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ABSTRACT 

This paper deals with a commensal-host ecological model with the host being harvested at a constant rate. Further, 
both the commensal and the host species are with limited resources. The Mathematical equations of the Model are 
characterized by a couple of first order non-linear ordinary differential equations. All the possible, six equilibrium points 
for the model are identified. Analytical solutions for the linearized perturbed equations are found and results are illustrated. 
Further, some threshold results are stated followed by the identification of threshold regions through illustrations. Criteria 
for global stability of linearized equations are discussed employing a property constructed Liapunov’s function. 
 
Keywords: equilibrium point, equilibrium state, stability, carrying capacity, reversal time of dominance. 
 
1. INTRODUCTION 

Ecosystem models are a development of 
theoretical ecology that aims to characterize the major 
dynamics of ecosystems, both to synthesis the 
understanding of such systems and to allow predictions of 
their behaviour (in general terms, or in response to 
particular changes). Research in theoretical ecology was 
initiated by Lotka [11] and by Volterra [18]. Since then 
many mathematicians and ecologists contributed to the 
growth of this area of knowledge as reported in the 
treatises of Mayer [12], Kapur [6, 7], Svirezhev and 
Logofet [17], Kushing [8] and Freedman [5]. The 
ecological interactions can be broadly classified as prey-
predation, competition, commensalism, Ammensalism, 
Neutralism and so on. N.C. Srinivas [16] studied the 
competitive ecosystems of two species and three species 
with limited and unlimited resources. Later Lakshmi 
Narayan and Pattabhi Ramacharyulu [9, 10] investigated 
prey-predator ecological models with a partial cover for 
the prey and alternative food for the predator and prey-
predator model with cover for the prey and alternate food 
for the predator and time delay. Stability analysis of 
competitive species was carried out by Archana Reddy, 
Pattabhi Ramacharyulu and Gandhi [1, 2], Bhaskara Rama 
Sarma and Pattabhi Ramacharyulu [3, 4]. While the 
mutualism between two species was examined by 
Ravindra Reddy [14]. Recently Phanikumar et. al., [13] 
obtained the criteria for the stability of a Host- A 
flourishing Commensal species pair with limited 
resources. Seshagiri Rao et. al., [15] investigated the 
stability of a host- A decaying commensal species pair 
with limited resources.  

The present investigation is on a commensal-host 
ecological model with the host being harvested at a 
constant rate and both the species are with limited 
resources. The Mathematical equations of the Model are 
characterized by a couple of first order non-linear ordinary 
differential equations. In all, six equilibrium points for the 
model are identified. Analytical solutions for the 

linearized perturbed equations are found and results are 
illustrated. Further, some threshold results are stated 
followed by the identification of threshold regions through 
illustrations. Criteria for global stability of linearized 
equations are discussed employing a property constructed 
Liapunov’s function. 
 
2. BASIC EQUATIONS 
 
Notation adopted 
 

( )tN1             :   Population of the Commensal species ( )1S . 
 

( )tN 2             :  Population of the Host species ( )2S . 
 

( )1111 / ade =   :  Extinction coefficient of S1. 
 

( )1112 / aac =  :  Coefficient of Commensal. 
 

( )2222 / aak =  :  Carrying capacity of S2. 
 

2H                    :  Constant harvesting rate of S2.  
 

Further both the variables N1 (t) and N2 (t) are 
non-negative for all t and all the model parameters d1, a2, 
a11, a22, a12, H1 and H2 are assumed to be non-negative 
constants. 

Employing the above terminology, the equations 
for this model are given by the following system of non-
linear coupled ordinary differential equations.  
(i). Equation for the growth rate of the Commensal 
       species ( ) is: 1S

[ 211111
1 cNNeNa

dt
dN

+−−= ]                             (2.1)   

(ii). Equation for the growth rate of the Host species 
       ( ) is: 2S

[ ]2
2

22222
2 HNNka

dt
dN

−−=                               (2.2) 
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3.  EQUILIBRIUM STATES 

The system under investig ing 

uilibrium states given b

ation has the follow

six eq y 01 =
dt

dN
and 02 =

dt
dN

. 

These st
 

host surv   
 

) 

ates are classified into two categories A and B. 

A. The states in which only the ives 

A.1. When 2
2

2 4Hk =                                             (A.1
 

1E : 01 =N ; 
2
2k

N =                                     2         (3.1) 

A.2. When                                             (A.2) 
 

 2
2

2 4Hk >
 

2E : 01 =N ; 
2

 

4 222
2

Hkk
N

−+
=                    (3.2) 

2

3E : 01 =N ; 
2

4 2
2

22
2

Hkk
N

−−
=                  (3.3) 

 
B. The co-existent states 
 

B.1. When 2 4Hk =                                             (B.1)  2
2

 

4E : 
2

2 12 eck
N

−
= ; 1 2

 

2
2

k
=                             (3.4) 

is exists only when
 

B.2. When                  (B.2) 

N

Th 12 2eck > . 

 2
2

2 4Hk >                            
 

5E : 11 eN −= ; 
2

2
22

2

4H ⎥⎦
⎤

⎢⎣
−kkc⎡ +

2
4 2

2
22

2N
 

Hkk −+
=                                             (3.5) 

6E : 1

2
e−⎥⎦ ; 

2
22

1 2

4Hkkc
N

⎤
⎢⎣
⎡ −−

=

2
4 2

2
22

2

Hkk
N

−−
=                                             (3.6) 

Both these exists only when 
12

e>  
2

2
22 4Hkkc ⎥⎦

⎤
⎢⎣
⎡ −+

 
4. STABILITY OF THE EQUILIBRIUM STATES 

Let N = ( N , N ) = 1 2 UN + (4.1)                                       

here uuU =  is a perturbation over the

m state 

w ),( 21  

equilibriu ),( 2N  are so small that their 
second and oducts are neglected.  

1
higher powers and pr

The basic eq rized 
in the equations

NN=

uations (2.1) and (2.2) are linea
to obta  for the perturbed state. 
 

                                    AUdU
=                               (4.2) 

dt
 

where  
 

⎥
⎦

⎤
⎢
⎡ −−

= 111111111 2 NcaNaaeA  (4.3) 
⎣ −

+

222222

211

20 Naak
Nca

e eigen values of the characteristic matrix A are:   
 

Th
 

( )22222221111111121 2,2),( NaakNcaNaae −+−−=λλ
 

The equilibrium state is stable, only when both 
ative 

both the roots have negativ
parts in case they are complex. 
 

 (4.4) 

the eigen values of the characteristic matrix A are neg
in case they are real or e real 

4.1. Stability of the equilibrium state 1E : 01 =N ; 
2
2

2
k

N =    

In this case the 

                  

corresponding linearized 
erturbed equations are: p

 

⎥
⎥
⎥
⎥

⎢
⎢
⎢

⎠⎝=
⎥⎢

2 111

udt ⎥
⎥

⎢
⎢                        (4.5) 

⎦⎢⎣

⎟⎜ −
⎥

⎦

⎤
⎢

⎣

⎡

00

0

2

1 eau
d

⎣ 2

1

u

From (4.5), the corresponding characteristic eq

⎤⎡ ⎞⎛ 2ck ⎤⎡u

⎦

uation is:  
 

0
2 1

2
11 =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −− e

ck
aλλ                                      (4.6) 

The characteristic roots of (4.6

 

) are =1λ ⎟
⎠

⎜
⎝

− 111 2
ea  
⎞⎛ 2ck

and 02 =λ . Since one of the tw s is zero, this state is 

 
 

E 1A

o root
unstable. 
Here three cases will arise, these are:

CAS :
1

2

2
e> ; CASE 1B: ck

1
2

2
e

ck
< ; CASE 1C: 

1
2

2
e

ck
=  

 

Case-1A: When 12
e>     2ck

From (4.5), the solutions of the linearized 
erturbed equations in this case are given by: p

 

te
ck

a ⎜
⎛ −2

11

e                                                     (4.7)       
 

uu

uu
⎟
⎠
⎞

⎝=
12

101

202 =                                                                       (4.8) 
and these solution curves are illustrated as follows.  
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Case -1A.1: When      

The initial population strength of the commensal 
 greater than that of the host i.e., . In this case 

ers the host. Further the 
host spe

se of time, wh
from the

2010 uu >

is 2010 uu >
the commensal always out-numb

cies is observed to be at a constant distance from 
the equilibrium point in the cour ile the 
commensal species goes far away  equilibrium 
point is shown in Figure-1. 
 

 
 

Figure-1 
 
Case-1A.2: When  

The initial po rength of the host is 
reater than that of the commensal i.e., . In this 

2010 uu <  
pulation st

g 2010 uu <

12 =
u

             
20

u
                                                           (4.9) 

 

and the trajectory is a straight line as shown in Figure-3. 
 

 
 

Figure-3 

ase-1B:  When

 

C  1
2

2
eck

<  

solutions he linearized perturbed 
 are given by: 

From (4.5), the  of t
equations in this case
 

t
ck

ea
eu

⎟
⎠
⎞

⎜
⎝
⎛ −−

= 2
2

111

                      u 101                           (4.10) 
 

202 uu =                    

and the so

                                                 (4.11) 
 

lution curves of (4.10) and (4.11) are illustrated 
case ( ) ( )tutu 21 =  is possible at a 

time
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
10

20

1211

log
2

2
u
u

ecka
t . This is the dominance 

revers  in Figure-2. 
 

*

al time as shown

 
 

                                    Figure-2 
 
4.1 (a)   Trajectories of the perturbed species 

Eliminating ‘t’ between the equations (4 ) and .7
(4.8), we obtain: 

ow. 

: When 
opulatio  strength of the commensal 

bel
 
Case-1B.1 2010 uu >  

The initial p n
is greater than that st i.e., of the ho 2010 . In this case uu >
( ) ( )tutu 21 =  is possible at a time 

)( ⎟⎟
⎞

⎜⎜
⎛ 10log

u
u

ck
. This is the do

⎠⎝−
=

202111

*

2
2

ea
t minance 

reversal time over the host as 
 

shown in Figure-4. 

 
 

Figure-4 
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Case-1B.2: When 10u <

 the host continues out-numbering the 
 out its na ral growth rate as shown in 

Figure-5

 20u  
In this case

commensal through tu
. However the commensal converge 

asymptotically to the equilibrium point, while the host is 
observed to be at a constant distance from the equilibrium 
point in the course of time. 
 

 
 

Figure-5 

4.1 (b) Trajectories of t ed species 
Eliminating ‘t’ between the equations (4.10) and 

 
he perturb

(4.11), we obtain: 
 

                     1
20

2 =
u
u

                                                 (4.12) 

tory is a
 

and the trajec  straight line as shown in Figure-6. 
 

 
 

Figure-6 

ase-1C: When 

 

C 1
2

2
eck

=  

The sol f tutions o he linearized perturbed 
equations in this case are given by: 
 

 

=
lution curv

 

The initial population strength of the commensal 
f the hos his case the commensal 

always o

                 101 uu =                                                     (4.13)

                u                                                     (4.14) 202 u
and the so es of (4.13) and (4.14) are illustrated 
below. 

Case-1C.1: When 2010 uu >  

is greater than that o t. In t
ut-numbers the host. Further both the species are 

at a constant distance from the equilibrium point as shown 
in Figure-7. 
 

 
 

Figure-7 
 
Case-1C.2: When  u 20u10 <  

The initial population strength of the host is 
he commensal i.e., . In this 

case the
greater than that of t 2010 uu <

 host always out-numbers the commensal as 
shown in Figure-8. 
 

 
 

Figure-8 
 

 Trajectories of bed species 
Eliminating‘t’ e equations (4.13) and 

4.1 (c)  the pertur
between th

(4.14), we obtain: 
 

                            
20

21 u
u
u

10 u
=                                     (4.15) 

is a straight
 

 

and the trajectory  line as shown in Figure-9. 
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Case-2A: When  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
>

2
4 2

2
22

1

Hkk
ce  

The above two roots 1λ  and 2λ are negative and 
hence the steady state is stable. 

The solutions of the linearized perturbed 
equations in this case are given by: 
 

t
Hkkc

ea

euu
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ ⎟
⎠
⎞⎜

⎝
⎛ −+

−−

=
2

4

101

2
2

22

111

                              (4.16)  

Figure-9  

 tHka
euu

⎟
⎠
⎞⎜

⎝
⎛ −−

=
2

2
222 4

202                                           (4.17) 4.2. Stability of the equilibrium state 

2E : 01 =N ; 
2

4 2
2

22
2

Hkk
N

−+
=  

 

The solution curves of (4.16) and (4.17) are 
shown in Figures 10 to 13 and the observations are 
presented in below. In this case the characteristic roots of the 

perturbed equations are 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
= 1

2
2

22
111 2

4
e

Hkk
caλ  

and 2
2

2222 4Hka −−=λ . 
As before three cases will arise. 
 
 

 
2

2
222

2
2

22
111 4

2
4

Hka
Hkk

cea −<
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
−  

2
2

222
2

2
22

111 4
2

4
Hka

Hkk
cea −>

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
−  

 

 

              

 2010 uu >

                    Case-2A.1 

 
 

                      Figure-10 

Case-2A.2 

 
 

Figure-11 

 

                   

 

2010 uu <  

Case-2A.3 

 
 

Figure-12 

Case-2A.4 

 
 

Figure-13 
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Observations: 
 
Case-2A.1: 

The initial population strength of the commensal 
is greater than that of the host i.e., . In this case 
the commensal continues to out-number the host as shown 
in Figure-10. However both the species converge 
asymptotically to the equilibrium point. 

2010 uu >

 
Case-2A.2: 

The initial population strength of the commensal 
is greater than that of the host i.e., . Initially the 
commensal out-numbers the host and this continues up to 
the time 

2010 uu >

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ⎟
⎠
⎞⎜

⎝
⎛ −+

−

=
20

10

2
2

222

2
2

22

111

* log

4
2

4

1
u
u

Hka
Hkkc

ea

t
 

after which the host out-numbers the commensal. This is 
illustrated in Figure-11. 
 
Case-2A.3: 

The initial population strength of the host is 
greater than that of the commensal i.e., 2010 uu < . 
Initially the host out-numbers the commensal and this 
continues up to the time 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ⎟
⎠
⎞⎜

⎝
⎛ −+

−−−

=
10

20

2
2

22

1112
2

222

* log

2

4
4

1
u
u

Hkkc
eaHka

t
 

after which the dominance is reversed as shown in Figure-
12. 
 
Case-2A.4: 

The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case the host continues to out-number the commensal as 
shown in Figure-13. 

2010 uu <

 
4.2 (a) Trajectories of the perturbed species                                                             

Eliminating ‘t’ between the equations (4.16) and 
(4.17), we obtain:          
 

               

γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

20

2

10

1

u
u

u
u

                                   (4.18)   

 

where 
2

2
222

2
2

22
111

4

2
4

Hka

Hkk
cea

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −+
−

=γ  and the resulting 

curves are parabolic type and  are  shown  in  Figure-14.     
This figure exhibit the stability of the equilibrium state. 

 
 

Figure-14 
 

Case-2B: When ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
<

2
4 2

2
22

1

Hkk
ce  

In this case one root ( )1λ  of the above two roots 
is positive so the state is unstable. 

The solutions of the linearized perturbed 
equations in this case are given by: 

te
Hkkc

a

euu
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠
⎞⎜

⎝
⎛ −+

=
1

2
2

22

11 2

4

101                                (4.19) 
 

tHka
euu

⎟
⎠
⎞⎜

⎝
⎛ −−

=
2

2
222 4

202                                           (4.20) 
 

and the solution curves are discussed as below. 
 
Case-2B.1: When  2010 uu >

The commensal species always out-number the 
host species in natural growth rate as well as in its initial 
population strength, where as the host declines further is 
shown in Figure-15. 
 

 
 

Figure-15 
 
Case-2B.2: When 2010 uu <  

The commensal dominates over the host in its 
natural growth rate but its initial strength is less than that 
of the host i.e., 2010 uu < . In this case, the host out-
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numbers the commensal till the time instant 
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and there after the commensal out-numbers the host. This 
is seen in Figure-16. 
 

 
 

Figure-16 
 
4.2 (b)   Trajectories of the perturbed species 

Eliminating‘t’ between the equations (4.19) and 
(4.20), we obtain:                                                                       

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−
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⎠
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⎛ −+
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⎝

⎛ 1
2

2
22

112
2

222 2
4
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2

4
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1

e
Hkk

caHka

u
u

u
u

    (4.21)                                                           

 

and the trajectories are hyperbolic type as shown in 
Figure-17.  
 

 
 

Figure-17 
 

Case-2C: When  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
=

2
4 2

2
22

1

Hkk
ce  

In this case one root ( )1λ  would be zero while the 
other root is negative and hence the state is unstable. 

The solutions of the linearized perturbed 
equations in this case are given by:      

101 uu =                                                                     (4.22) 
 

tHka
euu

⎟
⎠
⎞⎜

⎝
⎛ −−

=
2

2
222 4

202                                           (4.23)   
 

The solution curves of (4.22) and (4.23) are 
illustrated in Figures 18 and 19. 
 
Case-2C.1: When                                 2010 uu >

The initial population strength of the commensal 
is greater than that of the host i.e., . In this case 
the host decays while the strength of the commensal 
remains constant, the death rate of which is compensated 
by the support given by the host. This is illustrated in 
Figure-18. 

2010 uu >

 

 
 

Figure-18 
 
Case-2C.2: When u 2010 u<  

The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case the host dominates over the commensal and this 
continues up to the time instant    

2010 uu <

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
==

10

20

2
2

222

* log
4

1
u
u

Hka
tt  after which the 

commensal dominates over the host. Further the 
commensal species diverge away from the equilibrium 
point while the host species is asymptotic to the 
equilibrium point. This is seen in Figure-19.  
 

 

Figure-19 
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4.2 (c) Trajectories of the perturbed species 

Eliminating ‘t’ between the equations (4.22) and 
(4.23), we obtain:       
 

                     1
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1 =
u
u

                                          (4.24)                                                           

 

and the corresponding trajectory is a straight line shown in 
Figure-20.    
 

 
 

Figure-20 
 
4.3. Stability of the equilibrium state 
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The corresponding characteristic matrix in this 
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The corresponding characteristic roots are: 
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2222 >−= Hkaλ . 
Since one of the two roots is positive, this state is 

unstable. 
As before three cases will arise: 
 

Case-3A:  When ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
>

2
4 2

2
22

1

Hkk
ce   

The solutions of the linearized perturbed 
equations in this case are given by: 
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The solution curves of (4.25) and (4.26) are 
shown in the following figures and the observations are 
presented in below. 
 
Case-3A.1: When   2010 uu >

The host dominates over the commensal in its 
natural growth rate but its initial strength is less than that 
of the commensal i.e., . In this case, the 
commensal out-numbers the host till the time instant         
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there   after   the   dominance   is   reversed   is   shown   in  
Figure-21. 
 

 
 

Figure-21 
 
Case-3A.2: When 2010 uu <  

The host species always out-number the 
commensal species in natural growth rate as well as in its 
initial population strength, where as the commensal 
declines further as shown in Figure-22. 
 

 
 

Figure-22 
 
4.3 (a)   Trajectories of the perturbed species 

Eliminating ‘t’ between the equations (4.25) and 
(4.26), we obtain:                                                                      

 
86



                                         VOL. 6, NO. 11, NOVEMBER 2011                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2011 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ 2
4

20

2

4

10

1

2
2

22
1112

2
222

Hkk
ceaHka

u
u

u
u

  (4.27)                                                           
Case-3B: When ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
<

2
4 2

2
22

1

Hkk
ce  

In this case the solutions of the linearized 
perturbed equations are given by: 

 

and the trajectories are hyperbolic type as shown in 
Figure-23.   
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The solution curves in this case are illustrated 
below from Figures 24 to 27. 
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Case-3B.1 

 
 

Figure-24 

Case-3B.2 

 
 

Figure-25 
 
                      
 

2010 uu <  

Case-3B.3 

 
 

Figure-26 

Case-3B.4 

 
 

Figure-27 
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Observations: 
 
Case-3B.1: 

Initially, the first species out-numbers the second 
species and it continues to grow. Also we observe that 
both the species diverge away from the equilibrium point. 
Hence the equilibrium point is unstable as shown in 
Figure-24.  
 
Case-3B.2: 

The initial population strength of the commensal 
is greater than that of the host i.e., . Initially, the 
commensal out-numbers the host and this continues up to 
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after which, the host out-numbers the commensal as 
shown in Figure.25. 
 
Case-3B.3: 

The initial population strength of the host is 
greater than that of the commensal i.e., 2010 uu < . 
Initially, the host out-numbers the commensal and this 
continues up to the time 
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after which, the dominance is reversed. This is illustrated 
in Figure-26. 
 
Case-3B.4: 

The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case the second species out-number the first species all the 
time as shown in Figure-27. 

2010 uu <

 
4.3 (b) Trajectories of the perturbed species 

Eliminating‘t’ between the equations (4.28) and 
(4.29), we obtain:                                                                        
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curves are shown in Figure-28. 
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Case-3C: When ⎟
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The solutions of the linearized perturbed 
equations in this case are given by: 
 

101 uu =                                                                     (4.31) 
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The solution curves of (4.31) and (4.32) are 
illustrated below. 
 
Case-3C.1: When  2010 uu >

Initially the commensal dominates the host. In 
this case ( ) ( )tutu 21 =  is possible at a time 
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reversal time of the host species as shown in Figure-29.   
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Figure-29 
 
Case-3C.2: When 2010 uu <  

In this case the host always out-numbers the 
commensal. Here the commensal species is observed at 
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constant distance from the equilibrium point, while the 
host species diverge away from the equilibrium point is 
shown in Figure-30. 
 

 
 

Figure-30 
 
4.3 (c) Trajectories of the perturbed species 

Eliminating‘t’ between the equations (4.31) and 
(4.32), we obtain:                                                                        
 

                   1
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u
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                                            (4.33)                                                           

 

and the corresponding trajectory is a straight line as shown 
in Figure-31.   
 

 
 

Figure-31 
 
4.4. Stability of the equilibrium state 
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The corresponding characteristic equation of this 
state is:                       
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The characteristic roots of the equation (4.34) are 
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of the two roots would be zero so this state is unstable. 
The solutions of the linearized perturbed 

equations in this state are: 
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where 201 cuL =                                                     (4.35.1) 
 

202 uu =                                                                     (4.36)                   
 

Two cases would arise here. 
 
Case-4A: 110 Lu = ; Case-4B:  110 Lu ≠

The solution curves in these two cases are 
illustrated below. 
 
Case-4A.1: When   2010 uu >

The initial population strength of the commensal 
is greater than that of the host. In this case the commensal 
always out-numbers the host. Further both the species are 
at a constant distance from the equilibrium point as shown 
in Figure-32. 
 

 
 

Figure-32 
 
Case-4B.1: When   2010 uu >

In this case the commensal out-numbers the host 

till the time instant 
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and there after the dominance is reversed. This is shown in 
Figure-33. Here the commensal is asymptotic to the 
equilibrium point while, the host goes far away from the 
equilibrium point.  
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Figure-33 
 
Case-4B.2: When  2010 uu <

The host continues to out-number the commensal 
in natural growth rate as well as in its initial population 
strength as shown in Figure-34. 
 

 
 

Figure-34 
 

4.4 (a) Trajectories of the perturbed species 
Eliminating ‘t’ between the equations (4.35) and 

(4.36), we obtain:   
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                                        (4.37)                     

 

and the resulting curve is a straight line as shown in 
Figure-35. 
 

 
 

Figure-35 
 
4.5. Stability of the equilibrium state : 5E

The corresponding linearized perturbed equations 
are: 
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The corresponding characteristic roots are 
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The solutions of the equations in (4.38) are given by: 
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Here both  and are exponentially decay with the 

same characteristic time
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222 4/1 Hka − , the initial 

values ( 10u  and 20u  may however be different. Hence the 
equilibrium point is stable. 

)

The solution curves in this case are given as follows: 
 
Case-5A.1: When  2010

In this case the commensal species always out-
number the host species in natural growth rate as well as in 
its initial population strength. It is noted that both the 
commensal and the host converge asymptotically to the 
equilibrium point as shown in Figure-36.  

uu >

 

 
 

Figure-36 
 

Case-5A.2: When 2010 uu <  
The host species dominates over the commensal 

species in its initial population strength. Also both the 
species move towards to the equilibrium point as seen in 
Figure-37. 
 

 
 

Figure-37 
 
4.5 (a) Trajectories of the perturbed species 

Eliminating ‘t’ between the equations (4.41) and 
(4.42), we obtain:  
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and the corresponding trajectory is a straight line as  
shown in Figure-38.   
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Case-5B:  210 Lu ≠  
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The initial population strength of the commensal 

is greater than that of the host i.e., . In this case 
the commensal dominates over the host till the time instant 
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after which the host dominates. This is the dominance 
reversal time in this case as shown in Figure-39. 
 

 
 

Figure-39 
 
Case-5B.2: When  and   2010 uu >
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The initial population strength of the commensal 
is greater than that of the host i.e., . In this case 
the commensal dominates the host all the time as shown in 
Figure-40.    
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Figure-40 
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The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case the host continues to out-number the commensal as 
shown in Figure-41.               
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Figure-41 
 
Case-5B.4: When 2010 uu <  and 

2
2

2221

2
2

22

11 4
2

4
Hkae

Hkkc
a −<

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥⎦
⎤

⎢⎣
⎡ −+

 

The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case initially the host out- numbers the commensal and 
this continues up to the time instant      
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where  after which, the dominance is  reversed.     2
'

2 LL −=
The dominance reversal time is shown in Figure-42. 

 

 
Figure-42 
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4.5 (b)  Trajectories of the perturbed species 

Eliminating ‘t’ between the equations (4.39) and 
(4.40), we obtain:     
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=γ  and the resulting 

curves are parabolic type and are   shown in Figure-43.  
This figure exhibits the stability of the equilibrium state. 
 

 
 

Figure-43 
 
4.6. Stability of the equilibrium state : 6E
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The characteristic equation of (4.45) is:                                                          
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The characteristic roots of (4.46) are: 
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Since one of the two roots is positive then the 
steady state is unstable. 

In this state the solutions of linearized perturbed 
equations are as follows: 
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There arise the following two cases. 
 
Case-6A: 310 Lu = ; Case-6B:   310 Lu ≠

The solution curves in these cases are illustrated 
as follows: 
 
Case-6A: When 310 Lu =  
 the equations (4.47) and (4.48) become: 
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⎟
⎠
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⎝
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=
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2
222 4

202                           (4.50)    
 
Case-6A.1: When  2010 uu >

The initial population strength of the commensal 
is greater than that of the host. However, both the species 
move away from the equilibrium point. This is illustrated 
in Figure- 44.  
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Figure-44 
 
Case-6A.2: When  2010 uu <

The initial population strength of the host is 
greater than that of the commensal i.e., . In this 
case the host dominates the commensal all the time as 
shown in Figure-45. 

2010 uu <

 

 
 

Figure-45 
 
4.6 (a) Trajectories of the perturbed species 

Eliminating‘t’ between the equations (4.49) and 
(4.50), we obtain:                                                                        
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u
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=                                           (4.51)                                                           

 

and the corresponding trajectory is a straight line as shown 
in Figure-46.   
 

 
 

Figure-46 
 
Case-6B: 310 Lu ≠  

Case-6B.1: When  2010 uu >
The host dominates over the commensal after the 

time instant t*, but its initial population strength is less 
than that of the commensal. Here, the host dominance time 
over the commensal is 
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This is illustrated in Figure-47. 
 

 

u 

 

Figure-47 
 
Case-6B.2: When u 2010 u<  

In this case the host species always out-number 
the commensal species. Also it is evident that the host 
species goes far away from the equilibrium point while the 
commensal is asymptotic to the equilibrium point as 
shown in Figure-48.                 
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Figure-48 
 
4.6 (b) Trajectories of the perturbed species 

Eliminating‘t’ between the equations (4.47) and 
(4.48), we obtain:                                                                       
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=γ  the resulting 

curves are shown in Figure-49.  
 

 
 

Figure-49 
 
5. THRESHOLD (OR) PHASE - PLANE DIAGRAM 

The conditions 01 =
dt

dN
 and 02 =

dt
dN

 imply 

that neither  nor  changes its density. When we 
impose these conditions the basic equations give rise to 

four straight lines. At the points where

1N 2N

01 =
dt

dN
; 

02 =
dt

dN
, the resulting straight lines divide the phase 

plane in to eight regions in the first quadrant 
,  (vide Figure-50). 01 ≥N 02 ≥N

 

 

0 

Figure-50 
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Threshold regions 
 
Region I: Both the species  and  decline with time t. 1N 2N
Region II: The commensal species  declines and the    1N
                  host species  flourishes with time t. 2N
Region III: The commensal species  declines and the  1N
                   host species  flourishes with time t. 2N
 Region IV: Both the species  and  decline with time t. 1N 2N
 

Region V: The commensal species  flourishes  and  the    1N
                   host species  declines with time t. 2N
Region VI: Both the  species    and    flourish  with   1N 2N
                   time t. 
Region VII: Both  the  species    and    flourish  with   1N 2N
                    time t. 
Region VIII: Both the species  and  decline with   1N 2N
                     time t. 

 

 
 

                       Figure-51 (Threshold diagram) 
 
6. LIAPUNOV’S FUNCTION FOR GLOBAL 
    STABILITY 

In Section 4.5 we have discussed the local 
stability of the state of co-existence. Now we examine the 
global stability of the dynamical system (2.1) and (2.2). 
We have already noted that this system has a unique, 
stable non-trivial co-existent equilibrium state at 
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Basic equations: 
 

[ 211111
1 cNNeNa

dt
dN

+−−= ]                             (6.1) 

 

[ ]2
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22222
2 HNNka

dt
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−−=                               (6.2) 

 

The linearized perturbed equations over the 
perturbations ( 21 ,uu ) are:  
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                                 (6.3)          
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The corresponding characteristic equation is: 
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Equation (6.6) is of the form           02 =++ qpλλ
 

where  
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∴  The conditions for the existence of Liapunov’s function 
are satisfied. 
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From ions (6.7) and (6.8) it is clear that D>0. 
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( ) 00 222 >−⇒>−⇒ BACBACD  i.e., B2-AC < 0                                                                                           (6.14) 
 

∴The function E ( ) at (6.9) is positive definite. 21 ,uu
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Substituting the values of A, B and C from (6.10) (6.11) and (6.12) in (6.15) we get 
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which is clearly negative definite. So, E ( ) is a 
Liapunov’s function for the linear system. 

21 ,uu
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Next we prove that E ( ) is also a 

Liapunov
21,uu

’s function for the non-linear system. 
Let  and  be two functions of  and  

defined by: 
1f 2f 1N 2N
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negative definite. 
By putting =1N 11 uN + ; =2N 22 uN +  in 

(6.1) and (6.2), we get: 
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where 
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From (6.9)           
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Introducing polar co-ordinates θcos1 ru = , 

θsin2 ru = , the equation (6.28) can  be written as:  
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Let us denote the largest of the numbers A , B  and C  
by K. 

Our assumptions imply that ( )
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Thus E ( , ) is a positive definite function 

with the condition that 
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definite.                                                                                           
 ∴  The equilibrium state  is “asymptotically 
stable” globally. 
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