.". The conditions for the existence of Liapunov's function
are satisfied.

Now define
E(ul,uz)zé(Aul2 +ZBu1u2+Cu22) 6.9)

where

— k1) —T— &
(ZaZZ[NZ _ZZD +2a,,a,, Nl[N2 —22}
A= (6.10)

D
—[— K,
2ca;a,,N,| N, —?
B= 6.11
D (6.11)
—2 —\ —— Kk
a,’N, + (ca11 Nl) +2a,,a,, N{N2 —22}
C= (6.12)
D
And
D=pqg>0 (6.13)

From the equations (6.7) and (6.8) it is clear that D>0.
Also

2
— k —— Kk —2 —\ —— k
DZ(AC—BZ):{[(ZaZ{NZ—;D +2ana22N{N2—22ﬂ[anz N, +(caan) +2a11a22N1{N2—22D

_ (anlla22 N, )2 [NZ _kZZT}

— D?(AC—B?)>0=> AC—B? >0 ie, B>AC<0 (6.14)
.". The function E (U,,U,) at (6.9) is positive definite.
Further %% +%% =(Au, +Bu,) (— a, N,u, + callN_lu2)+ (Bu, + Cuz)[— 2az{N—2 —%}uzj
1 2
(6.15)
Substituting the values of A, B and C from (6.10) (6.11) and (6.12) in (6.15) we get
2

OE du, OE du 1 — — kK —— Kk
é_uld_tlJFEd_tzz_B allNll(Zaz{N2 —?ZD +2a11a22N1{N2 —?ZH u;

1 — — k1) T K — T K o kT
+E CailNl 2&22 Nz‘? +2311322N1 Nz‘? _auCN1 Zauazle Nz‘? _4ca11a22 N1 Nz‘? u,u,

1 — —— Kk — k 2 —\2 —— k
_D{Caan(zcanazz N1|:N2 _22:|j_2a22[N2 _22:”:(3'11'\]1) +(Ca11N1) +[2a11a22 N1|:N2 _22:|j:|} uz2

E du E du 1 E du E du
OE du, | OB du, _. —[Duf + Du§] (6.16) JoE B, (uf +u§) (6.18)
ou, dt Ju, dt D ou, dt ou, dt
:-(uf +u§) (6.17) which is clearly negative definite. So, E (U;,U,) is a

Liapunov’s function for the linear system.
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Next we prove that E (Uy,U,) is also a Now we have to show that a—Ef +—8E f, s
Liapunov's function for the non-linear system. ou, ' ou, ?
Let f, and f, be two functions of N, and N, negative definite.
defined by: By putting N,=N;, +u;; N,=N,+u, in
fi(N;,N,) = allNl[_el -N; +CN2] (6.19) (6.1) and (6.2), we get:
f,(N,,N,)= a,lk,N, = N,> —H 6.20
2 (N7, Ny) 22( 2N 2 2) (6.20) fl(ul,uz):%:

a'_]_l (N71+u1)(_el—N71—U1+CN72+CU2)

N INEVE NG N IND 2
- aile.L Nl a11 ail Uy +Cayy N N + call Uy —€ayU; — a11 Uy +Cayy N2u1 + Cay, U U, —ay,U;

=-a; lul+callN u,+u all( N +cN ) a,,u;l +ca,u,u,
= oE GE
= fl(Ul,Uz) E ot =-(u12+u22)+
WMy _ o N, +cay, Nou +F(u,,u,) ou, " ou,
dt HT T T vl (Au, + Bu, ) F(u,,u,)+(Bu, +Cu, ) G(u,,u,) (6.28)
(6.21)
where
F(u,,U,) = —a,,u,” +ca,,u,u, (6.22)
Al Introducing ~ polar  co-ordinatesu, =rcosé,
S0 .
u, = Isind, the equation (6.28) can be written as:
fz(ul,uz) = d(Tt_ a,, (k (N +U,)— (N2 +u2)2 —Hz) OE f OE OE o _
,=-
= )= W gk 20, Glu) 623 O AU
dt r? -+ (Aco+Bsirg)F(u,, u,) +Bcog+Csi) G, )]
where (6.29)
Let us denote the largest of the numbers|A|, |B| and |C
G(u,,u,) =-a,u,’ (6.24) ] 1A 8] and [C
by K.
From (6.9) r
6E Our assumptions imply that |F(u1,u2)|<ﬁ and
= Au, + Bu, (6.25) r
U, |G(ul, u2)| < 5K for all sufficiently small r > 0.
oE
— =Bu, +Cu, (6.26) So,
ou,
E E 4Kr>  r?
Now s f1+§—f2<-r2+ 6K :—€<0 (6.30)
u, u
oE E 4 oE OE . _ 2
8u 8u2 2 Thus E (U, U,) is a positive definite function
(Au, +Bu )(—a N,u, +ca,; Nyu, + F(u,,u )) : . oE oE : .
1 2 N7 %1 Nt 111%1%2 12 with the condition that o f, +6_ f, is negative
ul u2

+ (Bu, + Cu, \(ayk, — 23, N, i, +G(u,,u,)]  (6.27)  definite.
". The equilibrium state E. is “asymptotically
stable” globally.
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