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ABSTRACT 

This paper deals with linear elastic behavior of deep beams resting on linear and nonlinear Winkler type elastic 
foundations with both compress ional and tangential resistances. The basic or governing equations of beams on nonlinear 
elastic Winkler foundation are solved by finite difference method. The finite element method in Cartesian coordinates is 
formulated using two dimensional plane stress isoparametric finite elements to model the deep beam and elastic springs to 
model the foundation. Two computer programs coded in fortran_77 for the analysis of beams on nonlinear elastic 
foundations are developed. Comparisons between the two methods and other studies are performed to check the accuracy 
of the solutions. Good agreement was found between the solutions with percentage difference of 3%. Several important 
parameters are incorporated in the analysis, namely, the vertical subgrade reaction, horizontal subgrade reaction and beam 
depth to trace their effects on deflections, bending moments and shear forces.  
 
Keywords: beams, Winkler foundation, finite difference, finite elements, friction, nonlinear. 
 
INTRODUCTION 

In the analysis of elastically supported beams, the 
elastic support is provided by a load-bearing medium, 
referred to as the ‘foundation’ along the length of the 
beam. Such conditions of support can be found in a large 
variety of geotechnical problems. There are two basic 
types characterized by the fact that the pressure in the 
foundation is proportional at every point to the deflection 
occurring at that point and is independent of pressure or 
deflection produced at other point (Figure-1). The second 
type is furnished by elastic solid, which in contrast to the 
first one represents the case of complete continuity in the 
supporting medium. 
 

 
 

Figure-1. Simply supported beam under external load 
and foundation resistances. 

 
Al-Hachmi (1997) presented a theoretical 

analysis for predicting the large displacement elastic 
stability analysis of plane and space structures subjected to 
general static loading. The beam-column theory was used 
in this analysis, taking into accounts both bowing and 
axial force effects. The general equations of fixed end 
moments of a beam subjected to lateral loads were also 
derived. The work employed this analysis to study the 
behavior of beams with elastic foundations, piles driven 
into soil and large displacements of submarine pipelines. 

Onu (2000) derived a formulation leading to an 
explicit free-of meshing stiffness matrix for a beam finite 

element foundation model. The shear deformation 
contribution was considered and the formulation was 
based on exact solution of the governing differential 
equation.  

Aristizabal-Ochoa (2001) developed, in a 
simplified manner, a nonlinear large deflection-small 
strain analysis of a slender beam-column of symmetrical 
cross section with semi rigid connections under end loads 
(conservative and no conservative), including the effects 
of axial load eccentricities and out-of-plumpness.  

Guo and Weitsman (2002) made an analytical 
method, accompanied by a numerical scheme, to evaluate 
the response of beams on no uniform elastic formulation, 
where the foundation modulus is Kz= Kz (x). The method 
employed Green’s foundation formulation, which results 
in a system of nonsingular integral equations for the 
distributed reaction p(x). 

Lazem (2003) presented a theoretical analysis for 
large displacement elastic stability of in-plane structures 
where some members were embedded into or resting on 
elastic foundations. The analysis was based on Eulerian 
formulation, which was developed initially for elastic 
structures and was extended to include soil-structure 
interaction.   

Al-Azzawi and Al-Ani (2004) studied the linear 
elastic behavior of thin or shallow beams on Winkler 
foundations with both normal and tangentional frictional 
resistances. The finite difference method was used to solve 
the governing differential equations and good results were 
obtained with the exact solutions for different load cases 
and boundary conditions. 

Al-Musawi (2005) studied the linear elastic 
behavior of deep beams resting on elastic foundations. The 
finite element method in Cartesian coordinates is 
formulated using different types of one, two and three 
dimensional isoparametric elements to compare and check 
the accuracy of the solutions.   
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Al-Azzawi (2010) used the finite difference 

method for solving the basic differential equation for the 
elastic deformation of a thin beam supported on a 
nonlinear elastic foundation. A tangent approach was used 
to determine the modulus of subgrade reaction after 
constructing a second degree equation for load-deflection 
diagram. Results of plate loading test of soil obtained in 
Iraq were used in the analysis. An iterative approach is 
used for solving the nonlinear problem until the 
convergence of the solution.  

Al-Azzawi and Theeban (2010) studied the 
geometric nonlinear behavior of beams resting on Winkler 
foundation. Timoshenko’s deep beam theory is extended 
to include the effect of large deflection theory using finite 
differences. In the finite element method (ANSYS 
program), the element SHELL 43was used to model the 
beam.  

Al-Azzawi, Mahdy and Farhan (2010) studied the 
nonlinear material and geometric behaviors of reinforced 
concrete deep beams resting on linear and nonlinear 
Winkler foundations. The finite elements through ANSYS 
(Release-11, 2007) computer software were used. The 
reinforced concrete deep beam is molded using (SOLID 
65) 8 node brick element and the soil is molded using 
linear spring (COMBIN 14) element or using nonlinear 
Winkler spring (COMBIN39) element.  
 
ELASTIC FOUNDATION 

Winkler model for both compressional and 
frictional resistances are used to model the elastic 
foundations. This model assumes that the base is 
consisting of closely spaced independent linear springs, 
consequently as shown in Figure-2. 

 

 
 

Figure-2. Winkler compress ional and frictional model. 
 

Modulus of subgrade reaction is a conceptual 
relationship between soil pressure and deflection. It can be 
measured by using plate-loading test. Using this test, a 
load-deflection curve is adopted. The modulus of subgrade 
reaction Kz can be calculated using: 
 

w
pK z =                                                                            (1) 

where: 
 

Kz     is the modulus of subgrade reaction, 
p     is the applied pressure and 
w     is the deflection. 
 

The value of Kz is obtained from the concept of 
tangent approach as shown in Figure-3. 

 

 
 

Figure-3. Typical soil pressure-settlement curve. 
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There are a wide range of Kz values for different 

types of soil. In the present study, a quasi linearization 
method or iteration procedure to get the value of Kz is 
used. This lineariazation by iteration method was 
developed using the tangent method as a basic approach. 

In this study, the linear and nonlinear behaviors 
are adopted. The nonlinear behavior is modeled using 

iterative values of Kz. A typical p-w diagram was taken 
from a plate loading test which was carried out on a soil in 
Baghdad. The result of this test is shown in Figure-4. The 
Consultant Engineering Bureau in the University of 
Baghdad had carried out this test in Al-Muthana airport 
region for the Big Baghdad Mosque project. 
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Figure-4. Plate loading test data [consultant engineering bureau / university of Baghdad]. 
 

The data shown in the load-deflection curve is 
used to obtain the following second degree polynomial 
equation: 
 

297
z w10*021.8w10*962.1280000)w(K −+=      (2) 

 

which gives, the initial modulus of subgrade reaction= 
280000 kN/m3 and the final modulus of subgrade reaction 
= 171429 kN/m3 for m. In the present study, 
the horizontal subgrade reaction is assumed to have the 
same values and behavior of vertical subgrade reaction. 

0051.0w ≥

 
ASSUMPTIONS AND GOVERNING EQUATIONS 
FOR DDEEP BEAMS  
 The main assumptions are: 
 

a) Plane cross sections before bending remain plane after 
bending. 

b) The cross section will have additional rotation due to 
transverse shear. Warping of the cross section by 
transverse shear will be taken into consideration by 
introducing a shear correction factor (c2). 

 

 The governing equations of deep beams on elastic 
foundations characterized by Winkler model for 
compressional and frictional resistances could be obtained 
[deep beam with uniform subgrade by Al-Jubori (1992)]:  
 

qwwK
dx

wd
dx
dAGc z −=++ )()( 2

2
2 ψ                               (3) 

 

ψψψ
××=⎥⎦

⎤
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⎡ +−

2
)(2
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2 hwK
dx
dwAGc

dx
dEI x               (4) 

 

where G is the shear modulus , c2 is the shear correction 
factor (c2 =5/6 for rectangular cross sections and c2=1 for 
I-sections), A is the cross-sectional area of the beam, ψ  is 
the rotation of the transverse sections in xz-plane of the 
beam, w is the transverse deflection, E is the modulus of 
elasticity of the beam material, q is the transverse load per 
unit length,  and are the linear or nonlinear  
moduli of subgrade reaction in z and x directions and I is 
the moment of inertia of the beam section. In case of the 
depth of the beam decreases (thin beam) the shear 
modulus becomes infinite and equation 3 vanishes as 

zK xK

dx
dw

−=ψ  and equation 1 reduces to the case of small 

deflection of thin beams.  
 
FINITE DIFFERENCE METHOD 

The finite difference method is one of the most 
general numerical techniques. In applying this method, the 
derivatives in the governing differential equations under 
consideration are replaced by differences at selected 
points. These points or nodes are making the finite 
difference mesh. In the analysis of deep beams by this 
method, the differential equations at each point (or node) 
are replaced by difference equations. By assembling the 
difference equations for all nodes, a number of 
simultaneous algebraic equations are obtained and solved 
by Gauss-Jordan method.  
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The beam is divided into intervals of (∆x) in the 

(x) direction as shown in Figure-5, assuming (n) to 
represent the number of nodes and (i) the node number 
under consideration. In the finite difference method, the 
curve profile of the beam deflection is approximated by a 
straight line between nodes for the finite difference 
expressions of the first derivatives and by a parabola for 
the second derivatives. 
 

 
 

Figure-5. Finite difference mesh for the deep beam. 
 

The governing equations are rewritten in finite 
differences and are produced for an interior node (i): 
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The solution of the governing differential 

equations of deep beams must simultaneously satisfy the 
differential equations and the boundary conditions for any 
given beam problem.  

Boundary conditions are represented in finite 
difference form by replacing the derivatives in the 
mathematical expressions of various boundary conditions 
by their finite difference approximations. When central 
differences are used at the boundary nodes, fictitious 
points outside the beam are required. These may be 
defined in terms of the inside points when the behavior of 
the beam functions are known at the boundary nodes.  
 
FINITE ELEMENT ANALYSIS 

The finite element method is an approximate 
method for the analysis of framed and continuum 
structures. The basic philosophy of this method is that the 
structures or the continuum is divided into small elements 
of various shapes and types, which are assembled together 
to form an approximate mathematical model.  In this paper, 
the finite element method in Cartesian coordinate is used 
to solve the problems of deep beams resting on Winkler 
type elastic foundations with both normal and frictional 
restraints. The two dimensional isoparametric plane stress 
elements are used, each node have two degrees of freedom 
(the deflection w and displacement u) as shown in Figure-6. 
 

 
 

Figure-6. Plane stress element. 
 

The two dimensional element in local coordinates 
ξ  and η  has eight nodes as shown in Figure-6 (Hinton 
and Owen 1977). 

Each node i in a plane stress element has two 
degrees of freedom. They are ui and wi. Thus, the element 
degrees of freedom may be listed in the vector (or row 
matrix): 
 

{ } [ ]Te uwuw 8811 ,.,,.........,=δ  
 
Shape functions                 

For the four-node isoparametric quadrilateral 
element, the shape functions are: 
 

N1= (1- ξ) (1- η)/4,   N2= (1+ξ) (1- η)/4 
 

N3= (1+ξ) (1+η)/4 andN4= (1- ξ) (1+η)/4                       (7) 
 

For the eight-node isoparametric quadrilateral 
element, the shape functions are: 
 

N1=(1-ξ)(1-η)(1+ξ+η)/4 
 

N2=(1-ξ2)( 1-η)/2 
 

N3=(1+ξ)(1-η)(ξ-η-1)/4 
 

N4=(1+ξ)(1-η2)/2 
 

N5=(1+ξ)(1+η)(ξ-η-1)/4 
 

N6=(1-ξ2)( 1+η)/2 
 

N7=(1+ξ)(1+η)(-ξ+η-1)/4 
 

N8=(1-ξ)(1-η2)/2                                                              (8) 
 

 

Thus, the degrees of freedom w and u can be 
defined in terms of the shape functions: 
 

∑
=

⋅=
n

i
ii wNw

1
),( ηξ                                                          (9a) 

 

∑
=

⋅=
n

i
ii uNu

1
),( ηξ                                                       (9b) 
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The x and y coordinates can be defined in the 

same manner: 
 

∑
=

⋅=
n

i
ii xNx

1
),( ηξ                                                       (10) 

 

∑
=

⋅=
n

i
ii yNy

1
),( ηξ                                                       (11) 

 

Thus, the geometry and the assumed 
displacement field are described in a similar fashion using 
the shape functions and the model values (thus, the name 
of isoparametric element is given). 
 
Jacobian matrix-[J] 

The Jacobian matrix [J] is obtained from the 
following expression: 
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The inverse of the Jacobian matrix [J]-1 can be 
readily obtained using standard matrix inversion 
technique: 
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The shape function derivatives are calculated 
from the expressions as: 
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where 
y

,
x

,
x ∂

ξ∂
∂
η∂

∂
ξ∂   and 

y∂
η∂  and obtained from [J]-1. 

 
Strain matrix-[B] 

The strains are defined in terms of the nodal 
displacements and shape function derivatives by the 
expression: 
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The strain matrix [Bi] contains shape function 
derivatives which may be calculated from the expression 
(14) and the coordinates x and y which may be calculated 
at the Gauss point coordinates from the expressions (10) 
and (11). 
 
Matrix of elastic constants-[D] 

The generalized stress–strain relationship for a 
beam of isotropic elastic material may be written as: 
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or 
 

{ } [ ]{ }ee D εσ =                                                               (17) 
 

where {σe} is the element stresses and [D] is the matrix of 
elastic constants for the isotropic elastic material. 
 
Stress matrix-[BD] 

Similarly, the stress at any point within the 
element for a beam of isotropic material can be expressed 
as: 
 

{ } [ ][ ]{ } [ ]{ }eee SBD δδσ ==                                          (18) 
 
Stiffness matrix for the plane stress element-[Kp] 

The stiffness matrix for a beam with isotropic 
elastic material is given as: 
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where [D] is given in equation (16) for isotropic elastic 
martial. Numerical integration can be used to evaluate the 
above integration using Gauss-Legendre quadrature rule. 
 
Stiffness matrix for the foundation-[Kf] 

For a foundation represented by Winkler model 
for both compressional and frictional resistances, the 
stiffness matrix is: 
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Here, 
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where  are the shape functions for the two or three 

node one dimensional beam element,  is the Jacobian 
matrix for the one dimensional beam element and  and 

are the moduli of subgrade reactions in z and x 
directions. 

/
iN

/J
zK

xK

 
Computer program 

In the present study, the computer program 
(DBNEF) (Deep Beams on Nonlinear Elastic Foundations) 
was formed. The program is developed to deal with any 
boundary condition, such as simply supported, fixed, and 
free-ends deep beams. In the program, the solution is 
divided into two steps. The first step is to find the 
governing equations of deflections and rotations and then 
these governing differential equations for deep beams on 
elastic foundation (in terms of w and ψ ) are converted 
into finite differences. After writing the finite difference 
equations for each boundary and interior nodes, 
assembling for these equations must be made to form a 
system of simultaneous algebraic equations. Gauss-Jordan 
method is used in the program to solve the system of 
equations to obtain deflections and rotations at each node. 

The obtained deflections are compared with deflections of 
the previous iteration after changing the value of subgrade 
reaction and the procedure is repeated until convergence is 
obtained. The second step is to find the moment and shear 
at each node. Also, the computer program presented by 
Hinton and Owen (1977) is modified in this work to be 
capable of solving the problem of beams on nonlinear 
elastic foundations. Two-dimensional plane stress 
elements resting on Winkler type compress ional and 
frictional foundations have been used. The numerical 
results obtained from the finite difference and finite 
element methods have been compared with available exact 
and other analytical and numerical results.  
 
APPLICATIONS AND DISCUSSIONS 
 
Verifications 
 
Simply supported beam on linear compressional 
Winkler foundation 

The problem of simply supported beam resting on 
linear Winkler foundation solved by Al-Azzawi & Al-Ani, 
(2004) using finite difference method and analytical 
solution by Hetenyi, (1974) (thin beam theory) is 
considered. The same application is solved by using ten 
eight node plane stress finite elements and finite 
differences (deep beam theory). All information and finite 
element mesh for plane stress elements over half of the 
beam is shown in Figure-7.  

 

 
 

Figure-7. Beam on Winkler foundation and finite element mesh over half of the beam. 
 

Figures 8, 9 and 10 show the deflection profiles, 
bending moment and shear force diagrams in x-direction 
for numerical, exact and the present study (finite 

difference and finite element methods). The results show 
good agreements by the used methods with percentage 
difference of 3%.  
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Figure-8. Deflection curves for simply supported beam resting on Winkler foundation. 
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Figure-9. Bending moment curves for simply supported beam resting on Winkler foundation. 
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Figure-10. Shear force curves for simply supported beam resting on Winkler foundation. 
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Simply supported beam on nonlinear compressioinal 
Winkler foundation 

The problem of simply supported beam resting on 
nonlinear Winkler foundation solved by Al-Azzawi, 
(2010) using finite difference method (thin beam theory) is 

considered. The problem is solved by using ten eight node 
plane stress finite elements and finite differences (deep 
beam theory). All information and finite element mesh for 
plane stress elements over half of the beam is shown in 
Figure-11. 

 
 

Figure-11. Beam on Winkler foundation and finite element mesh over half of the beam. 
 

Figure-12 shows the deflection profile along x-
direction for the nonlinear elastic Winkler foundation 
while Figures 13 and 14 show the bending moment and 

shearing force along x-direction. The results show good 
agreement for the different solutions with percentage 
difference of 3%. 
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Figure-12. Deflection curves for simply supported beam resting on nonlinear 
Winkler foundation. 
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Figure-13. Bending moment curves for simply supported beam resting on nonlinear 
Winkler foundation. 
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Figure-14. Shear force curves for simply supported beam resting on nonlinear 
Winkler foundation. 

 
Free ends beam on nonlinear compressional Winkler 
foundation with end load 

A beam of (E=25×106 kN/m2, ν =0.15) and 
having a length of (1.8m), width (b=0.2m), depth 
(h=0.45m) and subjected to a concentrated load (P=220.5 
kN), is considered as shown in Figure-15. The beam is 
resting on nonlinear compressional Winkler foundation 
with initial modulus (Kz=0.2kN/m3) and this value and 
other values are obtained from plate-load test. This case 
was analyzed by Al-Hachmi (1997) by using the beam-
column method. In the present study, the finite-element 
method is used to solve this problem. The present study 
results of deflections are plotted together with Al-Hachmi 
(1997) results as shown in Figure-16. The comparisons 
between the two solutions show good agreement with 
percentage difference of 3%. 

 
 

 

Figure-15. End loaded free-ends deep beam resting on 
nonlinear compressional Winkler foundation. 
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Figure-16. Deflection curves for free ends beam resting on nonlinear compressional 
Winkler foundation. 

 
Parametric study 
 
Linear compressional and frictional Winkler 
foundation 

The same simply supported beam with same 
properties shown in Figure-7 is considered here. Figure-17 
shows that the mid span deflection decreases as the depth 

of the beam increases because the stiffness of the beam 
increases. Figure-18 shows that the mid span moment 
increases as the depth of the beam increases because the 
stiffness of the beam increases. Also, Figure-19 shows that 
the maximum shear increases as the depth of the beam 
increases.  
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Figure-17. Effect of beam depth on mid span deflection for simply supported beam under 
uniform load (Kx= 0 and Kz =10000 kN/m3). 
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Figure-18. Effect of beam depth on mid span moment for simply supported beam under 
uniform load (Kx= 0 and Kz =10000 kN/m3). 
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Figure-19. Effect of beam depth on maximum shear for simply supported beam under 
uniform load (Kx= 0 and Kz =10000 kN/m3). 

 
Figures 20, 21 and 22 show that as the subgrade 

reaction coefficient increased the mid span deflection, mid 
span moment and maximum shear decreased because the 
stiffness of the foundation increases. 
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Figure-20. Effect of vertical subgrade reaction on mid-span deflection for simply supported 
beam under uniform load (Kx= 0 and beam depth=0.25m). 
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Figure-21. Effect of vertical subgrade reaction on mid-span moment for simply supported 
beam under uniform load (Kx= 0 and beam depth=0.25m). 
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Figure-22. Effect of vertical subgrade reaction on maximum shear for simply supported 
beam under uniform load  (Kx= 0 and beam depth=0.25). 

 
Figure 23, 24 and 25 show that as the horizontal 

subgrade reaction coefficient increased the mid span 
deflection, mid span moment and maximum shear 

decreased because the stiffness of the foundation 
increases. 
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Figure-23. Effect of horizontal subgrade reaction on mid span deflection for simply 
supported beam under uniform load (Kz =10000 kN/m3 and beam depth=0.25m). 
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Figure-24. Effect of horizontal subgrade reaction on mid span moment for simply 
supported beam under uniform load (Kz =10000 kN/m3 and beam depth=0.25m). 
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Figure-25. Effect of horizontal subgrade reaction on maximum shear for simply 
supported beam under uniform load (Kz =10000 kN/m3 and beam depth=0.25m). 

 
Nonlinear compressional and frictional Winkler 
foundation 

The same simply supported beam with same 
properties shown in Figure-11 is considered. Figure-26 

shows that the mid-span deflection for the linear and 
nonlinear modulus decreases as the depth of the beam 
increases because the section flexural rigidity EI of the 
beam increases for both linear and nonlinear foundations. 
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Figure-26. Effect of beam depth on mid-span deflection. 
 

Figures 27 and 28 show that the mid-span 
moment and maximum shear force increases as the depth 
of the beam increases also, because the section flexural 

rigidity EI of the beam increases for both linear and 
nonlinear foundations. 
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Figure-27. Effect of beam depth on mid-span bending moment. 
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Figure-28. Effect of beam depth on maximum shear force. 
 
CONCLUSIONS 
 From this study, the main conclusions are given 
below: 
 

a) The results obtained from the exact, finite difference and 
finite element solutions check the accuracy of the 
method used in this paper in which they are in good 
agreement. 

b) The effect of beam depth is significant on the results and 
increasing beam depth will decrease the mid span 

deflection and increase the moment and shear 
resistances.  

c) The effect of friction at the beam-foundation interface is 
found to be small on the deflection, moment and shear. 

d) The effect of varying vertical modulus of elastic 
foundation on deflection, moment and shear is 
significant. 

e) The obtained results show different values for both 
deflection and bending moment but rather close values 
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for shearing force for high values of applied loads on the 
beam, which is resting on linear or nonlinear elastic 
Winkler foundation. The nonlinear behavior of soil was 
obtained by using high-applied loads (to make the 
difference in results much obvious). This study shows 
that the elastic method for analyzing beam resting on 
Winkler foundation is still valid for ordinary applied 
loading on beams. The effect of beam depth on 
maximum beam deflection and bending moment is 
found to be significant but not much on shearing force 
for nonlinear foundations. 
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